Fritz Hörmann — MATH 316: Complex Analysis — Fall 2010 Exercise sheet 1

1. Roots of unity: Find explicit expressions of the form a + bi for all solutions $z \in \mathbb{C}$ to the equations

(a)
$$z^8 = 1$$
, (b) $z^3 = 1$,

by using both of the following methods: i) Use explicit formulas for special values of sin and cos. ii) Use, for (a), the fact that either $z^4 = 1$ or z is a solution of the equation $z^2 = +i$ or $z^2 = -i$ — then use geometric considerations. Use, for (b), the fact that $z^3 - 1 = (z^2 + z + 1)(z - 1)$ and completing the square.

2. Parallelogram identity: Give a proof and geometric interpretation of the formula

$$2(|z_1|^2 + |z_2|^2) = |z_1 + z_2|^2 + |z_1 - z_2|^2 \quad \text{for } z_1, z_2 \in \mathbb{C}.$$

- 3. Complement to the triangle inequality: Let $z_1, z_2 \in \mathbb{C}$ be both non-zero. Show that $|z_1 + z_2| = |z_1| + |z_2|$ if and only if z_2 is a positive real multiple of z_1 .
- 4. Treasure quest: Imagine an island in the South Sea. Located somewhere on the island, you will find a small tree B_1 and a big tree B_2 as well as a cross C. Starting from the cross C, go to B_1 and the same distance straight on, then, again the same distance to the left (90°). Mark this position by M_1 . Now go from the tree B_2 to the cross C and then the same distance to the left. Mark this position by M_2 . You'll find the treasure at half distance between M_1 and M_2 . Unfortunately, arriving at the island, you realize that the cross doesn't exist anymore. Can you still find the treasure?
- 5. Riemann sphere: Consider \mathbb{C} as a subset of \mathbb{R}^3 by mapping z = a + bi to the vector $\begin{pmatrix} a & b & 0 \end{pmatrix}^T$. Consider the sphere

$$S^{2} = \left\{ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \in \mathbb{R}^{3} \middle| X^{2} + Y^{2} + Z^{2} = 1 \right\}.$$

For each point $z \in \mathbb{C}$ the line through the North Pole $N := (0 \ 0 \ 1)^T$ and z hits the sphere in exactly one other point f(z).

- (a) Prove that $z \mapsto f(z)$ is a bijection of \mathbb{C} with $S^2 \{N\}$.
- (b) Prove that f and its inverse are differentiable in the sense of real analysis. (We say: f is a diffeomorphism.)
- (c) f extends to a bijection $\widehat{\mathbb{C}} \cong S^2$ by mapping ∞ to N. Prove that a Möbius transformation gives rise to a *continuous* map $S^2 \to S^2$ using this identification.
- *(d) Prove that f induces a bijection between the set of circles in $\widehat{\mathbb{C}}$ (as defined in the lecture) and the set of usual circles on S^2 . To which circles on S^2 the lines in \mathbb{C} do correspond?
- 6. Another construction of \mathbb{C} : Let $\mathbb{R}[T]$ be the ring of polynomials in one variable with coefficients in \mathbb{R} . Let $\langle 1+T^2 \rangle$ be the *ideal* of polynomials that can be written as $f(T) \cdot (1+T^2)$ for some polynomial $f \in \mathbb{R}[T]$. Prove that the quotient ring $\mathbb{R}[T]/\langle 1+T^2 \rangle$ is isomorphic to the field of complex numbers.

Please hand in your solutions on Wednesday, September 15, 2010 in the lecture hall