Picard stacks and Jacobian stacks of curves

Fritz Hörmann

July 14, 2020

Fritz Hörmann Picard stacks and Jacobian stacks of curves 1 Stacks and Gerbes

2 Picard Stacks

3 The case of curves

Fritz Hörmann Picard stacks and Jacobian stacks of curves

Motivation

Let k be a ground field. By the Yoneda Lemma a variety (or scheme) X over k is uniquely determined by its functor of points

$$egin{array}{rcl} h_X: {
m Sch}_k & o & {
m Sets} \ T & o & {
m Hom}_k(T,X) \end{array}$$

Given a set valued functor F on varieties given by a moduli problem, one says that F is **representable**, if it is isomorphic to a h_X .

The case of curves 00000000

Motivation

Often a moduli problem is not representable because of the existence of non-trivial automorphisms. To take them into account, one considers functors

$$h_X : \operatorname{Sch}_k \rightarrow \operatorname{Groupoids}$$

Examples :

1 X a scheme over k

$$\mathcal{PIC}_{k}(X): T \mapsto \left\{ \begin{array}{cc} \text{objects:} & \text{line bundles on } X \times_{k} T \\ \text{morphisms:} & \text{isomorphisms} \end{array} \right\}$$

2 To a scheme X, one associates the same functor h_X as before, using the obvious inclusion

Sets
$$\hookrightarrow$$
 Groupoids .

Questions

 $\mathbf{3}$ G an algebraic group

$$BG: T \mapsto \left\{ \begin{array}{cc} \text{objects:} & G\text{-prinicipal bundles on } T \\ \text{morphisms:} & \text{isomorphisms} \end{array} \right\}$$

Note:
$$\mathcal{PIC}_k(X)(T) \cong B\mathbb{G}_m(T \times_k C).$$

Questions:

- The functors *h_X* are **sheaves** (for the étale topology, say). What is the analogous condition for functors with values in groupoids?
- When should a functor with non-trivial automorphisms be called representable?

Sheaves

Definition

A functor

$$F : \operatorname{Sch}_k \to \operatorname{Sets}_k$$

is called a *sheaf*, if for all coverings¹ $\{U_i \rightarrow X\}$ and elements $x_i \in F(U_i)$ such that

$$x_i = x_j$$
 on $U_i \times_X U_j$

there is a *unique* $x \in F(X)$ giving rise to the x_i .

Fact: h_X is a sheaf.

Fritz Hörmann

¹always referring to the étale topology in these slides

Stacks

Definition

A functor

 $F: \operatorname{Sch}_k \to \operatorname{Groupoids}$

is called a *stack*, if for all coverings $\{U_i \rightarrow X\}$ and objects $x_i \in F(U_i)$ and isomorphisms

$$\varphi_{ij}: x_i \to x_j \qquad \text{on } U_i \times_X U_j$$

such that

$$\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$$
 on $U_i \times_X U_j \times_X U_k$

there is a unique (up to unique isomorphism) $x \in F(X)$ giving rise to the x_i .

All examples given before are stacks.

The case of curves 00000000

Stacks

There exists a **stackification** analogous to sheafification.

Definition A stack $F : \operatorname{Sch}_k \to \operatorname{Groupoids}$ is called **representable** (or an **algebraic stack**) if there exists a (nice...) groupoid object in schemes²

such that F is the stackification of

$$\mathcal{T} \mapsto \left\{ egin{array}{ccc} {
m objects:} & {
m Hom}_k(\mathcal{T}, O) \ {
m morphisms:} & {
m Hom}_k(\mathcal{T}, M) \end{array}
ight\}$$

²better: algebraic spaces

Fritz Hörmann

The case of curves 00000000

Stacks

For example BG is represented by

$$\bigcirc G \Longrightarrow \cdot$$

(where $\cdot = \operatorname{spec}(k)$)

Quotient stack

Let G be an algebraic group acting on X then one defines the quotient [X/G] as the stack represented by

$$(\mathcal{G} \times X \xrightarrow{\text{action}} X$$

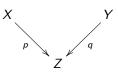
One can show:

$$[X/G](T) \cong \begin{cases} \text{objects:} & G \text{ bundles } B \text{ on } T + \varphi : B \to X \text{ equivariant} \\ \text{morphisms:} & \text{isomorphisms compatible with the } \varphi \end{cases}$$

The case of curves 00000000

Fiber products of stacks

Let



be a diagram of stacks. One defines the fiber product by

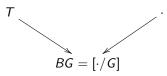
 $(X \times_Y Z)(T) = \left\{ \begin{array}{cc} \text{objects:} & (x, y) \in (X \times Y)(T) + \varphi : p(x) \to q(y) \\ \text{morphisms:} & \text{isomorphisms compatible with } \varphi \end{array} \right\}$

This is again a stack. It is representable, if X, Y and Z are.

