Fritz Hormann — MATH 316: Complex Analysis — Fall 2010

Exercise sheet 8
1. Real integrals I: Calculate with the aid of the residue theorem:
(a) Owwfioi(@), acR,a>1,
(b) fog a+5d79 ac€R,a>1,

in?(0)’
27 36)do
(C) 0 ;354(“)2(9) :

Hint: Bring the integrals first into a form involving the range [0, 2], by exploiting a suitable
periodicity of sin, cos,sin?, ... Then use the reduction to a path integral and to the residue
theorem as given in the lecture. For (c) do not try to find the function R explicitly, but mimic

the transformation given in the lecture directly.

(a) We have cos(z) = cos(2m — x), hence

/7r de _1/27r de
o a+cos(d) 2J, a-+cos(d)
The second integral may be computed as explained in the lecture by finding a function R(z, z2)

such that 1
a+ cos(f)

P +121‘ Then it was shown in the lecture that

R(cos(6),sin(d)) =

Such a function is obviously provided by R(z1, 22) =

2
/0 R(cos(6),sin(6))do = 27 Z Res.(f),

z€B1(0)

where
24271 z— 271

2 2

f(z)==2""R( )-

Here, we get
1 2 2

—1
2) =z = = :
1) a—}—% 22+2az+1  (z4a+Va2-1)(z+a—+Va2 1)

Since a > 1, only the point z = —a + va? — 1 lies in the unit disc. It is a simple pole. For this
point, we get

2 2 1
(z+a—|—\/a2—1)(z—|—a—\/a2—1))_ —a+VaZ—1+a+vVa2—1 Va®—1

Putting everything together, we get
/7r de B T
o a+cos(0)  VaZ_—1

(b) Since sin? is periodic with period 7 and sin?(z) = sin?(7 — z), we get

/S dg _1/% dg
o a+sin’(f) 4 Jo a-+sin?(9)

Res,(




A function R is given by

1
Rlev =) =05
1

and we get

1 —4z —4z
1

Z)=Z = = .
/) a—f—(%)? 24— (da+2)22+1 (22—-2a—14+2Va?2+a)(22—=2a—1-2Va?>+a)

Again, only 2a+1—2va? + alies in B1(0), hence z; = \/2a +1—-2vVa?2+aand zp = —\/2@ +1—-2vVa?+a
are the singularities of our function in B1(0). They are simple poles. Therefore, we get, letting
p(z) = 2* — (4a +2)2% + 1.

2
de —4z —4z
———— = 2nwRes,, (——) + 27Res,, (—
f gy = Ry + 2R )
—4z —4z9
=27 + 27 .
P'(z1) P'(22)
We have p_ftz) = ﬁifl Therefore this expression is equal to:

1 1
2 + 27 .
2Va? +a 2Va? +a

Putting everything together, we get

/’z’ o o7
o a+sin?(0) 2vVaZ+a
(c¢) In this case, we could find a function R as before because cos(36) may be expressed as a

polynomial in sin(f) and cos(#). This is a little bit cumbersome, however. Its better to mimic the
transformation given in the lecture.

eSiG +673i9

2 2m
/ cos(360)do _ / > 0
o H—4cos(h) 0o 5— 4%

2r 3i0 o ,—3i0 1 r2r 6i0 4 1 A
:/ - / B ot s R A7)
o 10—4e" —4e* v Jo 10e*Y — 4e° — 4e°?

And introducing the path ((t) = €', where t € [0, 27], we have ¢/(t) = ip(t), and the integral may
be written as the path-integral:

1/ 241 4 1/ 241 q
== ~dz = —— f 2.
i J, 1024 — 425 4- 423 2i J, 2322 = 1)(2 — 2)

Only the singularitities 0 and % do lie in the unit disc, hence we get:

2041 20 4+1
= —mReso( e =) T RS G e =)
26 "
_ _W((Qz—l;é—Q)) |2=0 . (3)° +1
2! 2(3)%(3 - 2)
21 65 us
=M= +7T—===



2. Real integrals II: Calculate with the aid of the residue theorem:

fo x4+5z2+6 dz,

fo $2+2)3daj a€R,a>0,

(c) J5° ;‘;i(a% dz, a € R,a > 0.

Hint: Bring the integrals first into a form involving the range (—oo,00) using parity of the
function involved. Then use the theorems provided in the lecture. Be careful with (c). First

write cos(x) = %;XP(—”)

involving exp(—ix) to bring it in the form of theorem 6.

(a) Since the integrand is an even function of x, we get

(o) l'2 1 [e'e]
1 e =5 1
o T*+5z°+6 2 ) _x*+

6.2.

