
Fritz Hörmann — MATH 316: Complex Analysis — Fall 2010
Solutions to exercise sheet 1

1. Roots of unity: Find explicit expressions of the form a + bi for all solutions z ∈ C to the
equations

(a) z8 = 1, (b) z3 = 1,

by using both of the following methods: i) Use explicit formulas for special values of sin
and cos. ii) Use, for (a), the fact that either z4 = 1 or z is a solution of the equation
z2 = +i or z2 = −i — then use geometric considerations. Use, for (b), the fact that z3− 1 =
(z2 + z + 1)(z − 1) and completing the square.

In the lecture the formula

zk = e(
2πk

n
) = cos(

2πk

n
) + i sin(

2πk

n
) k = 0, . . . , n− 1,

for the n different n-th roots of unity has been given. (Meanwhile we learned, that e(y) = exp(iy)
for the complex exponential function). Using tables for the special values of sin and cos at 2π 1

3 and
2π 2

3 , we get

z0 = 1, z1 =
1

2
(−1 +

√
3i), z2 =

1

2
(−1−

√
3i),

for the 3 third roots of unity.
Similarly using the values for 2π 1

8 , etc., we get

z0 = 1, z1 =
1√
2

(1 + i), z2 = i, z3 =
1√
2

(−1 + i),

z4 = −1, z5 =
1√
2

(−1− i), z6 = −i, z7 =
1√
2

(1− i),

for the 8 eighth root of unity.
However using calculations with complex numbers, we get determine these values ourselves, thereby
proving the formulas for these special values of sin and cos.
For the third roots of unity observe that they are zeros of the equation

z3 − 1 = (z − 1)(z2 + z + 1) = (z − 1)((z +
1

2
)2 +

3

4
).

Hence we get, that z is either 1 or z + 1
2 = ±

√
−3

4 = ±1
2

√
3i. These are the expressions obtained

before.
For the eighth roots of unity observe, that they are zeros of the equation

(z8 − 1) = (z4 − 1)(z4 + 1).

Hence z is either a fourth root of unity, that is, equal to 1, -1, i or −i, or it is a zero of z4 + 1 =
(z2 + i)(z2 − i). In the latter case, we get, setting z = a+ bi:

(a+ bi)2 = ±i ⇒ a2 − b2 = 0, 2ab = ±1.

Hence b = ±a and a2 = 1
2 . This gives the expressions obtained before.

Formulas involving only square roots of rational numbers exist only for n-th roots of unity with
n|24. However, try to determine Re(z) for z being a (primitive) fifth root of unity!



2. Parallelogram identity: Give a proof and geometric interpretation of the formula

2
(
|z1|2 + |z2|2

)
= |z1 + z2|2 + |z1 − z2|2 for z1, z2 ∈ C.

We calculate:

(z1 + z2)(z1 + z2) + (z1 − z2)(z1 − z2)
= z1z1 + z1z2 + z2z1 + z2z2

+z1z1 − z1z2 − z2z1 + z2z2

= 2z1z1 + 2z2z2

Geometric interpretation: Consider the parallelogram spanned by z1 and z2. The sides of it have
length |z1|, resp. |z2| and its diagonals have length |z1 + z2|, resp. |z1 − z2|.

3. Complement to the triangle inequality: Let z1, z2 ∈ C be both non-zero. Show that
|z1 + z2| = |z1|+ |z2| if and only if z2 is a positive real multiple of z1.

The “if” direction is obvious because |αz1| = α|z1| for a positive real α. For the “only if” direction:
By multiplying the equation with 1

|z1| , resp. z1, z2 by 1
z1

we may without loss of generality assume
that z1 = 1. Then, writing z2 = a+ bi, we have

(1 + a)2 + b2 = (1 +
√
a2 + b2)2

1 + 2a+ a2 + b2 = 1 + 2
√
a2 + b2 + a2 + b2

a =
√
a2 + b2.

From this it follows b = 0 and a > 0.

