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Abstract

The article shows a normal form for constructible sets in arbitrary topological spaces. This

yields a new normal form for propositional logic and some applications to the model theory

of equational and ordered structures.

1 Topology

Constructible sets and difference chains

Let (U, τ) be a fixed topological space. The closure of a subset X ⊆ U is denoted by X, the

interior by
◦
X. A subset of the space is called constructible if it is a Boolean combination of

open sets, i.e., an element of the smallest family containing all open sets and stable under finite
intersections and complements. The following lemmas might be well-known:

Lemma 1 Disjoint constructible sets, not both empty, have distinct closures.

This property is equivalent to the following: Two disjoint constructible sets X,Y cannot be
dense in the same non-empty superset Z. For if they were, X ⊆ Z ⊆ Y and Y ⊆ Z ⊆ X,
whence X = Y . Conversely, if X = Y = Z, both X and Y are dense in Z.

Proof: Let X and Y be disjoint, constructible, and dense in Z := X ∪ Y . Consider the
coarsening τ ′ of τ generated by finitely many open sets which allow to express X and Y as
Boolean combinations. Then X and Y are constructible in τ ′, which is a finite, hence Noetherian
topology. We may assume that Z is the whole space (pass to the induced topology) and that
it is irreducible (pass to the finitely many irreducible components). Then X and Y are still
constructible, disjoint and dense in Z. The constructible sets form a Boolean algebra; with
the disjunctive normal form and the decomposition into irreducible components one sees that
X is a union of finitely many locally closed irreducible sets: X =

⋃k
j=1 Cj \ Dj with closed

Dj , closed irreducible Cj and Dj ⊂ Cj . Then X =
⋃
Cj \Dj =

⋃
Cj . Since the space is

irreducible, Z = Cj for some j. But then Y ⊆ Dj and hence Y ⊆ Dj 6= Z: contradiction. �

Lemma 2 The interior of a constructible set is dense in that set.

Proof: Let X be constructible. We may again suppose that X is dense in U (by passing to the
induced topology on X) and that τ is Noetherian, because we may replace it by a finite topology
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generated by the interior
◦
X and finitely many open sets of which X is as a Boolean combination.

Then X decomposes into its finitely many relatively closed irreducible components X1, . . . , Xk.

From the irreducibility of the Xi and Lemma 1 we get that
◦
Xi is dense in X. Now the union

of the
◦
Xi is contained in

◦
X, which shows the lemma. �

Remark: There are also direct proofs of Lemma 2, of which Lemma 1 is an immediate conse-
quence.

Definition 3 An expression C0 \ C1 \ C2 \ · · · \ Cn is called a difference chain (of length n)
and meant to be parenthesised from the right, i.e., to equal C0 \ (C1 \ (C2 \ · · · \ (Cn−1 \Cn)·)).
One may assume, and will do so henceforth, that C0 ⊃ C1 ⊃ · · · ⊃ Cn.

The first apparition of difference chains is probably in Felix Hausdoffs book on set theory [H]
(chapter 1, § 5 “Differenzketten”), where he shows that the sets represented by difference chains
form a Boolean algebra. With other words:

Proposition 4 Every constructible set is given by a difference chain of closed sets.

Here comes a proof, for the sake of completeness.

Proof: Let C be constructible sets and consider again a finite topology τ ′ such that C is
constructible in τ ′. Define inductively C0 := C and Ci+1 := Ci \ Ci. Then Ci = Ci \ Ci+1 and
hence inductively

C = C0 \ C1 \ · · · \ Ci−1 \ Ci

As Ci+1 cannot be dense in Ci by Lemma 1, C0 ⊃ C1 ⊃ · · · ⊃ Ci+1 is strictly decreasing as
long as Ci 6= ∅. Since the space is Noetherian, there is an n such that Cn+1 = ∅. Hence

C = C0 \ C1 \ · · · \ Cn−1 \ Cn. �

Finally we note two useful remarks that are easy to prove:

C0 \ C1 \ · · · \ Cn = (C0 \ C1) ·∪ (C2 \ C3) ·∪ · · · (1)

C0 \ C1 \ · · · \ Cn = X ⇐⇒ Cn−1 \ · · · \ C0 \X = Cn. (2)

The difference normal form

Definition 5 Let ∂ : P(U) → P(U) be the map X 7→ X \ X. That is, ∂X is the part of
the border of X not belonging to X. Define ∂0X := X and inductively ∂i+1X := ∂(∂iX).
Moreover, let X[i] := ∂0X \ · · · \ ∂iX.

