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Exercise sheet 6

1. Laurent series I: Determine Laurent series expansions of the function f : C \ {1} → C

f(z) =
1

z − 1

in the following annuli with center 0:

U1 = {z ∈ C | 0 < |z| < 1}
U2 = {z ∈ C | 1 < |z| <∞}

(the first one is just a power series expansion!)

We use the formula (geometric series):

1

1− z
=

∞∑
k=0

zk

valid if |z| < 1.
It already gives the power series expansion valid on U1:

f(z) = − 1

1− z
= −

∞∑
k=0

zk.

For the expansion on U2, we expand the fraction with z−1 to get:

f(z) =
z−1

1− z−1
= z−1

∞∑
k=0

z−k =
∞∑
k=0

z−k−1.

This expansion converges if |z−1| < 1, that is, on U2.

2. Laurent series II: Determine Laurent series expansions of the function
f : C \ {0,+1,−1} → C

f(z) =
1

z3 − z
in the following annuli with center 0:

U1 = {z ∈ C | 0 < |z| < 1}
U2 = {z ∈ C | 1 < |z| <∞}

We apply the geometric series with z replaced by z2 to get:

1

z3 − z
= −z−1 1

1− z2
= −z−1

∞∑
k=0

(z2)k = −
∞∑
k=0

z2k−1

This converges if 0 < |z2| < 1 hence if 0 < |z| < 1, that is, on U1.
To get the other Laurent series expansion, we apply the geometric series with z replaced by z−2

and get:

1

z3 − z
= z−3

1

1− z−2
= z−3

∞∑
k=0

(z−2)k =
∞∑
k=0

z−2k−3

This converges if 1 < |z2| hence if 1 < |z|, that is, on U2.



3. Laurent series III: Determine all possible different Laurent series expansions of the function
f : C \ S → C

f(z) =
1

z2 − 3z + 2

with center 0. Determine also the (minimal) set S of points, where f is singular.

Hint: In this case there are 3 different annuli to be considered.

We can write

f(z) =
1

(z − 1)(z − 2)

In this case, we have singularities at z = 1 and z = 2. The maximal annuli with center at 0
contained in C \ {1, 2} are therefore:

U1 = {z ∈ C | |z| < 1}
U2 = {z ∈ C | 1 < |z| < 2}
U3 = {z ∈ C | 2 < |z|}

We use partial fractional decomposition to get:

f(z) =
1

z − 2
− 1

z − 1

For − 1
z−1 we got two different expansions in exercise 1:

A : − 1

z − 1
=
∞∑
k=0

zk

valid if |z| < 1 and

B : − z−1

1− z−1
= −

∞∑
k=0

z−k−1.

valid if |z| > 1.

For 1
z−2 , we repeat the calculations of exercise 1 We get

C :
1

z − 2
= −1

2

1

1− z
2

= −1

2

∞∑
k=0

(
z

2
)k

valid if |z| < 2 and

D :
1

z − 2
=

1

z

1

1− 2
z

= z−1
∞∑
k=0

(
z

2
)−k

valid if |z| > 2.

We get the following Laurent expansions of f(z):

on U1: A+ C
on U2: B + C
on U3: B +D

The fourth combination A+D converges nowhere.



4. Singularities: Consider the following holomorphic functions f : Bε(0) \ {0} → C and
determine the type of the singularity at 0 (removable, pole of order k, or essential).

(1) f(z) =
1

z3
+ z2

(2) f(z) =
1

z(z − 1)(z − 2)

(3) f(z) =
exp(z)− 1

z

(4) f(z) = sin(
1

z
)

(1) The function f(z) = 1
z3

+ z2 is already given as a Laurent series (a Laurent polynomial)
at z = 0. The lowest power of z occurring is z−3, hence f has a pole of order 3.

(2) The function f(z) = 1
z(z−1)(z−2) can be written as

f(z) =
1

z
(a−1 + a0z + · · · )

with a−1 = 1
(0−1)(0−2) 6= 0. The order is therefore -1, hence f has a pole of order 1.

(3) The function f(z) = exp(z)−1
z has the expansion

f(z) =

∑∞
k=0

zk

k! − 1

z
=
∞∑
k=1

zk−1

k!

This is a power series (without negative powers of z), hence 0 is removable for f .

(4) The function f(z) = sin(1z ) has the expansion

f(z) =
∞∑
k=0

(−1)k
z−2k−1

(2k + 1)!
.

Here infinitely many negative powers of z occur, hence f has an essential singularity at 0.

5. Conformal automorphisms: Let f : H→ H a bijective holomorphic function, where

H = {z ∈ C | Im(z) > 0}

is the upper half plane.

Prove that

f(z) =
az + b

cz + d

with a, b, c, d ∈ R and det(

(
a b
c d

)
) 6= 0.