The case of curves 00000000

Fiber products (Example)

Example:



where T is a scheme and $\cdot = \operatorname{spec}(k)$. Note that $T \to BG$ classifies a G principal bundle $\mathcal{B} \to T$. Then one has

$$T \times_{BG} \cdot \cong \mathcal{B}$$

In other words

 $\cdot
ightarrow BG$

is the *universal* G principal bundle.

Gerbes

Definition: Gerbe

Let X be a scheme. Algebraic stacks F over X with the property that any two objects $x, y \in F(T)$ over some $f : T \to X$ are locally isomorphic on T are called **gerbes**.

Main example: $BG = [\cdot/G]$ is a gerbe over $\cdot = \operatorname{spec}(k)$.

Lemma

For a gerbe F over X the following are equivalent

- F(T) is non-empty for any $F: T \to X$.
- $F \cong [X/G]$ for an algebraic group G over X (i.e. with trivial action on X).

Gerbes

For each covering $\{U_i \to X\}$ such that $F(U_i) \neq \emptyset$ we get a collection of algebraic groups $G_i := \operatorname{Aut}(x_i)$ over U_i together with isomorphisms

$$\varphi_{ij}: G_i \to G_j \quad \text{on } U_i \times_X U_j$$

which however satisfy the cocycle condition only *up to conjugation*. This datum is called the **band** of the gerbe. In case that the G_i are Abelian, we can glue a group scheme G over X and call it the band of F and speak of G-gerbes.

Gerbes

Theorem

Let X be a scheme and G be an (Abelian) group scheme. Equivalence classes of G-gerbes $F \rightarrow X$ are in bijection with

 $H^2(X,G).$

Fritz Hörmann Picard stacks and Jacobian stacks of curves

The case of curves 00000000

Picard stacks

Turning a scheme into an (Abelian) group scheme is equivalent to making its functor h_X (Abelian) group valued. What is the generalization to groupoid valued functors?

Example

On the groupoid of line bundles $\mathcal{PIC}_k(X)$ we have a functor

$$\otimes : \mathcal{PIC}_k(X) \times \mathcal{PIC}_k(X) \to \mathcal{PIC}_k(X)$$

a neutral object 1, and a functor

$$(-)^{\otimes -1}: \mathcal{PIC}_k(X) \to \mathcal{PIC}_k(X)$$

behaving like an Abelian group structure up to isomorphism.

	tl		
0			

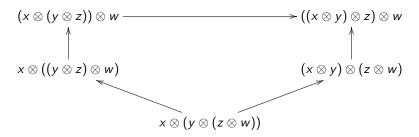
The case of curves 00000000

Picard stacks

It's not so easy to make this precise: For example there should be an isomorphism of functors

$$-\otimes (-\otimes -) \rightarrow (-\otimes -) \otimes -$$

such that



commutes for all objects x, y, z, w. (($\mathcal{PIC}_k(X), \otimes, 1$) is a symmetric monoidal category.)

Fritz Hörmann

Picard stacks

Definition

A groupoid G with \otimes , 1, $(-)^{\otimes -1}$ as before, 'behaving like an Abelian group structure *up to isomorphism*' is called a **Picard groupoid**.

Slogan: categorification of the notion of Abelian group.

Definition

A stack

 $F : Sch_k \rightarrow Picard groupoids$

is called a Picard stack.

Like for group schemes, \otimes and $(-)^{\otimes -1}$ are actually morphisms of stacks.

The case of curves 00000000

Deligne's equivalence

- **1** Consider the (bounded) derived category \mathcal{D}_k of sheaves of Abelian groups on schemes over k. Denote by $\mathcal{D}_k^{[-1,0]}$ the full subcategory of those objects represented by complexes concentrated in degree -1 and 0.
- 2 Consider the category \mathcal{P} with objects Picards stacks and morphisms being isomorphism classes of morphisms between Picard stacks.

