Fritz Hörmann — MATH 571: Higher Algebra II — Winter 2011 Exercise sheet 5

Choose 5 of the 7 exercises.

1. Let R be a ring which is completely reducible as a left R-module. Prove that every left R-module is completely reducible.

Hint: Remember that for M to be completely reducible, it suffices to show $M = \sum_{M' \subset Mirred} M'$.

- 2. Lemma 2 of section 4.3. Let R be a ring. M a completely reducible R-module, $R' := \operatorname{End}_R(M)$, $R'' := \operatorname{End}_{R'}(M)$. Show: $\operatorname{End}_R(M^n) = \operatorname{Mat}_{n \times n}(R')$ and for all $\alpha \in R''$, the map $(x_1, \ldots, x_n) \mapsto (\alpha x_1, \ldots, \alpha x_n)$ commutes with the action of $\operatorname{End}_R(M^n)$.
- 3. **Density.** Let R be a ring and M a completely reducible R-module, $R' := \operatorname{End}_R(M)$, $R'' := \operatorname{End}_{R'}(M)$.

Define a topology on R'' by letting a basis of the open sets to be cosets of the left ideals

$$I(V) = \{ \alpha \in R'' \mid \alpha|_V = 0 \},$$

where V runs through the *finitely-generated* R'-submodules of M. Prove that this is defines the structure of a topological ring on R'' and that the image of R is dense in R''.

4. Ideals of $\operatorname{End}_D(D^n)$. Let D be a division algebra (skew field). Prove that the association

$$\{V \subseteq D^n \text{ subspace }\} \rightarrow \{J \subseteq \operatorname{End}_D(D^n) \text{ left ideal}\}$$
$$V \mapsto I(V) = \{\alpha \in \operatorname{End}_D(D^n) \mid \alpha \mid_V = 0\}$$

is an inclusion reversing bijection.

Hint: Define a map Z going in the other direction. To show I(Z(J)) = J for any left ideal J, start with the case of principal ideals. Then consider intersections of subspaces/sums of ideals.

- 5. Determine explicitly a direct sum decomposition of $R = \text{End}_D(D^n)$ as left module over itself into irreducible left *R*-modules. (We know that they have to be all isomorphic to D^n as *R*-modules).
- 6. Frobenius' Theorem on real division algebras. If $F = \mathbb{R}$, prove that \mathbb{R} , \mathbb{C} , and the Hamiltonian quaternions \mathbb{H} are the only skew fields (up to isomorphism) D which are finite-dimensional F-algebras.

Hint: Let D be a f.d. \mathbb{R} -algebra which is division. If $D \neq \mathbb{R}$, every element $i \in D \setminus \mathbb{R}$ generates a field extension of \mathbb{R} so $\mathbb{R}[i] \cong \mathbb{C}$ and w.l.o.g. $i^2 = -1$. This renders D into an $\mathbb{R}[i]$ -vector space by left multiplication. Show that right multiplication by i can have eigenvalues i and -ionly and that $D = D^{+i} \oplus D^{-i}$ for the corresponding eigenspaces. Prove that $D^{+i} = \mathbb{R}[i]$. If $D^{-i} = 0$ then $D \cong \mathbb{C}$. If there is an $x \in D^{-i}$ prove that right multiplication with it exchanges D^{+i} and D^{-i} . Conclude that $D \cong \mathbb{H}$.

7. Representations of the symmetric group in 3 elements. Determine explicitly the algebra isomorphisms $\mathbb{C}[S_3] \cong \mathbb{C} \oplus \mathbb{C} \oplus \operatorname{Mat}_{2x2}(\mathbb{C})$ and $\mathbb{R}[S_3] \cong \mathbb{R} \oplus \operatorname{Mat}_{2x2}(\mathbb{R})$.

Please hand in your solutions on Monday, March 14, 2011 in the lecture room