
Fritz Hörmann — MATH 316: Complex Analysis — Fall 2010
Solutions to exercise sheet 2

1. Möbius transformations: Prove that

(a) the group of Möbius transformations Aut(Ĉ) acts transitively on the set of circles in Ĉ
(as defined in the lecture),

(b) four points z0, z1, z2, z3 ∈ Ĉ lie on a circle, if and only if the cross-ratio (z0, z1, z2, z3) is
in R̂, that is, either real or equal to infinity.

Hint: Do not calculate! For a), use the fact that 3 different points in Ĉ determine a unique
circle. Reduce b) (using the invariance of the cross-ratio under Möbius transformations) to
the case z1 = 1, z2 = 0, z3 =∞.

(a) We learned during the course that for pair of triples of disjoint numbers z1, z2, z3 ∈ Ĉ and
w1, w2, w3 ∈ Ĉ, there is a Möbius transformation fM with f(zi) = wi for i = 1, 2, 3. It is obvious
that 3 disjoint points determine a unique circle in Ĉ (either they lie on a line or determine a classical
circle in C). We learned also that fM transforms circles in Ĉ into circles in Ĉ. (Observe that this
means that 1. a classical circle is transformed either into a line or into a classical circle and that 2.
a line is also transformed either into a classical circle or into a line.)
Let now circles C,C ′ in Ĉ be given and choose 3 different points z1, z2, z3 ∈ C and 3 different points
w1, w2, w3 ∈ C ′. Consider the Möbius transformation fM as above. It has to send the circle C to
the circle C ′ because it sends C to some circle but there is only one circle going through w1, w2, w3.
(b) First assume that z0, z1, z2, z3 are disjoint. Choose a Möbius transformation fM sending the
triple z1, z2, z3 to the triple 1, 0,∞. We have

(z0, z1, z2, z3) = (fM (z0), fM (z1), fM (z2), fM (z3)) = (fM (z0), 1, 0,∞) =
fM (z0)− 0

1− 0
= fM (z0)

(here the invariance of the cross-ratio under Möbius transformations, proven in the lecture, is used).
Therefore the cross-ratio is real, if and only if fM (z0) is real. Since the circle in Ĉ going through
the 3 points 1, 0,∞ ∈ Ĉ is R̂ = R∪{∞}, we can formulate this as follows. The cross-ratio is real, if
and only if fM (z0) lies on the circle through 1, 0,∞. By the argument from (a), this is equivalent
to z0 lying on the circle through f−1M (1), f−1M (0), f−1M (∞), which are the points z1, z2, z3. Hence the
cross-ratio is real, if and only if z0 lies on the circle determined by z1, z2, z3, that is, all 4 points lie
on one circle.
If 2 or more of the zi coincide, the cross-ratio is ∞ but the 4 points then obviously lie on a circle,
too.

2. Complex differentiability: Decide for the following functions f : C→ C whether they are

(1) continuous at 0,

(2) partially differentiable at 0 in x and y direction (identifying C with R2 as usual),

(3) real differentiable at 0 (identifying C with R2 as usual),

(4) complex differentiable at 0,

(5) holomorphic in a neighborhood of 0 (for example a small disc around).

(a) f(z) := z



(b) f(z) := |z|
(c) f(z) := |z|2

(d) f(z) := 0 if x 6= y or z = 0, f(z) := 1, otherwise

(e) f(z) := y3

x2+y2
for z 6= 0 and f(0) := 0

(f) f(z) := u(z) + iv(z), where u(z) := exp(x) cos(y) and v(z) := exp(x) sin(y)

(g) f(z) := u(z) + iv(z), where u(z) := x3 − 3xy2 and v(z) := 3x2y − y3

(h) f(z) := g(z) for any holomorphic function g

where we wrote z = x + yi.

Summarize your answers in a table! You do not have to give proofs.

We use freely the following fact from real analysis: If we have given any function

f : R2 = C→ C = R2

which is of the form

f(z) =

(
fx(z)
fy(z)

)
= fx(z) + ify(z) z = x + iy

for fx(z) and fy(z) are any composition of algebraic expressions and/or smooth functions in x
and y, then f is real differentiable. These are: addition, subtraction, multiplication, divison (with
non-zero denominator!), sin, cos, exp, etc.
Observe also that for the above conditions (5)⇒ (4)⇒(3)⇒ (2) and (3)⇒ (1) but not necessarily
(2) ⇒ (1). This exercise shows in particular that no other implications are possible.
(a) f(z) = z. The function is obviously real-differentiable at z = 0, by what was said in the
beginning. For complex differentiability, we have to see whether the Jacobian matrix at z = 0 is of
the form (

a −b
b a

)
(which means that it is C-linear — the same as multiplication by m = a + bi) or, in other words,
whether the Cauchy-Riemann equations are satisfied there.
We have here fx(x + iy) = x and fy(x + iy) = −y. Therefore(

∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

)
(z) =

(
1 0
0 −1

)
,

even for all z ∈ C, which is not of the form required for complex differentiability.
(b) f(z) = |z| is obviously continuous, but already its restriction to the real line, which coincides
with the usual real absolute value, is not differentiable at x = 0. In other words, it is not partially
differentiable in x direction, hence neither real- nor complex differentiable.
(c) f(x + iy) = fx(x + iy) = x2 + y2 is real-differentiable (at any point) by what was said in the
beginning. Its Jacobian matrix is given by(

∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

)
(z) =

(
2x 2y
0 0

)
,

which is of the form required for complex differentiability only at z = 0. This is kind of an accident
and the function is not holomorphic (on any neighborhood of z = 0).