2

T 4
522+ 6

. Then make a change of variables x — —x for the summand

Since the degree of 2 4 522 + 6 exceeds the degree of 22 by two, we may apply the residue theorem
to calculate this integral. The singularities of the integrand lie at the zeros of p(z) = 24+ 522 +6 =
(22 + 2)(2% + 3). Only the ones in the upper half plane are counted, namely v/2i and v/3i. These

are simple poles, hence we get:

3 . V3 V2

22 21
= 2miRes_;5.(—) + 2wiRes_ 5.(—) = 271t

using p'(z) = 423 + 102. Putting everything together, we get:

+ p/(\/gl)) = 27T(7 - 7)

o x? V3 \f
ﬁdx :W(i T Ty

(b) Since the integrand is an even function of z, we get

[e%e) x2 1 0 m2
= dr == ——duz.
/0 @+ a?p z/oo (@ +aZp

Since the degree of (22 + a?)? exceeds the degree of #? by more than two, we may apply the residue
theorem to calculate this integral. The singularities of the integrand are at +ai, only ia in the

upper half plane is counted. Hence

562

(x —ia)3(z + ai)?3

oo 1‘2 '
/OO mdx = 27TZR,eSai(

Putting everything together, we get:

IQ
((x_,_m) ) |Z ai T

):271'2—:—.

21 8a3

& x2 T
5 a3l = 3
0o (z?+a?) 16a

(c) Since the integrand is an even function of z, we get

/oo czos(x)de _ 1/00 c2()s(:c)2 dp — 1/00 it +6_imdx _
0 T2+a 2 ) r?+a 4 ) o 22+ a?

1 00 eia: oo e—i
! dot [
4</Oox2+a2 oo T2+



We transform the second integral by x — —x and get:

1 ( o0 eix o0 ei:v 1 o) eia:
= - da:—i—/ dx)z/ ———dzx
4 /ooa:2+a2 oo T2 + a2 2 J_o 22+ a?
This integral is of the form considered in the lecture because the degree of x? + a? is bigger than

1. Hence we can apply the residue theorem. The singularities are at z = +a, but only ia in the

upper half plane is to be considered. Hence we get
eia:
(x — ai)(z + ai)

e 4 T

— = .
2a1 2ae®

= miResq;(

)=
3. Using Rouché’s theorem I: How many zeros (counted with multiplicity) has
g(z) =27 =25 +62° — 2 +1

in Bl (0)7

Hint: Choose a suitable among the monomials 27, —22°, 623, —z, resp. 1 as the function f
in Rouché’s theorem.

We choose f(z) = 623 and get the following estimate for z € C with |z| = 1:
9(2) = f(2)] = 27 =22° =2 + 1 < |27+ [ = 22°| + [2| + 1 = 1+ 24+ 1+ 1 =5 < [62°| = [ f(2)]-

Hence g(z) is not zero for z with |z| = 1 and Rouché’s theorem tells us, that f and g have the
same number of zeros (counted with multiplicity) in B;(0). f, however, has one zero at z = 0 with
multiplicity 3. Therefore also g has 3 zeros (counted with multiplicity) in Bj(0).

4. A fixed point: Let h be a holomorphic function on By4.(0) and assume |h(z)| < |z| for all
z with |z| = 1. Show that there is exactly one z € B;(0) with h(z) = z.

A fixed point h(z) = z is a zero of the function g(z) := h(z) — z. Taking f(z) = —z we get the
estimate

9(2) = F(2)] = [h(2)] < |2 = [f(2)]-

Hence g(z) is not zero for z with |z| = 1 and has precisely 1 zero in B;(0) because f obviously has
one. This is the required fixed point of h.

5. Using Rouché’s theorem II: How many zeros (counted with multiplicity) has
g(z) =21 —62+3

on the annulus {z € C | 1 < |z| < 2}7

Hint: First show, that g has no zeros on the circles of radius 1 and 2 respectively. Then apply
Rouché’s theorem twice.

First let f(2) := 2%, For z € C with |z| = 2, we get the estimate
l9(2) = f(2)] = | = 62+ 3| < [62] +[3] = 15 < 16 = 2" = [ f(2)]

Therefore g(z) has no zero in the circle with radius 2 around 0 and precisely 4 zeros (counted with
multiplicity) in B(0).



Now let f(z) := —6z. For z € C with |z| = 1, we get the estimate

l9(2) = f(2)| = [ +3] < |24+ 3| =4 < 6 = | = 62 = [ f(2)]
Therefore g(z) has no zero in the circle with radius 1 around 0 either and precisely 1 simple zero
in B1(0).

The other 3 zeros (counted with multiplicity), therefore, must lies in the open annulus

{zeC|1<|z| <2}



