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In this note, I show that the Hoffman–Singleton graph can be constructed from
a non-trivial outer automorphism of S6 and vice versa. I have learned from Peter
Cameron that this was already known by Higman.

A graph (G, E) is a binary, symmetric, and anti-reflexive relation E on the set
G. A Moore graph of type (d,D) is a d-regular graph of diameter D with 1 +

d ·
∑D−1

i=0 (d − 1)i vertices. The Moore graphs are almost completely classified
(in [HS], [B], and [D]). The following types exist:

(0, 0) : one vertex
(d, 1) with d > 1 : the complete graph Kd+1

(2,D) with D > 0 : the (2D + 1)-cycle
(3, 2) : the Petersen graph
(7, 2) : the Hoffman–Singleton graph


unique up to
isomorphism

and possibly (57, 2)

Fix now D = 2 and let m := d−1. A (d, 2)-Moore graph has 1+d2 vertices. An n-
cycle is a sequence (b1, . . . , bn) of vertices with (bi, bi+1) ∈ E and (bn, b1) ∈ E.
A triangle is a 3-cycle and a quadrangle a 4-cycle.

If a∅ is some vertex, let a0, . . . , am be its neighbours and ai1, . . . , aim the other
neighbours of ai. Moreover, define Ai := {ai1, . . . , aim}.

Proposition 1 A finite d-regular graph G is (d, 2)-Moore iff G is triangle- and
quadrangle-free and if all vertices have distance at most 2 from some (any) fixed
vertex a.

Proof: Clearly, in a d-regular graph, the 1 + d2 elements a∅, ai, aij as above
are pairwise distinct, that is the ball B2(a∅) of radius 2 around a vertex a∅ has
1+d2 elements, if and only if there are no triangles or quadrangles through a∅.

“⇒” If G is Moore of diameter 2, |G| = 1 + d2 and B2(a) = G for any vertex a.

1



“⇐” By assumption and the argument above, G = B2(a) for some a and
|B2(a)| = d2 + 1 for any a. But this implies B2(a) = G for any a, hence G

has diameter 2. �

Remark: each vertex and each edge lie together on a 5-cycle; G is a union of
5-cycles.

Let G be a (m + 1, 2)-Moore graph, and fix some vertex a∅. Then

• there are no edges between vertices in Ai (otherwise there would be a tri-
angle);

• each vertex in Ai has to be neighbour to exactly one vertex in Aj for every
j 6= i:
Since aik has distance 2 from aj, there is some edge (aik, ajl), and be-
cause aik has valency m + 1, there can’t be a second edge to Aj (al-
ternative argument: a second edge (aik, ajl ′) would provide a quadrangle
(aik, ajl, aj, ajl ′)).

• given aik and ajl with i 6= j, there is some agh with (aik, agh) ∈ E and
(agh, ajl) ∈ E.

Suppose that the vertices in Ai are numbered in such a way that (a0j, aij) ∈ E

for all i and j. Then

σij : k 7→ l ⇐⇒ (aik, ajl) ∈ E (1)

defines a permutation σij ∈ Sm. By definition, σij = σ−1
ji . Moreover, we let

σii = id for all i. Composition of permutations will be written from left to
right.

Proposition 2 The existence of a Moore graph of type (m + 1, 2) is equivalent
to the existence of a system of permutations σij ∈ Sm with

σij = σ−1
ji and σii = id,

if i 6= k, then σijσjk is fixpoint-free,
if i 6= j 6= k 6= i and l 6= j, then σijσjkσklσli is fixpoint-free.

 (2)

Proof: Given the graph, we define the permutations as above, and given the
system of permutations, we define a graph via (1). Then this is a (m+1)-regular
graph and all vertices have distance 6 2 from a∅. Using proposition 1, we must
show that triangle- and quadrangle-freeness is equivalent to the fixpoint condi-
tions. Triangles and quadrangles through a∅ or some ai are already excluded
by the construction.

