
Towards Cherlin's Conjecture for Zariski GroupsMarkus Junker�Equipe de Logique Math�ematique | Universit�e Paris 7December 1995IntroductionOne of the major contemporary problems in stability theory is Cherlin's conjecture, whethera simple @0-stable group (of �nite rank) is an algebraic group. As long as the general Cherlinconjecture is still unsolved, it is natural to consider weaker forms.One possibility is motivated by Hrushovski's and Zil'ber's work on strongly minimal sets andZil'ber's conjecture, which is a similar problem. The main part of Zil'ber's conjecture askedwhether a non locally modular, strongly minimal set were an algebraic curve. Hrushovskiconstructed counter-examples to this, but Hrushovski and Zil'ber succeeded in proving theconjecture for special strongly minimal sets, so called Zariski geometries. These are struc-tures equipped with Noetherian topologies as abstract Zariski topologies. More precisely,their result characterizes abstractly the Zariski topology of smooth algebraic curves overalgebraically closed �elds.In the light of there work, it seems natural to consider \Zariski groups": @0-stable groupswith an axiomatically given abstract Zariski topology. In this paper, I introduce a higher-dimensional generalization of Hrushovski{Zil'ber's Zariski geometries, and I de�ne Zariskigroups.The main interest of Cherlin's conjecture, at least from an algebraic point of view, is thehope to get an abstract characterization of algebraic groups, not mentioning �elds and vari-eties. While a positive solution of the general conjecture would characterize the constructiblestructure of algebraic groups, a solution for Zariski groups would provide a characterizationof the Zariski topology of algebraic groupsThis article gives an approach to Cherlin's conjecture for Zariski groups. In particular I showthat any non nilpotent smooth Zariski group interprets an algebraically closed �eld. Mostprobably, this result follows also from Hrushovski's and Zil'ber's work [HZ2]. The problem isto show that there is a strongly minimal subset of a smooth Zariski group that satis�es thedimension formula. Anyhow, I hope my proof is of interest because my methods are moreelementary and might be more easily understood.1



1 Zariski geometriesThe following de�nition of a Zariski geometry is a generalization to arbitrary �nite dimensionsof Hrushovski's and Zil'ber's one dimensional Zariski geometries (cf. [HZ2]). Zil'ber's notionof a Zariski{type structure (see [Z2]) is similar, but he introduces dimension axiomatically.In fact, a smooth, simple, su�ciently saturated Zariski group will be a Zariski{type structurein Zil'ber's sense.Some topological prerequisites:Let T be a Noetherian topological space, i.e. a space without in�nite strictly descendingchains of closed sets. A subset X of T is irreducible if it is not empty and not the unionof two proper relatively closed subsets. An irreducible component of a set is a maximalirreducible subset. Any subset of T is the union of its �nitely many irreducible components.The (topological) dimension of a set is the maximal length of a chain of relatively closedirreducible subsets1, more precisely dimX := supfn j 9Xi irreducible;Xi = Xi\X and X0 �X1 � : : : � Xng. A hypersurface of X is a relatively closed irreducible subset of dimensiondimX � 1. A constructible set is a Boolean combination of closed sets.De�nition 1.1 A Zariski geometry is an in�nite set Z and a �nite dimensional Noethe-rian topology �n[Z] on Zn for each n such that:irreducibility & separation: Z is irreducible and the diagonal �(Z) is closed;quanti�er elimination: for each n, every projection Zn+1 ! Zn maps constructible sets ontoconstructible sets;compatibility: for all n; k, every map f = (f1; : : : ; fk) : Zn ! Zk where fi is either a projec-tion (x1; : : : ; xn) 7! xi or a constant map (x1; : : : ; xn) 7! a for some a 2 Z is continuous.A �rst order language for a Zariski geometry is any relational language (with equality) suchthat the interpretations of the quanti�er-free positive formulae with parameters are exactlythe closed sets. One possibility it to take all closed sets as basic relations. But in some casesit might be more natural to consider smaller languages. E.g. for algebraically closed �elds(with the Zariski topologies), it is su�cient to take the graphs of addition and multiplicationas basic closed sets.Let Z be a Zariski geometry and �x any possible language L. Then Z eliminates quanti�ersby item 3 of the de�nition. In other words, any de�nable set is constructible.Let Y be an elementary equivalent L-structure. There is a natural notion of closed subsetsof Y n, namely the sets de�ned by quanti�er-free positive formulae with parameters in Y .Fact 1.2 If for each n the closed sets on Y n satisfy the descending chain condition, thenthey endow Y with a structure of a Zariski geometry, called the natural Zariski geometry onY .1This de�nition is not the general one, but it works well in the case of �nite dimension.2



