1. **A simple Grassmannian.** Let F be a field over characteristic 0. Prove that $x \in \Lambda^2(F^4)$ is a pure tensor, i.e. $x = v \wedge w$, if and only if $x \wedge x = 0$ in $\Lambda^4(F^4)$. Write down an explicit equation for the condition $x \wedge x = 0$. This is called the Plücker relation. Explain that the set
\[
\{ < x > \in \mathbb{P}(\Lambda^2(F^4)) \mid x \wedge x = 0 \}
\]
parametrizes planes in 4-space F^4 (or equivalently “lines” in projective 3-space $\mathbb{P}(F^4)$).

By $\mathbb{P}(V)$ we mean the projectivization of a vector space V. It means that we consider non-zero vectors up to multiplication with a scalar in F^*. Equivalently it is the set of lines (1-dimensional subspaces) in V.

2. **Multilinear algebra.** Let F be a field and M a vector space over F. Prove that
\[
\Lambda^n(M^*) \cong \Lambda^n(M)^*.
\]

Let R be a commutative ring with 2 invertible. Let M be an R-module. Prove that
\[
T^2(M) \cong S^2(M) \oplus \Lambda^2(M).
\]

Let F be a field with n invertible. Let M be a vector space over F. Prove that
\[
S^n(M)^* \cong S^n(M^*).
\]

3. **Hom and \otimes.** Let R be a commutative ring (for the next 5 exercises). Let S a commutative R-algebra. Prove that there is a homomorphism of S-modules:
\[
S \otimes_R \text{Hom}_R(M_1, M_2) \to \text{Hom}_S(M_1 \otimes_R S, M_2 \otimes_R S).
\]

Find a counterexample showing that it does not need to be an isomorphism. Prove that it is an isomorphism if $S \otimes_R \cdot$ is an exact functor (we say that S is flat as an R-module) and M_1 is finitely presented, i.e. there is an exact sequence
\[
R^n \to R^m \to M_1 \to 0.
\]

4. **Being zero is a local property.** Prove that the following are equivalent:

(a) $M_\wp = 0$ for all $\wp \in \text{spec}(R)$,
(b) $M_\mathfrak{m} = 0$ for all $\mathfrak{m} \in \text{specm}(R)$,
(c) $M = 0$.

Here M_\wp is the localization of M by the multiplicative closed subset $R \setminus \wp$. I.e. elements are symbols $\frac{x}{q}$, where $x \in M$ and $q \in R \setminus \wp$ satisfying the usual relations. It is a module over R_\wp.

Prove that $M_\wp \cong M \otimes_R R_\wp$.

Exercise sheet 4

Choose 4 of the 6 exercises!
5. **Localizations are flat.** Prove that $M \mapsto M_p$ is an exact functor.

6. **Tensor product preserves projectivity.** Let M_1 and M_2 be projective R-modules. Prove that $M_1 \otimes_R M_2$ is a projective R-module.

Please hand in your solutions on Monday, February 14, 2011 in the lecture room