Lemma 6 For all i, X = ∂0X \ · · · \ ∂iX \ ∂i+1X, and

X = X[0] ⊇ X[2] ⊇ · · · ⊇ X ⊇ · · · ⊇ X[3] ⊇ X[1] ⊇
◦
X.

Proof: First note that ∂i+1X = ∂iX \ ∂iX ⊆ ∂iX. Inductively, this shows ∂i+1X = ∂iX \
· · · \ ∂0X \ ∂0X, which gives the first part of the lemma by equality 2 above. The second part
then follows easily with equality 1. �
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The following theorem is proved for Noetherian topologies in my doctoral thesis [J1], fact 1.11.
Soon after I have noticed that the general case can be reduced to the Noetherian one as shown
in this note. Some years later I discovered the paper [A] in which the same result is shown by
a different approach. Similar results (from which the theorem might easily been derived) have
been shown by other authors, e.g. [St], but the description as a difference chain in (c), which
allows the applications in Sections 2 and 3, is usually missing.

For example [DM] proves an analogous result “X is constructible⇔ X(n) = ∅ ” for the operator
X 7→ X(1) which they define to be X \X \X \X = X ∩ ∂X. This is a subset of X. Therefore
their result is different from the result above and does not allow a characterisation like (c).

Theorem 7 The following are equivalent:
(a) X is constructible;
(b) there is an n such that ∂n+1X = ∅;
(c) for some n

X = ∂0X \ ∂1X \ · · · \ ∂nX.

Moreover, the number n in (b) is the smallest length of a difference chain of closed sets express-
ing X.1

The expression under (c) will be called the difference normal form of X (as a Boolean com-
bination of closed sets), and the number under (b) will be called the degree of constructibility
dc(X) of X. The degree of constructibility of a non-constructible set is defined to be ∞.

Proof: (b)⇒(c) and (c)⇒(a) are clear. For (a)⇒(b), let X be constructible, expressed as a
difference chain C0 \ C1 \ · · · \ Cn of closed sets. Then X ⊆ C0, hence

X = (C0 \ C1 \ · · · \ Cn) ∩X = (C0 ∩X) \ (C1 ∩X) \ · · · \ (Cn ∩X)

and we may assume C0 = X = ∂0X. Assume inductively that we can write

X = ∂0X \ ∂1X \ · · · \ ∂iX \ C ′i+1 \ · · · \ C ′n.

Then ∂iX \ · · · \ ∂0X \ X = C ′i+1 \ · · · \ C ′n and in the same way as above me may assume

that C ′i+1 = ∂iX \ · · · \ ∂0X \X = ∂i+1X. It follows that if X is constructible, then ∂n+1X

for some n. This proof also shows the “moreover”–clause. �

Corollary 8 ([A]) Any constructible set X is a disjoint union of n = ddc(X)/2e canonically
defined locally closed sets, namely

X =
n⋃

i=0

(
∂2iX \ ∂2i+1X

)
.

Allouche has shown that moreover n = ddc(X)/2e is the minimal number such that a con-
structible set can be written as a union of n locally closed sets. Of course it is clear from the
disjunctive normal form that a constructible set can be written as union of locally closed sets.
The additional information here is the canonicity.

We have dc(X) = −1 if and only if X = ∅
dc(X) = 0 if and only if X is closed and non-empty
dc(X) = 1 if and only if X is locally closed, but not closed

1Define the empty difference chain to have length −1 and to equal ∅.
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For non constructible sets, there are several possible phenomena: for example for X = Q in R,
the sequence of the ∂iX is periodic without reaching ∅. If Xi is a constructible set of degree i
in a topological space Ui and X the union of the Xi in the disjoint union of the Ui, then the
sequence of the ∂iX is neither eventually stationary nor periodic.

At this point, some generalisations are possible: Call a subset X of a topological space hyper-
constructible if X =

⋂∞
i=0X[2i], and hypo-constructible if X =

⋃∞
i=0X[2i+1]. Are they the same?

Is there a characterisation of hyper-/hypo-constructible sets?

Bounds on the degree of constructibility

Let us call a sub-topology of τ a decomposition topology of X if all the ∂iX are closed in it.
These are exactly the sub-topologies in which X has the same difference normal form as in τ .

Lemma 9 The degree of constructibility of a set is the minimal dimension of this set in its
Noetherian decomposition topologies, or, equivalently, the dimension of this set in its minimal
decomposition topology.