Theorem (Deligne)

There is an equivalence of categories

$$egin{array}{rcl} \mathcal{D}_k^{[-1,0]}&\cong&\mathcal{P}\ (\mathcal{C}_{-1} o \mathcal{C}_0)&\mapsto&[\mathcal{C}_0/\mathcal{C}_{-1}] \end{array}$$

The case of curves 00000000

Deligne's equivalence

Examples:

1 If G is an Abelian group scheme, $BG = [\cdot/G]$ is Picard and corresponds to the complex

$$(G \rightarrow 0)$$

2 For a scheme X, consider the morphism $\pi : X \to \operatorname{spec}(k)$. Then

$$\tau_{\leq 1} R \pi_* \mathbb{G}_{m,X}[1]$$

corresponds to $\mathcal{PIC}_k(X)$.

		Picard Stacks	
0	0000000000	000000000	000000000

Corollary

For each Picard stack F one has an exact sequence (\Leftrightarrow : part of a distinguished triangle)

$$[\cdot/F_{-1}] \to F \to F_0$$

If F is representable, F is thus a F_{-1} -gerbe on F_0 .

Equivalence classes of extensions like this are in bijection with

 $Ext^{2}(F_{0}, F_{-1}).$

Outline O	Stacks and Gerbes 00000000000	Picard Stacks 0000000●000	The case of curves 000000000
	Let X and G be Abelian group schemes ($G = \mathbb{G}_m$). Not all G-gerbes on X define a sequence	-	•
	$[\cdot/G] ightarrow F ightarrow$	Χ.	
	(This is analogous to the fact that not all the structure of a group scheme.)		

They have to be equivariant w.r.t. the group structure on X. In other words, the gerbe F needs to satisfy that

$$(m^*F)\otimes (\operatorname{pr}_1^*F)^{\otimes -1}\otimes (\operatorname{pr}_2^*F)^{\otimes -1}$$

are trivial on $X \times X^3$. Call such *G*-gerbes **primitive**. They constitute a subgroup $H^2_{\text{prim}}(X, G)$. We get a homomorphism

$$\operatorname{Ext}^2(X,G) \to H^2_{\operatorname{prim}}(X,G)$$

which is still not an isomorphism, but closer. We will see an example in the case of the Picard stack later.

³compare: \mathcal{L} such that $\lambda_{\mathcal{L}}$ is zero...

Fritz Hörmann

The case of curves 00000000

Cohomology with values in a Picard stack

Using Deligne's equivalence can define

$$H^{i}(k,P) = \mathbb{H}^{i}(k,P_{-1} \rightarrow P_{0})$$
 (Hypercohomology)

From an exact sequence of Picard stacks get

$$0 \to H^{-1}(k,A) \to H^{-1}(k,B) \to H^{-1}(k,C)$$
$$\to H^{0}(k,A) \to H^{0}(k,B) \to H^{0}(k,C) \to H^{1}(k,A) \to \cdots$$

The case of curves 00000000

Cohomology with values in a Picard stack

Examples:

1 We always have (Exercise)

 $H^{-1}(k, P) = Aut(1)$ where $1 \in P(k)$ is a neutral element $H^{0}(k, P) = \{ \text{group of isomorphism classes of } P(k) \}$

2 We have

$$H^i(k,BG)=H^{i+1}(k,G).$$

3 For a curve X, we have:

(third line follows from $H^2(\overline{X}, \mathbb{G}_m) = 1$, i.e. $R^2 \pi_* \mathbb{G}_m = 1$).

The case of curves 00000000

Cohomology with values in a Picard stack

Applying this to the canonical exact sequence

$$[\cdot/F_{-1}] \to F \to F_0$$

we get an exact sequence

$$F(k)/\sim \longrightarrow F_0(k) \xrightarrow{\delta} H^2(k, F_{-1})$$

This can be described as follows: Let $x \in F_0(k)$. The preimage $\{x\} \times_{F_0} F$ of x in F is a F_{-1} -gerbe on spec(k) so classified by an element

 $\delta(x) \in H^2(k, F_{-1})$

Fritz Hörmann

The case of curves •00000000

The Picard stack for curves and the Jacobian

Theorem

For a curve X over k the Picard stack $\mathcal{PIC}(X)$ is representable and we have an exact sequence

$$B\mathbb{G}_m \to \mathcal{PIC}_k(X) \to \operatorname{Pic}_k(X)$$

where $\operatorname{Pic}_k(X)$ is the quotient or, because it is a scheme, also the course moduli scheme of $\mathcal{PIC}_k(X)$.

