Fritz Hormann — MATH 316: Complex Analysis — Fall 2010
Solutions to exercise sheet 2

1. Mobius transformations: Prove that

(a) the group of Mobius transformations Aut(@) acts transitively on the set of circles in C
(as defined in the lecture),

(b) four points 20, 21, 22, 23 € C lie on a circle, if and only if the cross-ratio (zo, 21, 29, 23) is
in R, that is, either real or equal to infinity.

Hint: Do not calculate! For a), use the fact that 3 different points in C determine a unique
circle. Reduce b) (using the invariance of the cross-ratio under Mdbius transformations) to
the case z1 =1, 20 =0, 23 = 0.

(a) We learned during the course that for pair of triples of disjoint numbers 21,22, 23 € C and
w1, wa, w3 € C, there is a Mobius transformation fys with f (z;) = w; for i = 1,2,3. It is obvious
that 3 disjoint points determine a unique circle in C (either they lie on a line or determine a classical
circle in C). We learned also that fj, transforms circles in C into circles in C. (Observe that this
means that 1. a classical circle is transformed either into a line or into a classical circle and that 2.
a line is also transformed either into a classical circle or into a line.)

Let now circles C, C' in C be given and choose 3 different points 21, 29, z3 € C and 3 different points
w1, we, w3 € C'. Consider the Mobius transformation fj; as above. It has to send the circle C to
the circle C’ because it sends C' to some circle but there is only one circle going through wq, ws, ws.
(b) First assume that zp, 21, 22, 23 are disjoint. Choose a Mobius transformation fjs sending the
triple z1, 22, 23 to the triple 1,0, 00. We have

Ja(z0) =0

(20, 21, 22, 23) = (faa(20), Fur(21), Faa (22), faa(23)) = (faa(20), 1,0, 00) = == —

= fum(20)
(here the invariance of the cross-ratio under Mébius transformations, proven in the lecture, is used).
Therefore the cross-ratio is real, if and only if fys(29) is real. Since the circle in C going through
the 3 points 1,0,00 € CisR=RuU {00}, we can formulate this as follows. The cross-ratio is real, if
and only if fas(zp) lies on the circle through 1,0, 00. By the argument from (a), this is equivalent
to 2o lying on the circle through f;,*(1), f1,'(0), f37 (00), which are the points z1, 22, z3. Hence the
cross-ratio is real, if and only if zg lies on the circle determined by z1, 29, 23, that is, all 4 points lie
on one circle.

If 2 or more of the z; coincide, the cross-ratio is co but the 4 points then obviously lie on a circle,
too.

2. Complex differentiability: Decide for the following functions f : C — C whether they are

(1) continuous at 0,

(2) partially differentiable at 0 in 2 and y direction (identifying C with R? as usual),
(3) real differentiable at 0 (identifying C with R? as usual),

(4)

(5)

5) holomorphic in a neighborhood of 0 (for example a small disc around).

complex differentiable at 0,

(a) f(z):=7



(b) f(z):= [l

(c) f(2) =1z

(d) f(z):=0 1f:c #yor z=0, f(z) := 1, otherwise

(e) f(z):= $2+ > for z # 0 and f(0) :=

(f) f(2) :=u(z) +iv(z), where u(z) := exp(m) cos(y) and v(z) := exp(z) sin(y)
(g) f(2):=u(2)+iv(z), where u(z) := 23 — 329? and v(z) := 322y — ¢3

(h) f(2) := g(%) for any holomorphic function g

where we wrote z = z + yi.

Summarize your answers in a table! You do not have to give proofs.

We use freely the following fact from real analysis: If we have given any function
f:R*=C—C=R?

which is of the form
f(z) = <§y8> —f() +ify(s)  z=ztiy

for f,(z) and f,(z) are any composition of algebraic expressions and/or smooth functions in x
and y, then f is real differentiable. These are: addition, subtraction, multiplication, divison (with
non-zero denominator!), sin, cos, exp, etc.

Observe also that for the above conditions (5) = (4) =(3) = (2) and (3) = (1) but not necessarily
(2) = (1). This exercise shows in particular that no other implications are possible.

(a) f(z) = z. The function is obviously real-differentiable at z = 0, by what was said in the
beginning. For complex differentiability, we have to see whether the Jacobian matrix at z = 0 is of

the form
a —b
b a
(which means that it is C-linear — the same as multiplication by m = a + bi) or, in other words,

whether the Cauchy-Riemann equations are satisfied there.
We have here f,(z 4+ iy) = « and fy(x +iy) = —y. Therefore

Ofz  Ofx
(5;; %z,) @=(p %)
or Oy a

even for all z € C, which is not of the form required for complex differentiability.
(b) f(2) = |z| is obviously continuous, but already its restriction to the real line, which coincides
with the usual real absolute value, is not differentiable at = 0. In other words, it is not partially
differentiable in x direction, hence neither real- nor complex differentiable.
(c) f(z +iy) = fo(x +iy) = 2® + y? is real-differentiable (at any point) by what was said in the
beginning. Its Jacobian matrix is given by
2¢ 2y
-(7 %)

Ofz 8fz
9

<6f 6ﬁ )
oz

which is of the form required for complex differentiability only at z = 0. This is kind of an accident
and the function is not holomorphic (on any neighborhood of z = 0).



