
Fritz Hörmann — MATH 316: Complex Analysis — Fall 2010
Exercise sheet 7

1. Using the residue theorem (3 points): Let ϕ(t) = 3 exp(2πit), t ∈ [0, 1]. Compute the
following integral using the residue theorem:

(a)
∫
ϕ

exp(az)
z2(z2+2z+2)

dz.

where a ∈ C.

Let ϕ(t) = 5 exp(2πit), t ∈ [0, 1]. Compute the following integral using the residue theorem:

(b)
∫
ϕ

exp(z)
cosh(z)dz.

Let ϕ be a path describing a rectangle with vertices (3 + 3i,−3 + 3i,−3 − 3i, 3 − 3i) in this
order. Compute the following integral using the residue theorem:

(c)
∫
ϕ

2+3 sin(πz)
z(z−1)2 dz.

(a) We can write (completing the square):

f(z) :=
exp(az)

z2(z2 + 2z + 2)
=

exp(az)

z2(z + i+ 1)(z − i+ 1)
.

This implies that the function f has singularities at 0, −i − 1 and i − 1. By the residue theorem,
we get ∫

ϕ
f(z)dz = 2πi(Res0(f) + Res−i−1(f) + Resi−1(f)),

because the winding number is 1 for all of the singularities (they all lie in the interior of the circle
of integration).

Let us compute the residue at 0. We can write f(z) = g(z)
z2

, where g(z) = exp(az)
z2+2z+2

is holomorphic

at 0. We get Res0(f) = g′(0)
1! = g′(0). We have

g′(z) =
a exp(az)(z2 + 2z + 2)− exp(az)(2z + 2)

(z2 + 2z + 2)2
.

hence

g′(0) =
2a− 2

4
=

1

2
(a− 1)

and

Res0(f) =
1

2
(a− 1).

Let us compute the residue at −i − 1. We can write f(z) = g(z)
z+i+1 , where g(z) = exp(az)

z2(z−i+1)
is

holomorphic at −i− 1. We get

Res−i−1(f) =
g(0)

0!
= g(0) =

exp((−1− i)a)

(−1− i)2(−2i)
=

exp((−1− i)a)

4
.

Similarly

Resi−1(f) =
exp((−1 + i)a)

(−1 + i)2(2i)
=

exp((−1 + i)a)

4
.



Putting everything together and using the formula for cos(z), we get∫
ϕ
f(z)dz = 2πi

(
a− 1

2
+

1

2
exp(−a) cos(a)

)
.

(b) The function cosh(z) = cos(iz) has a zero, if and only if iz is of the form 1
2π + kπ with k ∈ Z.

All these zeros are simple because sin(iz) = ±1 at these points. In the circle of radius 5, there are
therefore 4 singularities, namely at the points ±1

2πi and ±3
2πi. Let s be one of these zeros. We

can expand cosh(z) = (z − s)(a1 + a2(z − s) + ...). This shows: Ress(
1

cosh(z)) = a−11 (property ii of

the residue). But observe that a1 = cosh′(s) = sinh(s).

Applying property ii again, we get Ress(
exp(z)
cosh(z)) = exp(s)

sinh(s) . Inserting the 4 values in this expression,
we see that the residue is always equal to 1. Hence∫

ϕ
f(z)dz = 2πi4 = 8πi.

(c) The function

f(z) :=
2 + 3 sin(πz)

z(z − 1)2

has singularities at 0 and 1. Both lies inside the rectangle around which we integrate and have
winding number 1. Hence applying the residue theorem, we get:∫

ϕ
f(z)dz = 2πi(Res0(

2 + 3 sin(πz)

z(z − 1)2
) + Res1(

2 + 3 sin(πz)

z(z − 1)2
)).