4. Treasure quest: Imagine an island in the South Sea. Located somewhere on the island, you
will find a small tree B1 and a big tree B2 as well as a cross C. Starting from the cross C, go
to B1 and the same distance straight on, then, again the same distance to the left (90◦). Mark
this position by M1. Now go from the tree B2 to the cross C and then the same distance to
the left. Mark this position by M2. You’ll find the treasure at half distance between M1 and
M2. Unfortunately, arriving at the island, you realize that the cross doesn’t exist anymore.
Can you still find the treasure?

We consider the map of the island as a subset of C. Without loss of generality, we can assume that
B1 = 0. Call z := B2. We get for the position of M1

(−1− i)C

(since multiplication by i has the effect of rotation by 90◦ to the left) and for the position of M2,
we get

C + i(C − z)

The position at half distance between M1 and M2 is hence given by

1

2
(M1 +M2) =

1

2
((−1− i)C + C + i(C − z)) = −1

2
iz

which is independent of C. Therefore the position of the cross does not matter for finding the
treasure.



5. Riemann sphere: Consider C as a subset of R3 by mapping z = a+bi to the vector
(
a b 0

)T
.

Consider the sphere

S2 =


XY
Z

 ∈ R3

∣∣∣∣∣∣X2 + Y 2 + Z2 = 1

 .

For each point z ∈ C the line through the North Pole N :=
(
0 0 1

)T
and z hits the sphere in

exactly one other point f(z).

(a) Prove that z 7→ f(z) is a bijection of C with S2 − {N}.
(b) Prove that f and its inverse are differentiable in the sense of real analysis. (We say: f

is a diffeomorphism.)

(c) f extends to a bijection Ĉ ∼= S2 by mapping∞ toN . Prove that a Möbius transformation
gives rise to a continuous map S2 → S2 using this identification.

*(d) Prove that f induces a bijection between the set of circles in Ĉ (as defined in the lecture)
and the set of usual circles on S2. To which circles on S2 the lines in C do correspond?

(a) and (b): We first try to find the coordinates for f(z). The line through N = (0 0 1)T and
z = (a b 0)T may be parametrized by  ta

tb
1− t

 t ∈ R.

Let us investigate its intersection points with the sphere S. They satisfy

t2a2 + t2b2 + (1− t)2 = 1

or in other form:
t2(a2 + b2 + 1) = 2t.

The solutions of this equation are t = 0 and t = 2
a2+b2+1

. The first obviously corresponds to N
itself and the other yields the coordinates of f(z):

f(z) =

 2a
a2+b2+1

2b
a2+b2+1

1− 2
a2+b2+1

 .

An inverse of this is obviously:

z =
X

1− Z
+

Y

1− Z
i.

(This formula is not uniquely determined, since for points on S, we have a relation between X, Y
and Z.)
Therefore f is bijective and obviously f and its inverse are continuous and differentiable because
they are compositions of algebraic operations (observe that the denominator a2 + b2 + 1 is never 0
and 1− Z is never 0 on S − {N}).
(c) Let g be a Möbius transformation obtained by extending the map z 7→ αz+β

γz+δ to Ĉ, as explained

in the lecture. Since f defines a bijection of S − {N} with C, such that f and f−1 are continuous,



the only points in question are 1. z =∞ and 2. the point z such that g(z) =∞. We treat the case
γ = 0 and γ 6= 0 separately.
First let γ 6= 0. 1. We have by definition g(∞) = α

γ . We have to prove, that for any sequence of
numbers z1, z2, . . . with

lim
n→∞

f(zn) = N, (1)

we have
lim
n→∞

g(zn) =
α

γ
. (2)

Now (1) is equivalent to

lim
n→∞

1− 2

a2n + b2n + 1
= 1

which is equivalent to
lim
n→∞

|zn| =∞.

On the other hand:

g(zn) =
αzn + β

γzn + δ

=
α+ β

zn

γ + δ
zn

.

Now, of course, limn→∞
1
zn

= 0 and since algebraic operations in C are continuous (see section 2.2
of the lecture), we get (2).
2. We have by definition g(− δ

γ ) =∞, therefore we have to prove, that for any sequence of numbers
z1, z2, . . . with

lim
n→∞

zn = − δ
γ
, (3)

we have
lim
n→∞

|g(zn)| =∞ (4)

(using what we obtained before). We calculate

|g(zn)| =
|αzn + β|
|γzn + δ|

=
|αγ zn + β

γ |
|zn + δ

γ |
.

