The Hoffman–Singleton graph and outer automorphisms

Markus Junker

April 2005

In this note, I show that the Hoffman–Singleton graph can be constructed from a non-trivial outer automorphism of S_6 and vice versa. I have learned from Peter Cameron that this was already known by Higman.

A graph (G, E) is a binary, symmetric, and anti-reflexive relation E on the set G. A *Moore graph* of type (d, D) is a d-regular graph of diameter D with $1 + d \cdot \sum_{i=0}^{D-1} (d-1)^i$ vertices. The Moore graphs are almost completely classified (in [HS], [B], and [D]). The following types exist:

(0,0):	one vertex	
$(d, 1)$ with $d \ge 1$:	the complete graph K_{d+1}	unique up to isomorphism
(2, D) with $D > 0$:	the $(2D + 1)$ -cycle	
(3,2):	the Petersen graph	Isomorphism
(7,2):	the Hoffman–Singleton graph	J
and possibly $(57, 2)$		

Fix now D = 2 and let m := d-1. A (d, 2)-Moore graph has $1+d^2$ vertices. An *n*-cycle is a sequence (b_1, \ldots, b_n) of vertices with $(b_i, b_{i+1}) \in E$ and $(b_n, b_1) \in E$. A triangle is a 3-cycle and a quadrangle a 4-cycle.

If a_{\emptyset} is some vertex, let a_0, \ldots, a_m be its neighbours and a_{i1}, \ldots, a_{im} the other neighbours of a_i . Moreover, define $A_i := \{a_{i1}, \ldots, a_{im}\}$.

Proposition 1 A finite d-regular graph G is (d, 2)-Moore iff G is triangle- and quadrangle-free and if all vertices have distance at most 2 from some (any) fixed vertex a.

PROOF: Clearly, in a d-regular graph, the $1 + d^2$ elements $a_{\emptyset}, a_i, a_{ij}$ as above are pairwise distinct, that is the ball $B_2(a_{\emptyset})$ of radius 2 around a vertex a_{\emptyset} has $1 + d^2$ elements, if and only if there are no triangles or quadrangles through a_{\emptyset} . " \Rightarrow " If G is Moore of diameter 2, $|G| = 1 + d^2$ and $B_2(a) = G$ for any vertex a. " \Leftarrow " By assumption and the argument above, $G = B_2(\mathfrak{a})$ for some \mathfrak{a} and $|B_2(\mathfrak{a})| = \mathfrak{d}^2 + 1$ for any \mathfrak{a} . But this implies $B_2(\mathfrak{a}) = G$ for any \mathfrak{a} , hence G has diameter 2.

Remark: each vertex and each edge lie together on a 5-cycle; G is a union of 5-cycles.

Let G be a (m + 1, 2)-Moore graph, and fix some vertex a_{\emptyset} . Then

- there are no edges between vertices in A_i (otherwise there would be a triangle);
- each vertex in A_i has to be neighbour to exactly one vertex in A_j for every $j \neq i$:

Since a_{ik} has distance 2 from a_j , there is some edge (a_{ik}, a_{jl}) , and because a_{ik} has valency m + 1, there can't be a second edge to A_j (alternative argument: a second edge $(a_{ik}, a_{jl'})$ would provide a quadrangle $(a_{ik}, a_{jl}, a_j, a_{jl'})$).

• given a_{ik} and a_{jl} with $i \neq j$, there is some a_{gh} with $(a_{ik}, a_{gh}) \in E$ and $(a_{gh}, a_{jl}) \in E$.

Suppose that the vertices in A_i are numbered in such a way that $(a_{0j}, a_{ij}) \in E$ for all i and j. Then

$$\sigma_{ij}: k \mapsto l \iff (a_{ik}, a_{jl}) \in E \tag{1}$$

defines a permutation $\sigma_{ij} \in S_m$. By definition, $\sigma_{ij} = \sigma_{ji}^{-1}$. Moreover, we let $\sigma_{ii} = id$ for all i. Composition of permutations will be written from left to right.

Proposition 2 The existence of a Moore graph of type (m + 1, 2) is equivalent to the existence of a system of permutations $\sigma_{ij} \in S_m$ with

$$\left\{\begin{array}{l}
\sigma_{ij} = \sigma_{ji}^{-1} \quad and \quad \sigma_{ii} = id, \\
if \ i \neq k, \quad then \quad \sigma_{ij}\sigma_{jk} \quad is \ fixpoint-free, \\
if \ i \neq j \neq k \neq i \quad and \ l \neq j, \quad then \quad \sigma_{ij}\sigma_{jk}\sigma_{kl}\sigma_{li} \quad is \ fixpoint-free.
\end{array}\right\}$$
(2)

PROOF: Given the graph, we define the permutations as above, and given the system of permutations, we define a graph via (1). Then this is a (m+1)-regular graph and all vertices have distance ≤ 2 from a_{\emptyset} . Using proposition 1, we must show that triangle- and quadrangle-freeness is equivalent to the fixpoint conditions. Triangles and quadrangles through a_{\emptyset} or some a_i are already excluded by the construction.