The sequence splits, i.e.

$$\mathcal{PIC}_k(X) = B\mathbb{G}_m \times \operatorname{Pic}_k(X)$$

if X has a k-rational point.

We have a exact sequence (everything defined over k)

$$0 \to J(X) \to \operatorname{Pic}_k(X) \to \mathbb{Z} \to 0$$

where J(X) is an Abelian variety. We call it the **Jacobian** of X.

Fritz Hörmann

The case of curves

Cohomology with values in the Picard stack

We get the long exact sequence

$$0 = H^{1}(k, \mathbb{G}_{m}) \to H^{0}(k, \mathcal{PIC}_{k}(X)) \to H^{0}(k, \operatorname{Pic}_{k}(X))$$
$$\to H^{2}(k, \mathbb{G}_{m}) \to H^{1}(k, \mathcal{PIC}_{k}(X)) \to H^{1}(k, \operatorname{Pic}_{k}(X))$$

which yields

$$0 \to \mathcal{PIC}_k(X)(k)/ \sim \to J(k) \oplus n\mathbb{Z} \to Br(k) \to Br(X) \to H^1(k, J)$$
$$n\mathbb{Z} = \ker(\mathbb{Z} \to H^1(k, J))$$

Fritz Hörmann Picard stacks and Jacobian stacks of curves Outlin

g=0

Forms of \mathbb{P}^1 over k are parametrized by (the non-Abelian) $H^1(k, \mathsf{PGL}_2)$. (Note that $\mathsf{Aut}(\mathbb{P}^1) = \mathsf{PGL}_2$.) From the sequence

$$1 \to \mathbb{G}_m \to \mathsf{GL}_2 \to \mathsf{PGL}_2 \to 1$$

we get an injective boundary homomorphism

$$H^1(k, \mathsf{PGL}_2) \hookrightarrow H^2(k, \mathbb{G}_m) = \mathsf{Br}(k)$$

One can show that if k is a global or local field then the image consists of the elements of order 2.

Let k be a local or global field, $\alpha \in Br(k)$ an element of order 2. It corresponds to a quaternion algebra over k. Let C_{α} be the corresponding curve. In this case we get

$$1 o \mathcal{PIC}(\mathcal{C}_{lpha})(k)/ \sim o \mathbb{Z} o \mathsf{Br}(k) o \mathsf{Br}(\mathcal{C}_{lpha}) o 1$$

The map $\mathbb{Z} \to Br(k)$ maps 1 to α (Exercise). We therefore get

$$\mathcal{PIC}_{k}(\mathcal{C}_{\alpha}) = \{\cdots \cup B\mathbb{G}_{m} \cup (B\mathbb{G}_{m})_{\alpha} \cup B\mathbb{G}_{m} \cup (B\mathbb{G}_{m})_{\alpha} \cup B\mathbb{G}_{m} \cup \cdots \}$$

where $(B\mathbb{G}_m)_{\alpha}$ is the form of $B\mathbb{G}_m$ defined by α .

Fritz Hörmann

	Stacks and Gerbes	Picard Stacks 000000000	The case of curves 000●00000
$\sigma - 1$			

Let *E* be an elliptic curve over *k*. Forms of *E* over *k* are again parametrized by (the non-Abelian) $H^1(k, \operatorname{Aut}(E))$. Now $\operatorname{Aut}(E) = E \rtimes \operatorname{Aut}(E, +)$. We consider a form E_α of *E* defined by an $\alpha \in H^1(k, E)$. This is also an *E* principal bundle over *k*. If α is non-trivial, we have $E_\alpha(k) = \emptyset$. We have

$$\mathsf{Pic}_{k}(E) = \{ \cdots \cup E_{-2\alpha} \cup E_{-\alpha} \cup E \cup E_{\alpha} \cup E_{2\alpha} \cup \cdots \}$$

and thus

$$\operatorname{Pic}_k(E)(k) = E(k) \oplus n\mathbb{Z}$$
 $(n = \operatorname{ord}(\alpha))$

and get

$$1 \to \mathcal{PIC}_{k}(E_{\alpha})(k) / \sim \to \underbrace{\mathcal{H}^{0}(k, \operatorname{Pic}_{k}(E_{\alpha}))}_{E(k) \oplus n\mathbb{Z}} \to \operatorname{Br}(k) \to \operatorname{Br}(E_{\alpha}) \to \mathcal{H}^{1}(k, \operatorname{Pic}_{k}(E_{\alpha}))$$

ь

In other words, we defined a pairing

$$H^1(k, E) \times E(k) \to Br(k)$$

Theorem (Tate, Lichtenbaum)

If k is p-adic (i.e. $Br(k) = \mathbb{Q}/\mathbb{Z}$) then this pairing is a perfect pairing, i.e. the two groups are each others topological dual.

