Fritz Hörmann — MATH 316: Complex Analysis — Fall 2010 Exercise sheet 2

1. Möbius transformations: Prove that

- (a) the group of Möbius transformations $\operatorname{Aut}(\widehat{\mathbb{C}})$ acts transitively on the set of circles in $\widehat{\mathbb{C}}$ (as defined in the lecture),
- (b) four points $z_0, z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ lie on a circle, if and only if the cross-ratio (z_0, z_1, z_2, z_3) is in $\widehat{\mathbb{R}}$, that is, either real or equal to infinity.

Hint: Do not calculate! For a), use the fact that 3 different points in $\widehat{\mathbb{C}}$ determine a unique circle. Reduce b) (using the invariance of the cross-ratio under Möbius transformations) to the case $z_1 = 1$, $z_2 = 0$, $z_3 = \infty$.

- 2. Complex differentiability: Decide for the following functions $f : \mathbb{C} \to \mathbb{C}$ whether they are
 - (1) continuous at 0,
 - (2) partially differentiable at 0 in x and y direction (identifying \mathbb{C} with \mathbb{R}^2 as usual),
 - (3) real differentiable at 0 (identifying \mathbb{C} with \mathbb{R}^2 as usual),
 - (4) complex differentiable at 0,
 - (5) holomorphic in a neighborhood of 0 (for example a small disc around).
 - (a) $f(z) := \overline{z}$
 - (b) f(z) := |z|
 - (c) $f(z) := |z|^2$
 - (d) f(z) := 0 if $x \neq y$ or z = 0, f(z) := 1, otherwise
 - (e) $f(z) := \frac{y^3}{x^2 + y^2}$ for $z \neq 0$ and f(0) := 0
 - (f) f(z) := u(z) + iv(z), where $u(z) := \exp(x)\cos(y)$ and $v(z) := \exp(x)\sin(y)$
 - (g) f(z) := u(z) + iv(z), where $u(z) := x^3 3xy^2$ and $v(z) := 3x^2y y^3$
 - (h) $f(z) := \overline{g(\overline{z})}$ for any holomorphic function g

where we wrote z = x + yi.

Summarize your answers in a table! You do not have to give proofs.

3. Cauchy-Riemann operator: Let $U \subseteq \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be a real differentiable function (at every point in U). Show that f is holomorphic, if and only if $\frac{\partial f}{\partial \overline{z}} = 0$, where $\frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$. Show furthermore that in this case $f'(z) = \frac{\partial f}{\partial z}$, where $\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$.

Please hand in your solutions on Monday, September 20, 2010 in the lecture hall