A triangle through some vertex a_{0e} is of the form (a_{0e}, a_{ie}, a_{ke}) with $i, k \neq 0$ distinct, and corresponds to the fixpoint e of $\sigma_{ik} = \sigma_{ii}\sigma_{ik}$. The remaining possible triangles are of the form (a_{ie}, a_{jf}, a_{kg}) with $i, j, k \neq 0$ pairwise distinct, and correspond to the fixpoint e of $\sigma_{ij}\sigma_{jk}\sigma_{ki} = \sigma_{ij}\sigma_{jk}\sigma_{ki}\sigma_{ii}$.

Analogously, a quadrangle through some vertex a_{0e} is of the form $(a_{0e}, a_{ie}, a_{jf}, a_{ke})$ with pairwise distinct $i, j, k \neq 0$, and corresponds to the fixpoint e of $\sigma_{ij}\sigma_{jk}$. The remaining possible quadrangles are of the form $(a_{ie}, a_{jgf}, a_{kg}, a_{lh})$ with $i, j, k \neq 0$ pairwise different and $l \neq j$, and correspond to the fixpoint e of $\sigma_{ij}\sigma_{jk}\sigma_{kl}\sigma_{li}$.

There are three known Moore graphs of diameter 2, namely for m = 1, 2 and 6.

- For m = 1, the system of permutations is reduced to $\sigma_{11} = id$.
- For m = 2, it consists of $\sigma_{11} = \sigma_{22} = id$ and $\sigma_{12} = \sigma_{21} = (12)$.
- For m = 6, we have the following result:

Proposition 3 Let $\alpha \in \operatorname{Aut}(S_6) \setminus \operatorname{Inn}(S_6)$. Then $\sigma_{ij} := (ij)^{\alpha}$ is a system of permutations satisfying (2) and thus defines the Hoffman–Singleton graph. Up to isomorphism over a fixed edge, the construction does not depend on the choice of α .

PROOF: Consider permutations in their cycle decomposition. Let the type of a permutation σ be the multi-set of the cycle lengths $\neq 1$. Then the type determines the conjugation class of σ . A non-trivial outer automorphism α interchanges type {2} with type {2, 2, 2} and type {3} with type {3, 3}.

Hence $\sigma_{ij}\sigma_{jk} = ((ij)(jk))^{\alpha}$ and $\sigma_{ij}\sigma_{jk}\sigma_{kl}\sigma_{li} = ((ij)(jk)(kl)(li))^{\alpha}$ are without fixpoints.

Finally, composing α with an inner automorphism (on the right or the left side) corresponds to a renumbering of $\{a_1, \ldots, a_6\}$ or the elementsa of A_0 . Thus two distinct choices for α yield graphs isomorphic over $\{a_{\emptyset}, a_0\}$.

The cases m = 1 and m = 2 can be considered as coming in the same way from the identity automorphism of S_m .

If we take for granted that the Hoffman–Singleton graph is unique up to isomorphism, for some choice of a_{\emptyset} and of a_0 , the map $(ij) \mapsto \sigma_{ij}$ extends to a non-trivial outer automorphism of S_6 . Moreover:

Corollary 1 ([BL]) The order of the automorphism group of the Hoffman-Singleton graph divides $(1 + d^2) \cdot d! = 50 \cdot 7!$.

PROOF: There are $\frac{1}{2} \cdot 50 \cdot 7$ edges, hence the order of the stabilizer of (a_{\emptyset}, a_0) divides 50.7. Once a_{\emptyset} and a_0 fixed, there are $6! = |\text{Inn}(S_6)|$ possibilities for num-

berings of A_0 and $\{a_1, \ldots, a_6\}$ providing non-identical copies of the Hoffman–Singleton graph.

Remark 1: In all known cases of Moore graphs of diameter 2, the non-identical permutations σ_{ij} are involutions. Call such a Moore graph *involutional*. A Moore graph is involutional if and only if it is built up from Petersen graphs. An involutional Moore graph of type (m + 1, 2) needs $\frac{1}{2}m(m-1)$ different fixpoint-free involutions. On the other hand, S_m contains $(m-1) \cdot (m-3) \cdots$ fixpoint-free involutions. Both numbers are equal exactly for m = 1, 2, 6.

Remark 2: There is a presentation of S_m with generators σ_{ij} for i, j = 1, ..., m, $i \neq j$ and relations

 $\sigma_{ij}=\sigma_{ji}=\sigma_{ij}^{-1}$ and $\sigma_{ij}\sigma_{jk}=\sigma_{jk}\sigma_{ik}$ for pairwise distinct i,j,k

Hence there is no involutional Moore graph of type (57,2) such that $\sigma_{ij}\sigma_{jk} = \sigma_{jk}\sigma_{ik}$ for all pairwise distinct i, j, k, since otherwise $\alpha : (ij) \mapsto \sigma_{ij}$ extends to a non-inner automorphism $S_{56} \to S_{56}$.

References

- [B] E. Bannai, T. Ito, On finite Moore graphs, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), pp. 191–208.
- [BL] C. T. Benson, N. E. Losey, On a graph of Hoffman and Singleton, J. Combinatorial Theory Ser. B 11 (1971), pp. 67–79.
- [D] R. M. Damerell, On Moore graphs. Proc. Cambridge Philos. Soc. 74 (1973), pp. 227–236.
- [HS] A. J. Hoffman, R. R. Singleton, On Moore Graphs with Diameter 2 and 3, *IBM Journal* 4 (1960), pp. 497–504.