Now we have limn→∞ |zn + δ
γ | = 0 and limn→∞ |αγ zn + β

γ | = |
αδ−βγ
γ2
| which is non-zero because the

matrix describing the Möbius transformation has non-zero determinant. Therefore, we get (4).
The case γ = 0 is easy.
(d) In the lecture, it was shown that any circle in Ĉ can be described by the equation(

z 1
)
H

(
z
1

)
= 0

where H =

(
α w
w δ

)
, w ∈ C, α, δ ∈ R is an arbitrary indefinite Hermitian matrix. In other words

αzz + wz + zw + δ = 0 (5)

α(a2 + b2) + 2w1a+ 2w2b+ δ = 0 w = w1 + iw2 (6)



with αδ − ww < 0. A circle on S is described by the equationXY
Z

 ·
rs
t

 = u

with

0 ≤ u < |

rs
t

 | (7)

(constance of scalar product) or written out:

rX + sY + tZ = u.

Inserting f(z) in this equation and multiplying by a2 + b2 + 1, we get

2ra+ 2sb+ t(a2 + b2 − 1) = u(a2 + b2 + 1)

(t− u)(a2 + b2) + 2ra+ 2sb− u− t = 0.

This equation is of the same form as (6), if and only if

(t− u)(−u− t)− r2 − s2 < 0,

that is
u2 < t2 + r2 + s2.

This is just condition (7).
The lines in C, which we considered as special “circles” in Ĉ are characterized by α = 0. They
correspond to circles on S satisfying u = t, hence (by multiplying with a scalar) to

rX + sY + Z = 1 or rX + sY = 0.

These are those circles C ⊂ S with N ∈ C (the first equation describes those circles which do not
contain the South Pole, whereas the second equation describes the meridians).

6. Another construction of C: Let R[T ] be the ring of polynomials in one variable with
coefficients in R. Let 〈1+T 2〉 be the ideal of polynomials that can be written as f(T ) ·(1+T 2)
for some polynomial f ∈ R[T ]. Prove that the quotient ring R[T ]/〈1 + T 2〉 is isomorphic to
the field of complex numbers.

First we define a ring homomorphism g : R[T ] → C by mapping the coefficients in R to R ⊂ C
and sending T to i. Remember: To give a homomorphism of R[T ] into any ring X is the same as
giving a homomorphism of R to X and an element in X which becomes the image of T (universal
property of the polynomial ring).
This homomorphism g factors into a homomorphism

g̃ : R[T ]/〈1 + T 2〉 → C

if and only if g(1 + T 2) = 0. This condition, however, is satisfied because i is a solution of the
equation 1 + T 2 = 0.



We have to show that g̃ is an isomorphism. For this note that

{f ∈ R[X] | g(f) = 0}

is an ideal of R[T ] and hence generated by a polynomial h (R[X] is a principal ideal domain). Of
course h has degree ≥ 1 because C 6= {0}. By the fundamental theorem of homomorphisms, we
have R[X]/〈h〉 ∼= C. We have to see, that 〈h〉 = 〈1 + T 2〉. Now obviously, we have 〈h〉 ⊇ 〈1 + T 2〉,
hence

1 + T 2 = p · h

for some other polynomial p. If p has degree 0 and h has degree 2, that is: p ∈ R, we are done
because the 2 ideals will be the same. If p and h have degree 1, we get

1 + T 2 = (αT + β)(γT + δ)

which implies that 1 + T 2 = 0 has a solution in R — a contradiction!

Remark: If you don’t want to use the fact, that R[X] is a principal ideal domain, you can argue as
follows: Let f be a polynomial with g(f) = 0, that is, satisfying f(i) = 0. We have to show that f
lies in 〈1 + T 2〉. By polynomial division, we may write

f = (1 + T 2) · h+ p

where deg(p) ≤ 1. Inserting i for T in this equation (that is: applying g to it), we get p(i) = 0. If
p has degree 0, then p = 0, and so f ∈ 〈1 +T 2〉. If p has degree 1, we have αi+ β = 0 for α, β ∈ R,
α 6= 0 — a contradiction. (Actually a similar kind of argument is used to prove that R[X] is a
principal ideal domain).