The theorem holds also for curves of genus ≥ 2 but the construction of the pairing is not so geometric (?). *Q*: What is the resulting map $n\mathbb{Z} \to Br(k)$? Is it always 0?

The case of curves 000000000

$g=1, k=\mathbb{R}$

We have either

$${f E}({\mathbb R}) = egin{cases} {S_1} & { ext{or}} \ {S_1 imes {\mathbb Z}/2{\mathbb Z}} & { ext{or}} \end{cases}$$

and one can show (Exercise) that

$$H^1(\mathbb{R},E) = egin{cases} 1 \ \mathbb{Z}/2\mathbb{Z} \end{cases}$$

We have also (obviously)

$$\mathsf{Hom}(\underbrace{\mathsf{Pic}^{\mathsf{0}}_{\mathbb{R}}(E)(\mathbb{R})}_{E(\mathbb{R})}, \frac{1}{2}\mathbb{Z}/\mathbb{Z}) \cong \begin{cases} 1\\ \mathbb{Z}/2\mathbb{Z} \end{cases}$$

Picard stacks and Jacobian stacks of curves

Fritz Hörmann

0	tl		
С			

The case of curves 000000000

Remark

We see that for an elliptic curve

$$\operatorname{Ext}^2(E, \mathbb{G}_m) \cong H^2_{\operatorname{prim}}(E, \mathbb{G}_m) \cong H^1(k, E)$$

Theorem (Breen)

In general for an Abelian variety one has an exact sequence

 $0 \to \mathsf{NS}(A)(k)/\mathcal{PIC}(A)(k) \to \mathsf{Ext}^2(A,\mathbb{G}_m) \to H^2_{\mathsf{prim}}(A,\mathbb{G}_m) \to H \to 0$

where H is 2-torsion.

And if k is local or global of characteristic 0 then

$$H^2_{\rm prim}(A,\mathbb{G}_m)=H^1(k,A)$$

(?)

Bibliography

Jacobian

- [M] Milne, J. S.; Jacobian varieties. Arithmetic geometry (Storrs, Conn., 1984), 167–212, Springer, 1986
- A nice introduction to stacks
- [H] Heinloth, J.; Lectures on the moduli stack of vector bundles on a curve. Affine flag manifolds and principal bundles, 123–153, Birkhäuser/Springer, 2010.

Picard stacks

- [D] Deligne, P.; La formule de dualité globale; SGA IV, Exposée XVIII, Séminaire de Géométrie Algébrique du Bois Marie — 1963–64 — Théorie des topos et cohomologie étale des schémas — vol. 3. LNM 305. Springer
- [B] Brochard, S.; Duality for commutative group stacks, arXiv:1404.0285

The case of curves 00000000

Bibliography

Brauer Groups

- [G1] Grothendieck, A.; Le groupe de Brauer. I. Séminaire Bourbaki, Vol. 9, Exp. No. 290, 199–219, Soc. Math. France, Paris, 1995.
- [G2-3] Grothendieck, A.; Le groupe de Brauer. II-III. Dix exposés sur la cohomologie des schémas, 67–188, Adv. Stud. Pure Math., 3, 1968.
 - [M2] Chapter 4 in Milne, J.; Étale cohomology. Princeton Mathematical Series, 33. Princeton University Press, 1980.
 - [Bre] Breen, L.; Extensions of abelian sheaves and Eilenberg-MacLane algebras. Invent. Math. 9 (1969/70), 15–44.
 - [R] Hoobler, R.; Brauer groups of abelian schemes. Ann. Sci. École Norm. Sup. (4) 5 (1972), 45–70.

Duality

 [L] Lichtenbaum, S.; Duality theorems for curves over p-adic fields. Invent. Math. 7 (1969), 120–136.