Fritz Hörmann — MATH 316: Complex Analysis — Fall 2010 Exercise sheet 4

1.-3. Using Cauchy's integral formula: Calculate:

$$\int_{\varphi} \exp(z) z^k \mathrm{d}z \qquad k \in \mathbb{Z} \tag{1}$$

$$\int_{\varphi} \frac{1}{z^2 + 1} \mathrm{d}z \tag{2}$$

$$\int_{\varphi} z^m (1-z)^n \mathrm{d}z \qquad m, n \in \mathbb{Z}$$
(3)

for the path $\varphi(t) = 2 \exp(2\pi i t), t \in [0, 1].$

Hint: Use the following general version of Cauchy's integral formula for $m \ge 0$:

$$\frac{f^{(m)}(z_0)}{m!} = \frac{1}{2\pi i} \int_{\varphi} \frac{f(z)}{(z-z_0)^{m+1}} dz$$

where $\varphi(t) = r \exp(2\pi i t), t \in [0, 1]$ and $|z_0| < r$. Here $f^{(m)}$ is the m-th derivative of f. (1) has already the form of Cauchy's integral formula for k < 0. For (2) use partial fraction decomposition. For (3), if n < 0, use the binomial series for $(1 - \frac{1}{z})^n$.

4. Existence of primitives: Let $U \subseteq \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be continuous. Prove that f has a primitive (that is, there exists a holomophic $F: U \to \mathbb{C}$ with F' = f), if and only if

$$\int_{\varphi} f(z) \mathrm{d}z = 0,$$

for every closed, piecewise smooth path $\varphi : [a, b] \to U$.

Hint: This is a small adaption of the proofs $(E2) \Rightarrow (E3)$ and $(E3) \Rightarrow (E4)$ given in the lecture.

5. Let $U \subseteq \mathbb{C}$ be open and $f: U \to \mathbb{C}$ be holomorphic function, with $f(z) \neq 0$ and $\arg(f(z)) \neq \pi$ for all $z \in U$. Prove

$$\int_{\varphi} \frac{f'(z)}{f(z)} \mathrm{d}z = 0,$$

for any closed path $\varphi : [a, b] \to U$.

Please hand in your solutions on Monday, October 4, 2010 in the lecture hall