(d) The function first of all is obviously not continuous at z = 0: For the sequence zk = xk + ixk
with any real zero-sequence x1, x2, . . . (with non-zero terms) we have

lim
k→∞

zk = 0 lim
k→∞

f(zk) = 1,

but for the sequence zk = xk, we have

lim
k→∞

zk = 0 lim
k→∞

f(zk) = 0.

Nevertheless, its restrictions to the x and y-axes are both identically zero, hence f is partially
differentiable in these directions.
(e) First f is continuous at 0 because we have

| y3

x2 + y2
| = | y

3

|z|2
| ≤ |z|

3

|z|2
= |z|.

Furthermore, the partial derivatives in x and y direction exist and we get the following potential
(!) Jacobian matrix:

J =

(
∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

)
(0) =

(
0 1
0 0

)
.

Now remember: Real differentiability means that we can write f in a neighborhood of z = 0 as
follows

f(z) = f(0) + J ·
(
x
y

)
+ |z|r(z),

where r is continuous at 0 with r(0) = 0. Hence we have to investigate, whether

r(z) =


f(z)−f(0)−J ·

x
y


|z| z 6= 0

0 z = 0

is continuous at 0. We get for z 6= 0:

r(z) =
y3

|z|3
− y

|z|
=

y

|z|
(
y2

|z|2
− 1)

The sequence zk = xk + ixk for any real zero-sequence x1, x2, . . . leads to

r(zk) =
xk
2xk

(
x2k
4x2k
− 1) = −3

8

which is not zero. Hence f is not real-differentiable at 0 even though it is partially differentiable
at z = 0 (even in any direction).
(f) f is obviously real-differentiable by what was said in the beginning. We have to check the
Cauchy-Riemann conditions. The Jacobian matrix is given by(

∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

)
(z) =

(
exp(x) cos(y) − exp(x) sin(y)
exp(x) sin(y) exp(x) cos(y)

)
.



This is of the form

(
a −b
b a

)
for all z. Hence f is holomorphic on the whole complex plane.

Remark: We see in addition: f ′(z) = f(z) for all z. Meanwhile, we learned f(z) = exp(z) is the
complex exponential function.
(g) f is obviously real-differentiable by what was said in the beginning. We have to check the
Cauchy-Riemann conditions. The Jacobian matrix is given by(

∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

)
(z) =

(
3x2 − 3y2 −3xy

3xy 3x2 − 3y2

)
.

This is of the form

(
a −b
b a

)
for all z. Hence f is holomorphic on the whole complex plane.

Remark: We see in addition: f ′(z) = 3(x2 − y2 + ixy) for all z, which you may recognize as
f ′(z) = 3z2 and indeed f(z) = z3, written out in x, y coordinates.
(h) Obviously the function f is real-differentiable because it is a composition of real-differentiable
functions. Remember that we saw in (a) that h : z 7→ z is everywhere real-differentiable with
Jacobian matrix given by

J(h, z) =

(
1 0
0 −1

)
.

Hence the Jacobian matrix of the function f = h ◦ g ◦ h at z is given by(
1 0
0 −1

)
J(g, z)

(
1 0
0 −1

)
by the real-analytic chain rule. Here J(g, z) is the Jacobian matrix of g at z. It is of the form(

a −b
b a

)
for any z because g is holomorphic. The calculation(

1 0
0 −1

)(
a −b
b a

)(
1 0
0 −1

)
=

(
a b
−b a

)
shows that also f is holomorphic everywhere with f ′(z) = g′(z).

Summarized:

(a) (b) (c) (d) (e) (f) (g) (h)

(1) x x x x x x x
(2) x x x x x x x
(3) x x x x x
(4) x x x x
(5) x x x

3. Cauchy-Riemann operator: Let U ⊆ C be open and f : U → C be a real differentiable
function (at every point in U). Show that f is holomorphic, if and only if ∂f

∂z = 0, where ∂f
∂z :=

1
2

(
∂f
∂x + i∂f∂y

)
. Show furthermore that in this case f ′(z) = ∂f

∂z , where ∂f
∂z := 1

2

(
∂f
∂x − i∂f∂y

)
.



Since f(z) = fx(z) + ify(z) is assumed to be real-differentiable everywhere, being holomorphic is
equivalent to the validity of the Cauchy-Riemann equations everywhere. They express the condition
that the Jacobian matrix

J(f, z) =

(
∂fx
∂x

∂fx
∂y

∂fy
∂x

∂fy
∂y

)
(z)

is of the form (
a(z) −b(z)
b(z) a(z)

)
.

We have then f ′(z) = a(z) + b(z)i.
Let us check what ∂f

∂z = 0 means:

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2

(
∂fx
∂x

+ i
∂fy
∂x

+ i(
∂fx
∂y

+ i
∂fy
∂y

)

)
=

1

2

(
∂fx
∂x
− ∂fy

∂y
+ i(

∂fx
∂y

+
∂fy
∂x

)

)
.

This is zero obviously, if and only if we have

∂fx
∂x

=
∂fy
∂y

and
∂fx
∂y

= −∂fy
∂x

.

Furthermore, if f is holomorphic we have

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
=

1

2

(
∂fx
∂x

+ i
∂fy
∂x
− i(

∂fx
∂y

+ i
∂fy
∂y

)

)
=

1

2

(
∂fx
∂x

+
∂fy
∂y

+ i(
∂fx
∂y
− ∂fy

∂x
)

)
= a(z) + b(z)i = f ′(z).