Proof: From Lemma 1 it follows that in each Noetherian decomposition topology of X,
∂i+1(X) does not contain an irreducible component of ∂i(X) (immediate if irreducible, other-
wise decompose into irreducible components). Hence dc(X) 6 dim(X). On the other hand, the
sub-topology generated by the ∂i(X) as closed sets, i.e., the smallest decomposition topology
for X, is Noetherian and the ∂i(X) are irreducible in it, whence dc(X) = dim(X) in that
topology. �

It follows from Lemma 9 that the degree of constructibility is bounded in a Noetherian space of
finite dimension. As a sort of a converse one gets that the length of strictly decreasing chains of
closed irreducible sets is bounded by any bound on dc. However, a discrete infinite topological
space is an example of a non Noetherian space with bounded dc.

Examples: (a) The degree of constructibility of a constructible set in the Zariski topology on
Cn is bounded by the dimension.

(b) In the Euclidean topology on Rn, the degree of constructibility of definable constructible
sets is bounded by the dimension. For non-definable sets, there is no bound, even for n = 1:2

Denote by C(k) the kth Cantor–Bendixson derivative of a closed set C and suppose C ⊆ R is such
that C(2n+1) = ∅ 6= C(2n). All C(k) are closed, therefore Ck := C(k) \ C(k+1) is constructible.
Let X := C0∪C2∪· · ·∪C2n. Then ∂X = C1∪C3∪· · ·∪C2n−1 and ∂2X = C0∪C2∪· · ·∪C2n−2,
whence dc(X) = n.

The degree of constructibility of a constructible subset X is bounded by the Cantor–Bendixson
rank of X: Assume the rank is n > 1 (all other cases are clear). Then no point x ∈ X(n)

is an
accumulation point of X\{x}. Thus x must already be an element of X, whence ∂X ⊆ X\X(n)

has Cantor–Bendixson rank at most n− 1.

Proposition 10 If Z is a Boolean combination of X1, . . . , Xn, then dc(Zi) is bounded by
dc(X1) + · · ·+ dc(Xn) + n. If in addition Z ⊆ X1 ∪ · · · ∪Xn, and either Z 6= U or n > 0, then
dc(Zi) is bounded by dc(X1) + · · ·+ dc(Xn) + n− 1.

2Question of Martin Ziegler during a seminar presentation of this work, answered afterwards by Antongiulio

Fornasiero.
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Proof: Take the smallest common decomposition topology for X1, . . . , Xn. Then Z is con-
structible in it, and dc(Z) is bounded by its dimension, which in turn is bounded by the
dimension of the free topology generated by

(
dc(X1)+1

)
+ · · ·+

(
dc(Xn)+1

)
sets. Closed irre-

ducible sets therein are intersections of complements of the generators, therefore this dimension
is dc(X1) + · · · + dc(Xn) + n. In the second case, the bound can be improved by one as U is
irreducible in the free situation and does not appear as a factor ∂iZ except for Z = U . �

For (X1 ∪ · · · ∪ Xn){ and (X1 ∪ · · · ∪ Xn) in case all ∂jXi are independent, the bounds are
attained (except n− 1 of the Xi have degree 0). For example for two locally closed sets,

(X \ ∂X) ∪ (Y \ ∂Y ) = (X ∪ Y ) \ (∂X ∪ ∂Y ) \ (X ∩ Y ∩ (∂X ∪ ∂Y )) \ (∂X ∩ ∂Y ),

and this is the normal form in a free situation.

Note that if X 6= ∅ is constructible, of degree of constructibility n, then dc(∂X) = n − 1 and
∂1X \ · · · \ ∂nX is the difference normal form of ∂X.

Proposition 11 (a) The following bounds hold: 3

dc(X ∪ Y ) 6 dc(X) + dc(Y ) + 1

dc(X ∩ Y ) 6 dc(X) + dc(Y )

dc(Y {) 6 dc(Y ) + 1

dc(X \ Y ) 6 dc(X) + dc(Y ) + 1

dc(XM Y ) 6 dc(X) + dc(Y ) + 1

(b) If X and Y are disjoint, then dc(X ·∪ Y ) 6 max{dc(X),dc(Y )}.

Proof: (a) All inequalities except for intersection follow from Proposition 10. The intersection
computes as X ∩Y = (X ∩Y ) \ (∂X ∪∂Y ), then use the first inequality and the remark above.

The rules for complements and differences also follow from the equalities Y { = U \ Y and
dc(X \ Y ) = dc(X ∩ Y {).