De�nition 1.3 A Zariski geometry Z in a �xed language L is called an elementary Zariskigeometry i� every elementary equivalent L-structure is naturally a Zariski geometry.The following characterization of elementary Zariski geometries is a direct application of thecompactness theorem:Proposition 1.4 Let Z be a Zariski geometry with language L. The following are equivalent:(a) Z is an elementary Zariski geometry in L.(b) there are no closed sets Fi and tuples of parameters �aij such that Z j= F0(�a0k) �F1(�a1k) � � � � � Fk(�akk) for every k 2 !.(c) there is an @0-saturated elementary equivalent Zariski geometry.Fact 1.5 (a) The property of being elementary is independent of the choice of the language.(b) If Y 4 Z are models of an elementary Zariski geometry, then the inclusion maps Y n !Zn are continuous.By induction on Cantor rank RC for formulae, it is easy to prove that Cantor rank is boundedby the dimension in a Zariski geometry, which yields immediately the following result:Proposition 1.6 An elementary Zariski geometry with a countable language is an @0-stablestructure of �nite rank.In general, neither Morley or Cantor rank need to equal the dimension, nor the dimensionsin two models have to coincide. This is the case in @0-saturated models, or more generallyif the dimension is de�nable in all models.Lemma 1.7 Let Z be a Zariski geometry. The following are equivalent:(a) RC(Q) = dimQ for all constructible sets Q.(b) dimQ = dimQ for all constructible set Q.(c) The set H(F) := fG j G closed irreducible � F ; dimG +1 = dimFg is in�nite for eachclosed irreducible in�nite set F .Note that given an irreducible set, property (c) allows to choose subsets of smaller dimensionin su�ciently generic position.2 Varieties and MorphismsFix any Zariski geometry Z and let V be an imaginary set in Z, i.e. a de�nable subset W ofsome Zn divided by an de�nable equivalence relation E. Then there is a natural family ofNoetherian topologies on the products V � Zn: �rst take the induced topology on W � Znand then its quotient topology under the natural surjection W � Zn !W=E � Zn.3



De�nition 2.1 An imaginary set V = W=E equipped with these natural topologies on theproducts V � Zn is called a variety i� E is closed in W �W .Note that Z is itself a variety, hence properties of varieties or de�nitions for varieties applyto Z, too. If V1 = W1=E1 and V2 = W2=E2 are varieties, then the product V1 � V2 =(W1 �W2)=(E1 �E2) is a variety.It is clear that a morphism should be a de�nable and continuous map, but in general thisis not su�cient to prove the fundamental properties of proposition 2.3 (b) below. A slightlystronger property has to be required:De�nition 2.2 Let V1; V2 be two varieties. A morphism is a de�nable map f : V1 ! V2such that for each n 2 ! the map f � idZn : V1 � Zn ! V2 � Zn is continuous.The identity map, constant maps, projections and diagonal maps �k : V ! V k, v 7! (v; : : : ; v)are obvious examples of morphisms. If E is a closed equivalence relation on V , then thecanonical surjection p : V ! V=E is a morphism.Now it is straightforward to prove to the following proposition:Proposition 2.3 (a) If f : V1 ! V2 is a morphism, then for every variety V , the mapf � id V : V1 � V ! V2 � V is continuous.(b) Products, pairs and compositions of morphisms are morphisms. If f : V1 � V2 ! V is amorphism, then for all c 2 V1, the map fc : V2 ! V , v 7! f(c; v) is a morphism.(c) The graph of a morphism is closed.A Noetherian space T satis�es the dimension formula if for all closed irreducible subsetsF1; F2 and each irreducible component X of F1 \ F2 the following holds:dimX � dimF1 + dimF2 � dimTBecause irreducible components are non empty by de�nition, this inequality holds in partic-ular, if F1 \ F2 = ;.De�nition 2.4 A variety V is smooth i� the dimension formula holds in V �Zn for eachn 2 !.If an @0-saturated Zariski geometry is smooth, then any @0-saturated elementary equivalentZariski geometry is smooth, too.Let F � Zn be a closed subset and � : Zn ! Z l a projection. De�ne �[F;� k] to be the setof all �a such that the �-�bre over �a is of dimension at least k. The dimension is de�nablei� the sets �[F;� k] are de�nable for all F , � and k, and semi-continuous i� these setsare closed in �[F ]. 4



