Fritz Hörmann — MATH 571: Higher Algebra II — Winter 2011 Exercise sheet 6

Choose 2 of the following exercises.

- 1. Character tables. Let Q be the quaternion group $\{1, -1, i, j, k, -i, -j, -k\}$ with the usual relations. Determine the complex character table of Q. Let D_8 be the dihedral group $\{1, z, z^2, z^3, s, sz, sz^2, sz^3\}$ with relations $z^4 = 1$, $s^2 = 1$ and $zs = sz^3$. Determine the complex character table of D_8 .
- 2. Representations of products. Let G_1 and G_2 be finite groups. Prove, using complex characters and their orthogonality relations, that there is a bijection between (isomorphism classes of) irreducible complex representations V of $G_1 \times G_2$ and (isomorphisms classes of) pairs (V_1, V_2) , where V_i is an irreducible complex representation of G_i , given by

$$(V_1, V_2) \mapsto V := V_1 \otimes V_2.$$

Here, on the right hand side, V_i is considered as a representation of $G_1 \times G_2$ by letting the other factor act as the identity.

- 3. Induction and dual. Let G be a finite group, $H \subseteq G$ a subgroup, and F a field. Let V be an F-representation of H and V^{*} be its dual. Prove $\operatorname{Ind}_{H}^{G}(V^{*}) \cong (\operatorname{Ind}_{H}^{G}V)^{*}$.
- 4. A theorem of Frobenius. Let G be a finite group and V be an irreducible $\mathbb{C}[G]$ -module. Prove: dim_{\mathbb{C}} V | # G.

Hint:

(i) Prove that $\chi_V(\sigma)$ is integral over \mathbb{Z} for all $\sigma \in G$.

(ii) Recall the basis elements $c_i = \sum_{\sigma \in C_i} [\sigma]$ of $\operatorname{Cent}(\mathbb{C}[G])$, where the C_i are the conjugacy classes in G. Show that

$$c_i c_j = \sum_k m_{ijk} c_k,\tag{1}$$

where $m_{ijk} \in \mathbb{Z}_{\geq 0}$.

(iii) Prove that c_i acts on V by the scalar $\chi_V(c_i)/\dim_{\mathbb{C}} V = (\#C_i)\chi_V(\sigma)/\dim_{\mathbb{C}} V$ where $\sigma \in C_i$ is arbitrary.

(iv) Lemma: Prove that $a \in \mathbb{C}$ is integral over \mathbb{Z} , if and only if there is a f.g. \mathbb{Z} -submodule $M \subset \mathbb{C}$, with $1 \in M$, such that $aM \subseteq M$.

Use this and (1) to show that the numbers obtained in (iii) are integral over \mathbb{Z} .

(v) Follow from (i), (iv), and the orthogonality of characters that $\dim_{\mathbb{C}} V | \# G$.

Please hand in your solutions on Monday, March 21, 2011 in the lecture room