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1. Real integrals I: Calculate with the aid of the residue theorem:

(a)
∫ π
0

dθ
a+cos(θ) , a ∈ R, a > 1,

(b)
∫ π

2
0

dθ
a+sin2(θ)

, a ∈ R, a > 1,

(c)
∫ 2π
0

cos(3θ)dθ
5−4 cos(θ) .

Hint: Bring the integrals first into a form involving the range [0, 2π], by exploiting a suitable
periodicity of sin, cos, sin2, ... Then use the reduction to a path integral and to the residue
theorem as given in the lecture. For (c) do not try to find the function R explicitly, but mimic
the transformation given in the lecture directly.

(a) We have cos(x) = cos(2π − x), hence∫ π

0

dθ

a+ cos(θ)
=

1

2

∫ 2π

0

dθ

a+ cos(θ)
.

The second integral may be computed as explained in the lecture by finding a function R(z1, z2)
such that

R(cos(θ), sin(θ)) =
1

a+ cos(θ)
.

Such a function is obviously provided by R(z1, z2) = 1
a+z1

. Then it was shown in the lecture that∫ 2π

0
R(cos(θ), sin(θ))dθ = 2π

∑
z∈B1(0)

Resz(f),

where

f(z) = z−1R(
z + z−1

2
,
z − z−1

2i
).

Here, we get

f(z) = z−1
1

a+ z+z−1

2

=
2

z2 + 2az + 1
=

2

(z + a+
√
a2 − 1)(z + a−

√
a2 − 1)

.

Since a > 1, only the point z = −a +
√
a2 − 1 lies in the unit disc. It is a simple pole. For this

point, we get

Resz(
2

(z + a+
√
a2 − 1)(z + a−

√
a2 − 1)

) =
2

−a+
√
a2 − 1 + a+

√
a2 − 1

=
1√

a2 − 1
.

Putting everything together, we get∫ π

0

dθ

a+ cos(θ)
=

π√
a2 − 1

.

(b) Since sin2 is periodic with period π and sin2(x) = sin2(π − x), we get∫ π
2

0

dθ

a+ sin2(θ)
=

1

4

∫ 2π

0

dθ

a+ sin2(θ)



A function R is given by

R(z1, z2) =
1

a+ z21
and we get

f(z) = z−1
1

a+ ( z−z
−1

2i )2
=

−4z

z4 − (4a+ 2)z2 + 1
=

−4z

(z2 − 2a− 1 + 2
√
a2 + a)(z2 − 2a− 1− 2

√
a2 + a)

.

Again, only 2a+1−2
√
a2 + a lies inB1(0), hence z1 =

√
2a+ 1− 2

√
a2 + a and z2 = −

√
2a+ 1− 2

√
a2 + a

are the singularities of our function in B1(0). They are simple poles. Therefore, we get, letting
p(z) = z4 − (4a+ 2)z2 + 1.∫ 2π

0

dθ

a+ sin2(θ)
= 2πResz1(

−4z

p(z)
) + 2πResz2(

−4z

p(z)
)

= 2π
−4z1
p′(z1)

+ 2π
−4z2
p′(z2)

.

We have −4zp′(z) = −1
z2−2a−1 . Therefore this expression is equal to:

2π
1

2
√
a2 + a

+ 2π
1

2
√
a2 + a

.

Putting everything together, we get∫ π
2

0

dθ

a+ sin2(θ)
=

π

2
√
a2 + a

.

(c) In this case, we could find a function R as before because cos(3θ) may be expressed as a
polynomial in sin(θ) and cos(θ). This is a little bit cumbersome, however. Its better to mimic the
transformation given in the lecture.∫ 2π

0

cos(3θ)dθ

5− 4 cos(θ)
=

∫ 2π

0

e3iθ+e−3iθ

2

5− 4 e
iθ+e−iθ

2

dθ

=

∫ 2π

0

e3iθ + e−3iθ

10− 4eiθ − 4e−iθ
dθ =

1

i

∫ 2π

0

(e6iθ + 1)

10e4iθ − 4e5iθ − 4e3iθ
ieiθdθ.

And introducing the path ϕ(t) = eit, where t ∈ [0, 2π], we have ϕ′(t) = iϕ(t), and the integral may
be written as the path-integral:

=
1

i

∫
ϕ

z6 + 1

10z4 − 4z5 + 4z3
dz = − 1

2i

∫
ϕ

z6 + 1

z3(2z − 1)(z − 2)
dz.

Only the singularitities 0 and 1
2 do lie in the unit disc, hence we get:

= −πRes0(
z6 + 1

z3(2z − 1)(z − 2)
)− πRes 1

2
(

z6 + 1

z3(2z − 1)(z − 2)
)

= −π
( z6+1
(2z−1)(z−2))

′′ |z=0

2!
− π

(12)6 + 1

2(12)3(12 − 2)

= −π21

8
+ π

65

24
=

π

12
.



2. Real integrals II: Calculate with the aid of the residue theorem:

(a)
∫∞
0

x2

x4+5x2+6
dx,

(b)
∫∞
0

x2

(x2+a2)3
dx, a ∈ R, a > 0,

(c)
∫∞
0

cos(x)
x2+a2

dx, a ∈ R, a > 0.

Hint: Bring the integrals first into a form involving the range (−∞,∞) using parity of the
function involved. Then use the theorems provided in the lecture. Be careful with (c). First

write cos(x) = exp(ix)+exp(−ix)
2 . Then make a change of variables x 7→ −x for the summand

involving exp(−ix) to bring it in the form of theorem 6.6.2.