Hint: Use Theorem 5.3.5 and a suitable Möbius transformation (Cayley transform — end of
section 2.1) mapping H bijectively to B1(0).



We know from section 2.1, that the Möbius transformation g associated with the matrix(
1 −i
1 i

)
is a bijective holomorphic map from H to B1(0). Its inverse g−1 is given by the Möbius transfor-
mation associated with the inverse matrix

1

2i

(
i i
−1 1

)
Here we can omit the factor 1

2i because a Möbius transformation does depend on its matrix only
up to scalar (that is: if I multiply the underlying matrix with a constant, it doesn’t change the
resulting function — this is obvious from the formula for a Möbius transformation).
We have the following maps (all bijective holomorphic maps):

H
f //

g

��

H
g

��
B1(0)

g◦f◦g−1
// B1(0)

By Theorem 5.3.5 we know that g ◦ f ◦ g−1 has to be a Möbius transformation associated with the
matrix (

α −αz0
z0 −1

)
=

(
α 0
0 1

)(
1 −z0
z0 −1

)
where a ∈ C, |a| = 1 and z0 ∈ C with |z0| < 1.
Denote by hα and h0 the respective Möbius transformations associated with the matrices on the
right.
We have g ◦ f ◦ g−1 = hα ◦ h0. Or f = (g−1 ◦ hα ◦ g) ◦ (g−1 ◦ h0 ◦ g). It suffices to show, that each
of the Möbius transformations g−1 ◦ hα ◦ g and g−1 ◦ h0 ◦ g can be described by a real matrix.
1st case: g−1 ◦ hα ◦ g. This transformation is associated with the matrix(

i i
−1 1

)(
α 0
0 1

)(
1 −i
1 i

)
=

(
i(α+ 1) α− 1

1− α i(α+ 1)

)
It is also associated (see the remark above) with any complex nonzero multiple of this matrix. So
we have to find a complex number such that its product with this matrix is a real matrix. Looking
at the upper right entry, we see that the only possibility for such a complex number is α− 1 (or a
real multiple of it). We have

α− 1

(
i(α+ 1) α− 1

1− α i(α+ 1)

)
=

(
i(αα− 1) + i(α− α) |α− 1|2

−|α− 1|2 i(αα− 1) + i(α− α)

)
Since αα = 1, this matrix is indeed real.
2nd case: g−1 ◦ h0 ◦ g. This transformation is associated with the matrix(

i i
−1 1

)(
1 −z0
z0 −1

)(
1 −i
1 i

)
=

(
i(z0 − z0) 2 + z0 + z0
−2 + z0 + z0 i(z0 − z0)

)
This matrix is already real.
The determinant has to be nonzero because otherwise the Möbius transformation would not be
bijective. One can see, that the determinant has even to be positive in this case, because otherwise
it would map H to −H. Conversely any real matrix with positive determinant describes a Möbius
transformation f which is a bijection H→ H.



6. Schwarz-Pick theorem: Let f : B1(0)→ B1(0) be a holomorphic function: Prove that for
all z1, z2 ∈ B1(0): ∣∣∣∣∣ f(z1)− f(z2)

1− f(z1)f(z2)

∣∣∣∣∣ ≤
∣∣∣∣ z1 − z21− z1z2

∣∣∣∣
and for all z ∈ B1(0):

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.

Hint: Consider the Möbius transformations g(z) = z1−z
1−z1z and h(z) = f(z1)−z

1−f(z1)z
. Apply the

Schwarz Lemma to the composition h ◦ f ◦ g−1. Why can you apply it?

We can apply Schwarz Lemma to the composition h ◦ f ◦ g−1 because, by construction, it has
the property of mapping 0 to 0 and it is still a map B1(0) → B1(0) because the functions
g and h are bijective holomorphic maps B1(0) → B1(0). This was shown in the proof of
theorem 5.3.5 in the lecture. Hence we get

|h(f(g−1(z)))| ≤ |z|.

Substituting g(z2) for z, we get
|h(f(z2))| ≤ |g(z2)|

or written out, using the definitions of h and g:∣∣∣∣∣ f(z1)− f(z2)

1− f(z1)f(z2)

∣∣∣∣∣ ≤
∣∣∣∣ z1 − z21− z1z2

∣∣∣∣ ,
q.e.d.

Dividing both sides by |z1 − z2|, in the limit z2 → z1 we get

|f ′(z1)|
1− |f(z1)|2

≤ 1

1− |z1|2
.

Remark: The following distance function on B1(0):

d(z1, z2) = tanh−1
(
|z1 − z2|
|1− z1z2|

)
is called the Poincaré metric and renders B1(0) into a model for a hyperbolic geometry in
dimension 2. The statement above implies, that holomorphic functions from B1(0) to itself
are necessarily contractions w.r.t. this hyperbolic metric.