(b) Assume C0 \ C1 \ · · · \ Cn = X and D0 \D1 \ · · · \Dn = Y (same length can be assumed
by filling up with ∅’s), then (C0 ∪D0) \ (C1 ∪D1) \ · · · \ (Cn ∪Dn) = X ∪ Y . �

The dual version

Let, with a notation borrowed from logic, A⇒ B denote A{ ∪B.

Definition 12 Let % : P(U) → P(U) be the map X 7→ (X ⇒
◦
X). That is, %X is the

complement of the part of the border of X that belongs to X. Define %0X := X and inductively
%i+1X := %(%iX).

Remark that % is the dual operator to ∂ , that means %X = ∂(X{){.

Proposition 13 The following are equivalent:
(a) X is constructible

3M stands for the symmetric difference.
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(b) there is an n such that %n+1X = U

(c) for some n

X =
(
·
( ◦︷ ︷
%nX ⇒

◦︷ ︷
%n−1X

)
⇒ · · ·

)
⇒

◦︷ ︷
%0X .

Part (c) yields a normal form of X as Boolean combination of open sets.

Proof: Analogously to Theorem 7, or dualise as in the proof of Theorem 14. �

2 An application to Propositional Logic

The following is a translation of Theorem 7 into propositional logic. It is hard to imagine that
this is a new result, but in spite of discussions with many logicians, I haven’t found any trace
of it.

Theorem 14 If ϕ is a formula in classical propositional calculus, then ϕ is equivalent to a
formula of the form

(·((γn → γn−1)→ γn−2)→ · · · → γ1)→ γ0

where the γi are positive Boolean combinations in the propositional variables (possibly > or ⊥).

Proof4: We embed the Tarski–Lindenbaum algebra via the Stone representation into a
power set algebra, and identify formulae with subsets. The positive Boolean combinations in
the propositional variables occuring in ϕ form (the open sets of) a finite topology in which ¬ϕ
is constructible. With Theorem 7, we can write ¬ϕ up to logical equivalence in the form

¬γ0 ∧ ¬ (¬γ1 ∧ ¬ · · · ∧ ¬ (¬γn−1 ∧ ¬ ¬γn)·)

with γi as above. Negating both sides and applying de Morgan’s rule transforms the expression
into the desired form. �

Definition 15 If we use in the proof the smallest set of propositional variables such that ϕ can
be expressed as a formula in these variables, we get the implication normal form of ϕ. The
number of arrows is the implication degree of ϕ.5

The implication degree is an invariant attached to a propositional formula. What a possible
meaning of this invariant could be, remains a mystery to me.

In the normal form, we have in addition ` (γi → γi+1), and hence from Corollary 8:

Corollary 16 A propositional formula ϕ is classically equivalent to
∧

i>0(γ2i+1 → γ2i) and to∧
i>0(γ2i+1 ↔ γ2i), with the γi from the implication normal form.

4It might be worth to note that I have not succeeded in giving a direct proof of Theorem 14 by an induction

on the construction of formulae.
5To be coherent with the rest, the empty expression is defined to equal >, which therefore has implication

degree −1.
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Proposition 17 The following bounds for the implication degree id hold:

id(¬ϕ) 6 id(ϕ) + 1

id(ϕ ∧ ψ) 6 id(ϕ) + id(ψ) + 1

id(ϕ ∨ ψ) 6 id(ϕ) + id(ψ)

id(ϕ→ ψ) 6 id(ϕ) + id(ψ) + 1

id(ϕ↔ ψ) 6 id(ϕ) + id(ψ) + 1

The maximal implication degree of a formula with n variables is n.

Proof: Dualise Proposition 11. The second part comes from Proposition 10. �

Examples: Consider the 16 formulae in two propositional variables A and B: > has implication
degree −1, the other five positive formulae have degree 0. There are seven formulae of degree 1,
namely A→ B with normal form (A∨B)→ B, then B → A, four negations of positive formulae
ϕ of with normal form ϕ → ⊥, and A ↔ B with normal form (A ∨ B) → (A ∧ B). Finally,
three formulae have degree 2, namely ¬(A↔ B) with normal form ((A ∨B)→ (A ∧B))→ ⊥,
then ¬(A→ B) with normal form ((A ∨B)→ B)→ ⊥, and ¬(B → A).

Remarks: (a) There is at most one occurrence of ⊥, namely at the right end of an implication
normal form. > is only needed as the normal form of a tautology and could be replaced by
⊥ → ⊥, if one would like to minimise the use of connectives.