(a) Since the integrand is an even function of x, we get∫ ∞
0

x2

x4 + 5x2 + 6
dx =

1

2

∫ ∞
−∞

x2

x4 + 5x2 + 6
dx.

Since the degree of x4 + 5x2 + 6 exceeds the degree of x2 by two, we may apply the residue theorem
to calculate this integral. The singularities of the integrand lie at the zeros of p(z) = z4 + 5z2 + 6 =
(z2 + 2)(z2 + 3). Only the ones in the upper half plane are counted, namely

√
2i and

√
3i. These

are simple poles, hence we get:

= 2πiRes√2i(
z2

p(z)
) + 2πiRes√3i(

z2

p(z)
) = 2πi(

2i

p′(
√

2i)
+

3i

p′(
√

3i)
) = 2π(

√
3

2
−
√

2

2
).

using p′(z) = 4z3 + 10z. Putting everything together, we get:∫ ∞
0

x2

x4 + 5x2 + 6
dx = π(

√
3

2
−
√

2

2
).

(b) Since the integrand is an even function of x, we get∫ ∞
0

x2

(x2 + a2)3
dx =

1

2

∫ ∞
−∞

x2

(x2 + a2)3
dx.

Since the degree of (x2 +a2)3 exceeds the degree of x2 by more than two, we may apply the residue
theorem to calculate this integral. The singularities of the integrand are at ±ai, only ia in the
upper half plane is counted. Hence∫ ∞

−∞

x2

(x2 + a2)3
dx = 2πiResai(

x2

(x− ia)3(x+ ai)3
) = 2πi

( x2

(x+ai)3
)′′|z=ai

2!
=

π

8a3
.

Putting everything together, we get:∫ ∞
0

x2

(x2 + a2)3
dx =

π

16a3
.

(c) Since the integrand is an even function of x, we get∫ ∞
0

cos(x)

x2 + a2
dx =

1

2

∫ ∞
−∞

cos(x)

x2 + a2
dx =

1

4

∫ ∞
−∞

eix + e−ix

x2 + a2
dx =

1

4

(∫ ∞
−∞

eix

x2 + a2
dx+

∫ ∞
−∞

e−ix

x2 + a2
dx

)



We transform the second integral by x 7→ −x and get:

=
1

4

(∫ ∞
−∞

eix

x2 + a2
dx+

∫ ∞
−∞

eix

x2 + a2
dx

)
=

1

2

∫ ∞
−∞

eix

x2 + a2
dx

This integral is of the form considered in the lecture because the degree of x2 + a2 is bigger than
1. Hence we can apply the residue theorem. The singularities are at z = ±ai, but only ia in the
upper half plane is to be considered. Hence we get

= πiResai(
eix

(x− ai)(x+ ai)
) = πi

e−a

2ai
=

π

2aea
.

3. Using Rouché’s theorem I: How many zeros (counted with multiplicity) has

g(z) = z7 − 2z5 + 6z3 − z + 1

in B1(0)?

Hint: Choose a suitable among the monomials z7, −2z5, 6z3, −z, resp. 1 as the function f
in Rouché’s theorem.

We choose f(z) = 6z3 and get the following estimate for z ∈ C with |z| = 1:

|g(z)− f(z)| = |z7 − 2z5 − z + 1| ≤ |z7|+ | − 2z5|+ |z|+ 1 = 1 + 2 + 1 + 1 = 5 < |6z2| = |f(z)|.

Hence g(z) is not zero for z with |z| = 1 and Rouché’s theorem tells us, that f and g have the
same number of zeros (counted with multiplicity) in B1(0). f , however, has one zero at z = 0 with
multiplicity 3. Therefore also g has 3 zeros (counted with multiplicity) in B1(0).

4. A fixed point: Let h be a holomorphic function on B1+ε(0) and assume |h(z)| < |z| for all
z with |z| = 1. Show that there is exactly one z ∈ B1(0) with h(z) = z.

A fixed point h(z) = z is a zero of the function g(z) := h(z) − z. Taking f(z) = −z we get the
estimate

|g(z)− f(z)| = |h(z)| < |z| = |f(z)|.

Hence g(z) is not zero for z with |z| = 1 and has precisely 1 zero in B1(0) because f obviously has
one. This is the required fixed point of h.

5. Using Rouché’s theorem II: How many zeros (counted with multiplicity) has

g(z) = z4 − 6z + 3

on the annulus {z ∈ C | 1 < |z| < 2}?
Hint: First show, that g has no zeros on the circles of radius 1 and 2 respectively. Then apply
Rouché’s theorem twice.

First let f(z) := z4. For z ∈ C with |z| = 2, we get the estimate

|g(z)− f(z)| = | − 6z + 3| ≤ |6z|+ |3| = 15 < 16 = 24 = |f(z)|

Therefore g(z) has no zero in the circle with radius 2 around 0 and precisely 4 zeros (counted with
multiplicity) in B2(0).



Now let f(z) := −6z. For z ∈ C with |z| = 1, we get the estimate

|g(z)− f(z)| = |z4 + 3| ≤ |z4|+ |3| = 4 < 6 = | − 6z| = |f(z)|

Therefore g(z) has no zero in the circle with radius 1 around 0 either and precisely 1 simple zero
in B1(0).
The other 3 zeros (counted with multiplicity), therefore, must lies in the open annulus

{z ∈ C | 1 < |z| < 2}.


