Übungen zur Algebraischen Topologie – Blatt 7

Aufgabe 1 (4 Punkte). Ist $\varphi: R \to S$ ein Ringhomomorphismus, so gibt es für $M \in M$ Mod-S und $N \in S$ -Mod genau einen Homomorphismus $M \otimes_R N \to M \otimes_S N$ von abelschen Gruppen mit $m \otimes n \mapsto m \otimes n$. Ist $\varphi: R \to S$ ein Ringhomomorphismus derart, daß S als Ring erzeugt wird vom Bild $\varphi(R)$ von R mitsamt den Inversen der Elemente aus $\varphi(R) \cap S^{\times}$, so ist diese Abbildung eine Bijektion

$$M \otimes_R N \stackrel{\sim}{\to} M \otimes_S N$$

Speziell liefert für ein Ideal $\mathfrak{m}\subset R$ und $M\in \operatorname{Mod-}R/\mathfrak{m}$ sowie $N\in R/\mathfrak{m}$ -Mod die offensichtliche Abbildung einen Isomorphismus $M\otimes_R N\stackrel{\sim}{\to} M\otimes_{R/\mathfrak{m}} N$, und für je zwei \mathbb{Q} -Vektorräume M,N liefert die offensichtliche Abbildung einen Isomorphismus $M\otimes_{\mathbb{Z}} N\stackrel{\sim}{\to} M\otimes_{\mathbb{Q}} N$.

Aufgabe 2 (4 Punkte). Genau dann besteht eine abelsche Gruppe M nur aus Elementen endlicher Ordnung, wenn gilt $M \otimes_{\mathbb{Z}} \mathbb{Q} = 0$. Das Torsionsprodukt M * N von zwei abelschen Gruppen besitzt niemals Elemente unendlicher Ordnung. Hinweis: Man zeige $(M * N) \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.

Aufgabe 3 (4 Punkte). Man zeige, daß das Torsionsprodukt mit beliebigen direkten Summen vertauscht.

Aufgabe 4 (4 Punkte). Gegeben Kettenkomplexe A, B, C konstruiere man einen natürlichen Isomorphismus

$$\operatorname{Ket}(A\otimes B,C)\stackrel{\sim}{\to} \operatorname{Ket}(A,\operatorname{Hom}(B,C))$$

von abelschen Gruppen. Hier bezeichnet $\operatorname{Ket}(X,Y)$ die Gruppe der Kettenabbildungen von X nach Y und Hom den Hom-Komplex.