If the dimension is de�nable and �[F ] is irreducible, then there is exactly one k such that�[F;� k] n �[F;� k + 1] is dense in �[F ]. It is called the �-generic �bre dimension of F ,denoted by �-gdimF . Semi-continuity (for all F ) is equivalent to the fact that �-gdimF isthe minimal dimension of non void �-�bres of F .Finally, a Zariski geometry is called additive i� for all � and irreducible F , the equation�-gdimF = dimF � dim�[F ] holds.De�nition 2.5 A Zariski geometry Z is rich if for any n and any �a 2 Zn, the intersectionof all hypersurfaces of Zn containing �a is �nite.Proposition 2.6 Let Z be a rich, smooth and additive Zariski geometry. Let F � Zn beclosed irreducible, � : Zn ! Z l a projection and a 2 �[F ]. Then dimG � dimF � dim�[F ]for each irreducible component G of ��1(a)\F . In particular, dimension is semi-continuous.� Let F � Zn be closed irreducible and a 2 �[F ]. Construct by induction on i � dim�[F ]closed irreducible sets Xi containing a such that dimXi = dim�[F ]�i and dimG � dimF�ifor every irreducible component G of ��1[Xi] \ F :Let X0 := �[F ]. Suppose Xi is constructed for i < dim�[F ]. Choose a hypersurface Hiof Z l such that a 2 Hi but Xi * Hi. This is possible by richness and because Xi isin�nite (dimXi > 0). Let Xi+1 be an irreducible component of Xi \Hi containing a. ThenXdim�[F ] = fag, which gives the result. �De�nition 2.7 Let Z be a Zariski geometry. A variety C is complete i� for every n � 1,the projection C � Zn ! Zn maps closed sets onto closed sets.Many properties of complete algebraic varieties are satis�ed in the general context, namely:Proposition 2.8 Let C be a complete variety.(a) The projection � : C � V ! V is a closed map for every variety V .(b) If f : C ! V is a morphism, then f [C] is complete and closed in V .(c) Any closed subset of C is itself complete.(d) A �nite Cartesian product of complete varieties is complete.In fact, if either V1 � V2 is a smooth variety or V2 is complete, then a map g : V1 ! V2 is amorphism i� the graph of g is closed in V1 � V2.3 Zariski groupsDe�nition 3.1 A Zariski group is an elementary Zariski geometry G in a countable lan-guage together with to morphisms � : G2 ! G and � : G ! G being the multiplication andthe inverse of a group law on G and such that dimension equals Morley rank in @0-saturatedmodels. 5



Recall that Morley rank is de�nable and additive in @0-stable groups of �nite rank. So aZariski group is an additive Zariski geometry with de�nable dimension. It is not very di�cultto see that Morley rank equals dimension in any model. But to avoid any trouble, one mayassume that all Zariski groups considered are @0-saturated.Examples:� Any algebraic group over an algebraically closed �eld is a Zariski group, the topology beingthe Zariski topology.� Any @0-stable one-based group of �nite rank is a Zariski group, closed sets being the cosetsof de�nable subgroups.Many proofs for algebraic groups go through for Zariski groups, e.g. (cf. [Hu] 7.3 and 7.4):Proposition 3.2 A de�nable subgroup H is closed. Its irreducible components are the cosetsof the connected component Ho.In particular, a Zariski group is a connected group by de�nition (because it is irreducible).A de�nable subgroup H gives rise to two isomorphic varieties: left and right coset space.These are well behaved varieties.Theorem 3.3 (a) The natural surjection p : Gn+1 ! G=H�Gn maps constructible sets onconstructible sets.(b) If Q � G=H �Gn is constructible, then dimQ = dim p�1[Q]� dimH.In particular, dimG = dimG=H + dimH.(c) Dimension in G=H �Gn equals Morley rank.(d) De�nability and additivity of dimension hold in G=H �Gn.� First note that G=H is really a variety: the corresponding equivalence relation EH isthe inverse image of H under the morphism (g; h) 7! g�1h, hence closed. It is su�cient toconsider the case n = 0.(a) is as in algebraic geometry, where one shows that p is even an open map which is astronger property. (c) and (d) follow easily from (b).(b) Let Q � G=H be constructible and irreducible. A chain F0 � � � � � Fk of relativelyclosed irreducible subsets of Q lifts to a chain p�1[F0] � � � � � p�1[Fk]. These sets are notnecessarily irreducible, but it is easily seen that dimension increases at each step, whencedim p�1[Q] � dimQ+ dim p�1[F0] = dimQ+ dimH.If S is an irreducible subset of G, there is an open subset U in p[S] such that the dimensionof the �bres p�1(u) \ S is constant. Call this dimension the H-gdimS. Then the followingequality holds: dimS + dimH = dimSH + H-gdimS. Choosing subsets generically, it ispossible to �nd a chain S0 � � � � � SdimQ of relatively closed irreducible subsets of Q such6



