UNIVERSITÄT FREIBURG Fakultät für Mathematik und Physik Prof. Dr. Wolfgang Soergel Dr. Oliver Straser Topologie SoSe 2014

5. Übungsblatt

Abgabe: Am Dienstag, den 3.6.2014 im Kasten Ihrer Übungsgruppe

Aufgabe 1: Sei $I \subseteq \mathbb{R}^n$ eine abgeschlossene Teilmenge, die einen Untervektorraum der Kodimension ≥ 3 erzeugt, in Formeln $\dim \langle I \rangle_{\mathbb{R}} \leq n-3$. So ist die Fundamentalgruppe des Komplements von I trivial, in Formeln $\pi_1(\mathbb{R}^n \backslash I, p) = 1$ für jeden Punkt p des Komplements. **4 Punkte**

Aufgabe 2: Sei X ein topologischer Raum mit einer Verknüpfung $X \times X \to X$ und sei e ein neutrales Element. Man zeige, dass unter diesen Annahmen die Fundamentalgruppe $\pi_1(X, e)$ kommutativ ist.

4 Punkte

Aufgabe 3: Die Abbildung $S^1 \to S^1$, $z \mapsto z^n$ induziert auf der Fundamentalgruppe $\pi_1(S^1,1) \cong \mathbb{Z}$ die Abbildung $c \mapsto n \cdot c$. **4 Punkte**

Aufgabe 4: Man zeige: Ein geschlossener Weg $\gamma:[0,1]\to\mathbb{C}^\times$ mit $\gamma(0)=\gamma(1)$ in $\mathbb{R}_{>0}$ und der Eigenschaft, dass es ein $a\in(0,1)$ gibt mit $\gamma(a)\in\mathbb{R}_{<0}$ und $\mathrm{Im}(\gamma(t))\geq0$ $\forall t\in[0,a]$ und $\mathrm{Im}(\gamma(t))\leq0$ $\forall t\in[a,1]$, hat die Umlaufzahl Eins um den Ursprung. **4 Punkte**

UNIVERSITÄT FREIBURG Fakultät für Mathematik und Physik Prof. Dr. Wolfgang Soergel Dr. Oliver Straser Topologie SoSe 2014

5. Übungsblatt

Abgabe: Am Dienstag, den 3.6.2014 im Kasten Ihrer Übungsgruppe

Aufgabe 1: Sei $I \subseteq \mathbb{R}^n$ eine abgeschlossene Teilmenge, die einen Untervektorraum der Kodimension ≥ 3 erzeugt, in Formeln $\dim \langle I \rangle_{\mathbb{R}} \leq n-3$. So ist die Fundamentalgruppe des Komplements von I trivial, in Formeln $\pi_1(\mathbb{R}^n \backslash I, p) = 1$ für jeden Punkt p des Komplements. **4 Punkte**

Aufgabe 2: Sei X ein topologischer Raum mit einer Verknüpfung $X \times X \to X$ und sei e ein neutrales Element. Man zeige, dass unter diesen Annahmen die Fundamentalgruppe $\pi_1(X, e)$ kommutativ ist.

4 Punkte

Aufgabe 3: Die Abbildung $S^1 \to S^1$, $z \mapsto z^n$ induziert auf der Fundamentalgruppe $\pi_1(S^1,1) \cong \mathbb{Z}$ die Abbildung $c \mapsto n \cdot c$. **4 Punkte**

Aufgabe 4: Man zeige: Ein geschlossener Weg $\gamma:[0,1]\to\mathbb{C}^\times$ mit $\gamma(0)=\gamma(1)$ in $\mathbb{R}_{>0}$ und der Eigenschaft, dass es ein $a\in(0,1)$ gibt mit $\gamma(a)\in\mathbb{R}_{<0}$ und $\mathrm{Im}(\gamma(t))\geq0$ $\forall t\in[0,a]$ und $\mathrm{Im}(\gamma(t))\leq0$ $\forall t\in[a,1]$, hat die Umlaufzahl Eins um den Ursprung. **4 Punkte**