We have (property iii of residues):

Res0(
2 + 3 sin(πz)

z(z − 1)2
) =

2 + 3 sin(πz)

(z − 1)2

∣∣∣∣
z=0

= 2

and

Res1(
2 + 3 sin(πz)

z(z − 1)2
) =

(
2 + 3 sin(πz)

z

)′
z=1

= −2− 3π.

Everything put together: ∫
ϕ

2 + 3 sin(πz)

z(z − 1)2
dz = −6π2i.

2. Winding number: Let ζ = exp(2πi/5), a 5th root of unity. Let ϕ be a path describing
the polygon with vertices 1, ζ2, ζ4, ζ, ζ3, 1 in this order. C \ image(ϕ) decomposes into several
regions with different winding numbers. Draw a picture of the path, indicating these different
regions and their winding numbers.

Yields a pentagram, where the points outside have winding number 0, the points in the middle
pentagon have winding number 2, and all other points (those in the little triangles) have winding
number 1.

3. Residues and primitives: Let U be an elementary domain, S ⊂ U a finite set of singularities
and f : U \ S → C a holomorphic function.

Prove that f has a primitive on U \ S if and only if Ress(f) = 0 for all s ∈ S.

Hint: Use exercise 4 on assignment 4 and the residue theorem. Remember also to explicitly
show the only if direction!



Exercise 4 on assignment 4 states that on any open connected subset (domain) V of C the following
are equivalent:

• f has a primitive on V .

• For any closed path ϕ : [a, b]→ V , we have
∫
ϕ f(z)dz = 0.

Applying this to V := U \ S, we are left to show the following two statements:

⇒ If Ress(f) = 0 for all s ∈ S then for any closed path ϕ : [a, b]→ U \S, we have
∫
ϕ f(z)dz = 0.

⇐ If for any closed path ϕ : [a, b]→ U \S, we have
∫
ϕ f(z)dz = 0 then Ress(f) = 0 for all s ∈ S.

Proof of ⇒: ∫
ϕ
f(z)dz = 2πi

∑
s∈S

N(ϕ, s)Ress(f),

by the residue theorem. If all residues are zero, this expression is 0.
Proof of⇐: Assume that Ress(f) 6= 0 for one s ∈ S. Then consider the path ϕ(t) = s+ε exp(2πit),
t ∈ [0, 1] (a small circle around s). If ε is small enough, because S is finite, we get

∫
ϕ f(z)dz =

2πiRess(f) for this ϕ, which is not zero. A contradiction.

4. Existence of logarithms of holomorphic functions: Let U be an elementary domain,
S ⊂ U a finite set of singularities and f : U \ S → C a holomorphic function with f(z) 6= 0
for all z ∈ U \ S. Assume no s ∈ S is an essential singularity.

Prove: There exists a holomorphic function g : U \ S → C with

f(z) = exp(g(z))

if and only if ords(f) = 0 for all z ∈ S (in particular all s ∈ S are removable).

Hint: Use exercise 3 applied to f ′(z)
f(z) and the argument principle.

The construction of a function g(z) with f(z) = exp(g(z)) is equivalent to the task of finding a

primitive for f ′(z)
f(z) . This is seen as follows: Let G be a primitive for f ′(z)

f(z) . We have then(
exp(G(z))

f(z)

)′
=

exp(G(z))G′(z)f(z)− exp(G(z))f ′(z)

f(z)2
= 0

using G′(z) = f ′(z)
f(z) . Hence exp(G(z)) = αf(z) for an α ∈ C∗. Choosing a β with exp(β) = α,

we see that the function g(z) = G(z) − β is indeed a logarithm of f because exp(G(z) − β) =
exp(G(z))/ exp(β) = αf(z)/α = f(z).

Conversely, if f(z) = exp(g(z)), the same calculation shows, that g′(z) = f ′(z)
f(z) .

Now by exercise 3, a primitive of f ′(z)
f(z) exists, if and only if all residues of f ′(z)

f(z) vanish. But we have

(property iv of residues or argument principle):

Ress(
f ′(z)

f(z)
) = ords(f).