that H-gdimSi � H-gdimSi+1 for all i. Then p[S0] � � � � � p[SdimQ] will be of length atleast dimQ� dimH. �Corollary 3.4 Let G be a smooth Zariski group. If H is a de�nable subgroup, then G=H isa smooth variety.Proposition 3.5 If G is a Zariski group and N a de�nable normal subgroup, then G=N isa Zariski group. If G is smooth, then G=N also.� G=N is a variety, hence there is a family of �nite dimensional Noetherian topologies onthe powers of G=N and the diagonal is closed. G=N is irreducible as continuous image of G.Quanti�er elimination is immediate from theorem 3.3 (a).The compatibility maps, multiplication and inverse are morphisms: straightforward. Morleyrank equals dimension by theorem 3.3 (c).If G is smooth, Gn is smooth by de�nition and (G=N)n �= Gn=Nn is a smooth variety bycorollary 3.4, in particular the dimension formula holds in (G=N)n. �Complete and parabolic subgroupsProposition 3.6 (a) Let C be an irreducible complete subset in a Zariski group G such thate 2 C. Then the normal subgroup generated by C is de�nable and complete.(b) G contains a maximal complete connected subgroup Gc. This subgroup is unique andnormal in G.� Use Zil'ber's indecomposability theorem and proposition 2.8. �The following theorem generalizes the corollary of theorem 14 of [R]. In fact, it is possibleto prove it without the semi-continuity property (i.e. in a not necessarily smooth Zariskigroup).Theorem 3.7 Assume dimension is semi-continuous. Then Gc is central in G.� The proof is essentially the same as of the rigidity lemma in algebraic geometry. The setT = f(g; h) j 9c 2 Gc; h = [c; g]g � G� Gc is irreducible and closed by completeness of Gc.The projection � onto G gives rise to a �nite �bre over e, hence the �-�bres are generically�nite, i.e. the centralizer of generic elements are �nite. Then it is not di�cult to concludethat all centralizers are trivial. �Corollary 3.8 A simple smooth Zariski group does not contain any in�nite complete subset.7



� If C is in�nite complete and c 2 C, then c�1C in still complete and contains e. Bysimplicity, G equals the normal subgroup generated by c�1C, which is complete by propo-sition 3.6. It su�ces to show that a simple smooth Zariski group is rich which will beproved in the following lemma. Then dimension is semi-continuous by proposition 2.6 andthe preceding theorem applies, G is Abelian: contradiction. �Lemma 3.9 A simple smooth Zariski group is rich.� It su�ces to verify richness for (e; : : : ; e), because any point in Gk can be translated on(e; : : : ; e) by an isomorphism.De�ne Gh := TfH jH a hypersurface of G and e 2 Hg. By Noetherianity, Gh is a de�nablenormal proper subgroup of G, thus Gh = feg. If H is a hypersurface in G, a set Gm �H �Gk�m�1 is a hypersurface in Gk by additivity. Hence the intersection of all hypersurfaces inGk containing (e; : : : ; e) equals Gh � � � � �Gh = f(e; : : : ; e)g. �De�nition 3.10 A de�nable subgroup H of a Zariski group G is parabolic, if G=H is acomplete variety.Because left and right coset space are isomorphic, this notion is unambiguous: H is leftparabolic i� it is right parabolic.Theorem 3.11 Let G be a smooth Zariski group with semi-continuous dimension. SupposeH is a connected de�nable subgroup such that H \Hg = feg for any g 2 G=H. Then H isa parabolic subgroup of G.� The hypothesis implies that H = NG(H) and that conjugacy de�nes an equivalencerelation onSg2GHgnfeg. The quotient H can be identi�ed with the set fHg j g 2 G=NG(H)g,hence with G=NG (H). In fact, this is an embedding of varieties, and H is easily shown to becomplete. But it is more direct to show the result without constructing H explicitly:Let � := Sg2G (Hg � Hg) � �(G)n. This is a closed irreducible subset of G2n+2. Let �1(resp. �2) :G2n+2 ! Gn+1 be the projection on the coordinates with odd (even) index andp : Gn+1 ! G=H � Gn the natural surjection. Consider G=H = fHg j g 2 Gg as a rightcoset space. To every set X � G=H �Gn associate the set (X) := �2[� \ (p � �1)�1[X]] =f(hg ; �g) jh 2 H; (Hg; �g) 2 Xg � G�Gn. In some sense,  is a map whose graph is �.Suppose X is closed irreducible. Then it is possible to show that (X) is still closed ir-reducible. The proof works by calculating the dimensions of irreducible components of(X) n (X). It makes essential use of the smoothness condition, additivity and semi-continuity of dimension applied to � \ (p � �1)�1[X].8