Mark Weyer has found a non-topological proof of the fact that every formula can be put in a
form like in Theorem 14. Moreover, he gets positive formulae that are built with conjunctions
and falsum only. The number of arrows in his case is however exponential in the number of
propositional variables.

(b) There is no implication normal form in intuitionistic logic. In one propositional variable
A, there are up to intuitionistic equivalence infinitely many formulae, but only three positive
formulae (⊥, > and A) and only five implication normal forms (in addition A→ ⊥ and (A→
⊥)→ ⊥).

(c) The implication normal form is not yet a normal form in the strict sense as the positive
formulae γi are only determined up to logical equivalence. To get a real normal form, one
could choose either the “positive DNF” or the “positive KNF”, that is the result of applying
the distributive law to a positive expression to get either a disjunction of conjunctions or vice
versa (and then of course some ordering of the conjuncts and disjuncts, which always depends
on some chosen ordering of the propositional variables).

Another point of view is to see the implication normal from as a normal form in a sort of “positive
Tarski–Lindenbaum algebra”, where the free algebra of all formulae has already been reduced
by “positive equivalence”. That should be an equivalence relation inducing logical equivalence
on positive formulae. It seems to be most reasonably to take the equivalence relation generated
by the “positive laws” of Boolean algebras, i.e., the absorption, associativity, commutativity,
distributivity and idempotence laws for ∧ and ∨, and the neutrality and absorption laws for >
and ⊥ with respect to ∧ and ∨.
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3 Applications to Model Theory

Theorem 7 can be an elegant tool to show properties of structures in which topologies are
naturally involved, in particular ordered structures with the order topology and equational
structures with the Srour topology.

Application to elimination of imaginaries

Let M be a structure and τ a topology on U = Mn that is Aut(M)-invariant. Assume for
simplicity that M is saturated (otherwise one needs that τ extends in a compatible way to
elementary extensions). A canonical parameter cp(X) of a set X ⊆ Mn is an object in some
set on which Aut(M) acts naturally such that X is setwise invariant under exactly thoses
automorphisms fixing cp(X). The theory of M eliminates imaginaries if each definable set has
a tuple of elements of M as canonical parameter (see [CF] for an account on elimination of
imaginaries). Theorem 7 shows that an A-invariant constructible set X ⊆Mn is canonically a
Boolean combination of A-invariant closed sets. Therefore it follows:

Proposition 18 If closed sets have canonical parameters and X is constructible of degree n,
then the tuple

(
cp(∂0X), . . . , cp(∂nX)

)
is a canonical parameter of X.

There are cases where all closed sets are definable (then the topology is necessarily Noetherian).
Examples are the Zariski topology in fields or the d-topology in differential fields. In these cases,
an A-definable constructible set is canonically a Boolean combination of A-definable closed sets.
Moreover, if all closed sets have canonical bases in the home sort, then also all constructible sets
do (all this follows of course also easily from the Noetherianity of the topology). If in addition
all definable sets are constructible as in the two examples above, then the structure eliminates
imaginaries.

This generalises to equational theories: A definable setX is Srour-closed if —in every elementary
extension— the conjugates of X satisfy the descending intersection property, and a structure
is called equational if all definable sets are Boolean combination of definable Srour-closed sets.
In particular, all definable sets are constructible in the topology generated by the Srour-closed
sets as a basis of closed sets (see [J2] for details and related definitions). Most “natural” stable
structures are equational, e.g. algebraically closed fields, differentially closed fields, separably
closed fields of finite degree of imperfection, all modules, free pseudo-spaces. (A stable non-
equational theory has been constructed by Hrushovski and Srour as an expansion of a free
pseudo-space. Contrary to the belief of some, the pseudo-space constructed by Baudisch and
Pillay has nothing to do with non-equationality.)

If Φ is a set of formulae ϕ(x̄; ȳ), let a Φ-set be a set defined by an instance ϕ(x̄, ā). An equation
(in Srour’s sense) is a formula ϕ(x̄; ȳ) such that every {ϕ}-set is Srour-closed set. In fact, the
Srour-closed set are exatly the Φ-sets for all equations Φ (for details see [J2]).

Proposition 19 Assume Φ is a family of equations such that every definable set is a boolean
combination of Φ-sets. If all Φ-sets have canonical parameters, then the theory eliminates
imaginaries.