(d) The function first of all is obviously not continuous at z = 0: For the sequence zp = x + iz

with any real zero-sequence x1, z2,... (with non-zero terms) we have
lim 2z, =0 lim f(z) =1,
k—o00 k—oo

but for the sequence z, = xj, we have

lim 2z, =0 lim f(z;)=0.
k—o00 k—o0
Nevertheless, its restrictions to the x and y-axes are both identically zero, hence f is partially
differentiable in these directions.
(e) First f is continuous at 0 because we have
=

,_|L3,<@
x2 +y2' -

el S =

Furthermore, the partial derivatives in  and y direction exist and we get the following potential

(1) Jacobian matrix:
<am & 0 1
7= 8 aaf)(m:( ).
o vy

Now remember: Real differentiability means that we can write f in a neighborhood of z = 0 as
follows

1O =10+ 7+ (1) + el

where 7 is continuous at 0 with 7(0) = 0. Hence we have to investigate, whether

x
f(z)f(O)J'( )
r(z) = 4 2#0

El

0 z=0
is continuous at 0. We get for z # 0:
S P A R
1213 [zl [2] R
The sequence z; = xp, + iz for any real zero-sequence x1, xo,... leads to
2
r(zp) = —(—% —1) = —=
(2%) 2xk(4xz =3

which is not zero. Hence f is not real-differentiable at 0 even though it is partially differentiable
at z = 0 (even in any direction).

(f) f is obviously real-differentiable by what was said in the beginning. We have to check the
Cauchy-Riemann conditions. The Jacobian matrix is given by

8= Of= — exp(x) sin
(aafmy il ) (5) = <exp<x>cos<y> p() <y>>.
dy

~ \exp(x)sin(y) exp(x)cos(y)



This is of the form (Z

Remark: We see in addition: f'(z) = f(z) for all z. Meanwhile, we learned f(z) = exp(z) is the
complex exponential function.

(g) f is obviously real-differentiable by what was said in the beginning. We have to check the
Cauchy-Riemann conditions. The Jacobian matrix is given by

Ofr  Ofx
837 g (2) = <3$2 — 3y g3a:y 2> ‘
% 87; 3xy 3x* — 3y

ab> for all z. Hence f is holomorphic on the whole complex plane.

b
Remark: We see in addition: f'(z) = 3(x? — y? + ixy) for all z, which you may recognize as
f'(2) = 322 and indeed f(z) = 23, written out in x,y coordinates.

(h) Obviously the function f is real-differentiable because it is a composition of real-differentiable
functions. Remember that we saw in (a) that h : z — Z is everywhere real-differentiable with

Jacobian matrix given by
1 0
J(h,z)-(o _1>.

Hence the Jacobian matrix of the function f =hogoh at z is given by

b 5l )

by the real-analytic chain rule. Here J(g,Z) is the Jacobian matrix of g at Z. It is of the form

()

for any z because g is holomorphic. The calculation

b 566 2=

shows that also f is holomorphic everywhere with f/(z) = ¢/(Z).

This is of the form (a _ab> for all z. Hence f is holomorphic on the whole complex plane.

Summarized:
(@) () (¢) (d) (e) (f) (8) (h)
)| x x x X X X X
(2) | x X X X X X X
3) | x X X X X
(4) X X X X
(5) X X X

3. Cauchy-Riemann operator: Let U C C be open and f : U — C be a real differentiable

function (at every point in U). Show that f is holomorphic, if and only if % = 0, where % =

: (% + ig—]yc). Show furthermore that in this case f’(z) = %, where % =1 (% - i%)'



Since f(z) = fz(2) +ify(2) is assumed to be real-differentiable everywhere, being holomorphic is
equivalent to the validity of the Cauchy-Riemann equations everywhere. They express the condition

that the Jacobian matrix
Ofe  Ofz
J(f,2) = (5‘3 a@ﬁ) (2)
Jy

ox

is of the form

We have then f(z) = a(z) + b(2)i.
Let us check what % = 0 means:

of  1(/0f of

oz 2<&C+Z%>
1 (0fy  Ofy, . Ofz  .Of
_ 1 (% _Ofy  0fa Ofy
_ 2<8$ ay“(ay+ax)>'

This is zero obviously, if and only if we have

fa _ 0fy
Ox oy
and
fe _ _0Ofy
oy ox

Furthermore, if f is holomorphic we have

of _ 1(of .of

9z 2<8rc Zﬁy)
1 (0f,  .Of L Ofy  Of
- 2<8$+Za£—2(8y+28;))
BRI )
2\ 0x dy Ay ox

= a(z) +b(2)i = f'(2).