A triangle through some vertex a0e is of the form (a0e, aie, ake) with i, k 6= 0

distinct, and corresponds to the fixpoint e of σik = σiiσik. The remaining
possible triangles are of the form (aie, ajf, akg) with i, j, k 6= 0 pairwise distinct,
and correspond to the fixpoint e of σijσjkσki = σijσjkσkiσii.
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Analogously, a quadrangle through some vertex a0e is of the form (a0e, aie, ajf, ake)

with pairwise distinct i, j, k 6= 0, and corresponds to the fixpoint e of σijσjk.
The remaining possible quadrangles are of the form (aie, ajgf, akg, alh) with
i, j, k 6= 0 pairwise different and l 6= j, and correspond to the fixpoint e of
σijσjkσklσli. �

There are three known Moore graphs of diameter 2, namely for m = 1, 2 and 6.

• For m = 1, the system of permutations is reduced to σ11 = id.
• For m = 2, it consists of σ11 = σ22 = id and σ12 = σ21 = (12).
• For m = 6, we have the following result:

Proposition 3 Let α ∈ Aut
(
S6

)
\ Inn

(
S6

)
. Then σij := (ij)α is a system of

permutations satisfying (2) and thus defines the Hoffman–Singleton graph. Up
to isomorphism over a fixed edge, the construction does not depend on the choice
of α.

Proof: Consider permutations in their cycle decomposition. Let the type of
a permutation σ be the multi-set of the cycle lengths 6= 1. Then the type de-
termines the conjugation class of σ. A non-trivial outer automorphism α inter-
changes type {2} with type {2, 2, 2} and type {3} with type {3, 3}.

Let i 6= k, then (ij)(jk) =

(ikj) if i 6= j 6= k

(ik) otherwise

Let |{i, j, k}| = 3 and l 6= j, then (ij)(jk)(kl)(li) =

(jkl) if i 6= l 6= k

(jk) otherwise

Hence σijσjk =
(
(ij)(jk)

)α and σijσjkσklσli =
(
(ij)(jk)(kl)(li)

)α are without
fixpoints.

Finally, composing α with an inner automorphism (on the right or the left side)
corresponds to a renumbering of {a1, . . . , a6} or the elementsa of A0. Thus two
distinct choices for α yield graphs isomorphic over {a∅, a0}. �

The cases m = 1 and m = 2 can be considered as coming in the same way from
the identity automorphism of Sm.

If we take for granted that the Hoffman–Singleton graph is unique up to iso-
morphism, for some choice of a∅ and of a0, the map (ij) 7→ σij extends to a
non-trivial outer automorphism of S6. Moreover:

Corollary 1 ([BL]) The order of the automorphism group of the Hoffman–
Singleton graph divides (1 + d2) · d! = 50 · 7!.

Proof: There are 1
2 · 50 · 7 edges, hence the order of the stabilizer of (a∅, a0)

divides 50·7. Once a∅ and a0 fixed, there are 6! = |Inn(S6)| possibilities for num-
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berings of A0 and {a1, . . . , a6} providing non-identical copies of the Hoffman–
Singleton graph. �

Remark 1: In all known cases of Moore graphs of diameter 2, the non-identical
permutations σij are involutions. Call such a Moore graph involutional. A Moore
graph is involutional if and only if it is built up from Petersen graphs. An
involutional Moore graph of type (m+1, 2) needs 1

2m(m−1) different fixpoint-
free involutions. On the other hand, Sm contains (m−1)·(m−3) · · · fixpoint-free
involutions. Both numbers are equal exactly for m = 1, 2, 6.

Remark 2: There is a presentation of Sm with generators σij for i, j = 1, . . . ,m,
i 6= j and relations

σij = σji = σ−1
ij and σijσjk = σjkσik for pairwise distinct i, j, k

Hence there is no involutional Moore graph of type (57, 2) such that σijσjk =

σjkσik for all pairwise distinct i, j, k, since otherwise α : (ij) 7→ σij extends to a
non-inner automorphism S56 → S56.
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