Now it is easy to conclude: let � : G�Gn ! Gn and �0 : G�Gn ! G be the projections.Obviously, (p � �)[X] = �[(X)] = �0�1(e) \ (X) which is a closed set. So H is a parabolicsubgroup. �Recall that an @0-stable group of �nite rank is called bad if it is connected, non solvable, andall connected solvable subgroups are nilpotent. A Borel subgroup is a maximal connectedsolvable subgroup.Proposition 3.12 If G is a simple bad smooth Zariski group, then its Borel subgroups areparabolic.� In a simple bad group, Borel subgroups are auto-normalizing and two distinct Borelsintersect in feg | see [P] 3.31. A simple group is rich: see lemma 3.9. As dimension issemi-continuous (proposition 2.6), theorem 3.11 applies. �Proposition 3.13 There are no bad smooth Zariski groups. (confer [Hu] 21.4)� If G is a such a group, it has a simple bad factor group ([P] 3.31), which is still a smoothZariski group (proposition 3.5). By corollary 3.8, G has no complete in�nite subset.Let B be a Borel, B is nilpotent, hence its center is non trivial. Take c 2 Z(B) and let� : G ! G be the morphism g 7! gcg�1. Then � is constant on B-cosets, in particular�[B] = feg. Thus � factors through G=B providing a morphism �� : G=B ! G. Now ��[G=B]is irreducible and complete, because G=B is complete, therefore ��[G=B] = feg. It followsthat � = e and c 2 Z(G), that is Z(B)� Z(G) contradicting the simplicity of G. �By Zil'ber's theorem ([Z1], see [P] 3.20), any connected @0-stable group of �nite rank thatis neither bad nor nilpotent interprets an algebraically closed �eld. Hence the precedingproposition yields as an immediate corollary the main theorem:Theorem 3.14 Any smooth non nilpotent Zariski group interprets an algebraically closed�eld.In fact, the proof of theorem 3.11 (and hence the main theorem 3.14) goes through for Zariskigroups interpretable in Zariski geometries that are additive and smooth with semi-continuousdimension.Open problems(A) A non singular algebraic variety (over an algebraically closed �eld) satis�es the dimensionformula. Because algebraic groups can't have singularities, they are smooth Zariski groups.Question: Are all Zariski groups smooth?The dimension formula holds at least for cosets of de�nable subgroups.9



(B) As pointed out by Poizat ([P] p. 144), a group interpretable in an algebraically closed�eld is a Zariski group in a canonical way. Is this true for any @0-stable group of �niterank?(C) By results of Hrushovski, a simple group of �nite Morley rank is interpretable in anyin�nite �eld that is interpretable in the group, provided that the �eld is endowed with thefull structure coming from the group. To solve completely Cherlin's conjecture for Zariskigroups, it remains to show that the group in interpretable in the pure �eld structure.Hence the problems reduces to the following question: Is the �eld interpretable in a simplesmooth Zariski group a pure �eld?AcknowledgmentsThe results presented here are part of my Ph.D. thesis. I am very grateful to my supervisorDaniel Lascar for his invaluable help. Thanks also to Elisabeth Bouscaren and Marc Hindryfor many fruitful discussions.References[HZ1] E. Hrushovski, B. Zil'ber, Zariski Geometries, Preprint, 1993.[HZ2] E. Hrushovski, B. Zil'ber, Zariski Geometries, Bull. AMS 28 No. 2 (1993) pp. 315{323.[Hu] J. Humphreys, Linear Algebraic Groups, Springer, New York, 1981.[P] B. Poizat, Groupes stables, Nur al-Mantiq wal Ma'rifah, Lyon 1987.[R] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. Jour. Math. 78 (1956)pp. 401{443.[Z1] B. Zil'ber, Some Model Theory of Simple Algebraic Groups over Algebraically ClosedFields, Colloquium Math. 48 (1984) pp. 173{180.[Z2] B. Zil'ber, Talks on Zariski{type Structures, Preprint, 1992.
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