1. **Roots of unity:** Find explicit expressions of the form $a + bi$ for all solutions $z \in \mathbb{C}$ to the equations

 \[(a) \ z^8 = 1, \quad (b) \ z^3 = 1, \]

 by using both of the following methods:

 i) Use explicit formulas for special values of sin and cos.

 ii) Use, for (a), the fact that either $z^4 = 1$ or z is a solution of the equation $z^2 = +i$ or $z^2 = -i$ — then use geometric considerations. Use, for (b), the fact that $z^3 - 1 = (z^2 + z + 1)(z - 1)$ and completing the square.

2. **Parallelogram identity:** Give a proof and geometric interpretation of the formula

 \[2 \left(|z_1|^2 + |z_2|^2 \right) = |z_1 + z_2|^2 + |z_1 - z_2|^2 \quad \text{for} \ z_1, z_2 \in \mathbb{C}. \]

3. **Complement to the triangle inequality:** Let $z_1, z_2 \in \mathbb{C}$ be both non-zero. Show that $|z_1 + z_2| = |z_1| + |z_2|$ if and only if z_2 is a positive real multiple of z_1.

4. **Treasure quest:** Imagine an island in the South Sea. Located somewhere on the island, you will find a small tree B_1 and a big tree B_2 as well as a cross C. Starting from the cross C, go to B_1 and the same distance straight on, then, again the same distance to the left (90°). Mark this position by M_1. Now go from the tree B_2 to the cross C and then the same distance to the left. Mark this position by M_2. Unfortunately, arriving at the island, you realize that the cross doesn’t exist anymore. Can you still find the treasure?

5. **Riemann sphere:** Consider \mathbb{C} as a subset of \mathbb{R}^3 by mapping $z = x + yi$ to the vector $(x \ y \ 0)^T$. Consider the sphere

 \[S^2 = \left\{ \left(\begin{array}{c} X \\ Y \\ Z \end{array} \right) \in \mathbb{R}^3 \mid X^2 + Y^2 + Z^2 = 1 \right\}. \]

 For each point $z \in \mathbb{C}$ the line through the North Pole $N := (0 \ 0 \ 1)^T$ and z hits the sphere in exactly one other point $f(z)$.

 (a) Prove that $z \mapsto f(z)$ is a bijection of \mathbb{C} with $S^2 - \{N\}$.

 (b) Prove that f and its inverse are differentiable in the sense of real analysis. (We say: f is a diffeomorphism.)

 (c) f extends to a bijection $\hat{\mathbb{C}} \cong S^2$ by mapping ∞ to N. Prove that a Möbius transformation gives rise to a continuous map $S^2 \rightarrow S^2$ using this identification.

 (d) Prove that f induces a bijection between the set of circles in $\hat{\mathbb{C}}$ (as defined in the lecture) and the set of usual circles on S^2. To which circles on S^2 the lines in \mathbb{C} do correspond?

6. **Another construction of \mathbb{C}:** Let $\mathbb{R}[T]$ be the ring of polynomials in one variable with coefficients in \mathbb{R}. Let $\langle 1 + T^2 \rangle$ be the *ideal* of polynomials that can be written as $f(T) \cdot (1 + T^2)$ for some polynomial $f \in \mathbb{R}[T]$. Prove that the quotient ring $\mathbb{R}[T]/\langle 1 + T^2 \rangle$ is isomorphic to the field of complex numbers.

Please hand in your solutions on Wednesday, September 15, 2010 in the lecture hall