Therefore a primitive of f ′

f , and accordingly a logarithm of f exists, if and only if ords(f) = 0 for
all s ∈ S.



*5. Existence of roots of holomorphic functions: Let U be an elementary domain, S ⊂ U
a finite set of singularities and f : U \ S → C a holomorphic function with f(z) 6= 0 for all
z ∈ U \ S. Assume no s ∈ S is an essential singularity. Let n be a positive integer.

Prove: There exists a holomorphic function g : U \ S → C with

f(z) = g(z)n

if and only if n|ords(f) for all s ∈ S.

Choose some point z0 ∈ U \ S and a root (w0)
n = f(z0). Consider the function g(z) =

exp( 1
n

∫
ϕz

f ′(z)
f(z) dz)w0, where ϕz : [a, b] → U \ S is some fixed path with ϕz(a) = z0 and

ϕz(b) = z. Use the argument principle to see that g(z) is independent of the choice of path.

Then vary z in small discs D ⊂ U \ S, such that on D a primitive of f ′(z)
f(z) exists.

We show first that a root function exists, if n|ords(f) for all s ∈ S. Consider the function

g(z) := exp(
1

n

∫
ϕz

f ′(z)

f(z)
dz)w0

as given in the hint. Why is it independent of the path chosen?
Let us define

g̃(z) := exp(
1

n

∫
ϕ̃z

f ′(z)

f(z)
dz)w0

using a different path ϕ̃z. We get

g(z)

g̃(z)
:= exp(

1

n
(

∫
ϕz

f ′(z)

f(z)
dz −

∫
ϕ̃z

f ′(z)

f(z)
dz))

We have however ∫
ϕz

f ′(z)

f(z)
dz −

∫
ϕ̃z

f ′(z)

f(z)
dz =

∫
ϕ

f ′(z)

f(z)
dz

where ϕ is a closed path. (It is the path following ϕz and then ϕ̃z back in the opposite direction.)
By the argument principle, we get:∫

ϕ

f ′(z)

f(z)
dz = 2πi

∑
s∈S

N(ϕ, s)ords(f)

Since N(ϕ, s) is an integer and ords(f) is divisible by n by assumption, this is an integral multiple
of 2πin. Therefore

g(z)

g̃(z)
= exp(

1

n

∫
ϕ

f ′(z)

f(z)
dz) = 1.

g(z) is therefore independent of the path.
Now we have to see that indeed f(z) = g(z)n. Let us look at a small disc Bε(z1) ⊂ U \ S around a
point z1 and take a point z ∈ Bε(z1). Since f(z) is non-zero everywhere on the disc, we get a F (z)
with f(z) = exp(F (z)) (last exercise) and know:

F ′(z) =
f ′(z)

f(z)
.



Therefore writing ϕz as a composition of a path ϕz1 and a linear path from z1 to z, which lies
entirely inside Bε(z1), we get (independence of path!):

g(z)n = exp(
1

n
(

∫
ϕz1

f ′(z)

f(z)
dz + F (z)− F (z1)))

nwn0

= exp(

∫
ϕz1

f ′(z)

f(z)
dz − F (z1)) exp(F (z))f(z0) = exp(

∫
ϕz1

f ′(z)

f(z)
dz − F (z1))f(z)f(z0)

This shows that f(z)
g(z)n is locally constant on U \ S, hence constant because U and also U \ S are

connected. But obviously f(z0) = g(z0)
n, hence f(z) = g(z)n everywhere.

Conversely assume that f(z) = g(z)n. It is easy to see that g cannot have essential singularities
because otherwise also f would have. At each pole or zero s of g, g has an expansion:

(z − s)k(ak + ak+1(z − s) + . . . )

with ak 6= 0. Therefore f has an expansion

(z − s)kn((ak)
n + bkn+1(z − s) + . . . ),

that is, ords(f) is divisible by n.