Special case: If all definable Srour-closed sets in an equational theory have canonical parameters
(in the home sort), then the theory eliminates imaginaries.
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Proof: Proposition 18 does not apply directly, because closures of definable sets need not
to be definable. If X is definable, it is a Boolean combination of Srour-closed sets defined by
instances of equations ϕ1, . . . , ϕn ∈ Φ. The topology τϕ1,...,ϕn

generated by the Φ-sets as a
subbasis of closed sets in Noetherian (see [J2]). Then Proposition 18 applies for this topology
as the ∂nX computed in τϕ1,...,ϕn

are invariant under all automorphisms fixing X. �

One might also recall from [JL] that arbitrary Srour-closed sets have canonical parameters in
the form of tuples in T eq of size at most |T |. Proposition 18 thus implies:

Remark 20 If X is an arbitrary Srour-constructible set, then it has a canonical parameters in
form of a possibly infinite, but bounded tuple in T eq.

Definable closed sets

Model theory is interested in definable sets, and only in special situations as above all con-
structible sets are definable or controlled by definable sets. Therefore a generalisation is useful.
Let Λ be a sub-lattice of P(U) containing ∅ and U . Call a subset of U Λ-constructible if it is
an element of the Boolean sub-algebra of P(U) generated by Λ.

Lemma 21 Every Λ-constructible set can be written as a difference chain of elements of Λ.

Proof: Only finitely many elements of Λ are needed to express a Λ-constructible set. These
elements generate, as closed sets, a finite topology. Then apply Proposition 4. �

Thus every Λ-constructible set has a degree of Λ-constructibility, namely the shortest length
of a difference chain as in Lemma 21. However, there need not to be a normal form, since in
general there is no smallest or otherwise canonical sub-lattice of Λ over which a given set is a
Boolean combination (in contrast to the situation in Theorem 14).

The following two types of problems occur in model theory: Let B be a Boolean sub-algebra
of P(U) —typically the definable sets of a structure on U— such that every element in B is
Λ-constructible for some lattice Λ as above (e.g. Λ = the positively definable sets).

1. Given a sub-lattice Λ′ of Λ, find conditions for the elements of B to be Λ′-constructible.

2. Given a Boolean sub-algebra B′ of B, find conditions for the element of B′ to be (B′ ∩Λ)-
constructible.

Induction on the degree of constructibility helps easily to give a partial answer to problem 2 as
in the following proposition, which was proved in a more special situation in [J2]. That article
also offers three applications to equational theories: With the help of this technique I have
proved for example that a theory is equational if some expansion by constants is, and that the
uniform and the non-uniform versions of equationality are equivalent.

Proposition 22 Assume that in a situation as above, the following property holds:
For all X ∈ B′ and X ⊆ Y ∈ Λ, there is a Y ′ ∈ B′ ∩ Λ with X ⊆ Y ′ ⊆ Y .

Then every element of B′ is (B′∩Λ)-constructible. The (B′∩Λ)-degree of constructibility equals
the Λ-degree of constructibility.
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Proof: By induction on the degree n of Λ-constructibility of X ∈ B′. For n 6 0, everything is
clear. Otherwise let X = Y0\· · ·\Yn with Yi ∈ Λ. By hypothesis, there is a Y ′0 ∈ B′∩Λ such that
X ⊆ Y ′0 ⊆ Y0. Then X = Y ′0 \(Y1∩Y ′0)\· · ·\(Yn∩Y ′0), and (Y1∩Y ′0)\· · ·\(Yn∩Y ′0) = Y ′0 \X ∈ B′

is (B′ ∩ Λ)-constructible by induction. �

If Λ is given by the closed sets of a topology, we get the following special case:

Corollary 23 Let τ be a topology on U and B′ a Boolean sub-algebra of the constructible sets.
If for all X ∈ B′ also X ∈ B′, then all sets in B′ are (τ ∩ B′)-constructible.

Application to constructible sets in ordered structures

If we consider the field of real numbers with the Euclidean topology, or more generally totally
ordered structures with the order topology and its product topologies, then the closure of a
definable set is again definable (and over the same parameters). With B′ = the Boolean algebra
of the definable constructible sets, corollary 23 shows:

Proposition 24 In an ordered structure, a definable constructible set is definably constructible,
i.e., a Boolean combination of definable closed sets. Moreover, an A-definable constructible set
is in a canonical way a Boolean combination of A-definable closed sets.

In o-minimal structures, this follows from cell decomposition, which by the way shows all
definable sets to be constructible. The first part of the proposition is the content of the [DM].
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