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Abstract. We apply Hrushovski-Fräıssé’s amalgamation procedure to obtain
a theory of fields of prime characteristic of Morley rank 2 equipped with a
definable additive subgroup of rank 1.

1. Introduction

In the early 90’s E. Hrushovski came up with an interesting application of
Fräıssé’s construction to obtain certain structures whose rank was described by
a priori exhibited predimension function δ. Unfortunately, this procedure has re-
mained an obscure area of model theory to the general audience, in spite of its
relevant applications. Hrushovski’s amalgamation method is – in principle – a two-
step process: first, one obtains a Fräıssé generic model from a certain class so that
the above model exhibits some of the properties we are interested in, though of
infinite rank. Secondly, one makes it collapse, i.e. we impose certain restrictions on
the class we are amalgamating in, related to algebraizing certain types which have
small δ-dimension but large rank in the aforementioned model. This relies on some
combinatorial arguments in order to determine on advance the maximal number of
realizations allowed for a given type within our class.

In [11] a theory of fields of rank ω · 2 with a definable additive subgroup of
rank ω was constructed by applying the first part of the amalgamation method
as aforementioned described. It was asked by by B. Poizat in [9] after Corollary
3.3 whether a similar structure of finite rank could exist. It is known that such
a field cannot be of characteristic 0, because they have no definable non-trivial
additive subgroups. In this paper, we will collapse the above structure and answer
the previous question positively. Moreover, an explicit description of the axioms of
the generic model obtained is given. The red additive subgroup has Morley rank 1
and the whole structure Morley rank 2.

The main source of this work is E. Hrushovski’s fusion of two strongly minimal
sets [6]. Using Hrushovski’s paper B. Poizat [10] and J. Baldwin and K. Holland
[1] produced a field with black points of rank 2. In [2] we gave an exposition
of [6], simplifying some of the arguments, which allowed us in [3] to give a new
construction of a field with black points of rank 2 with a simpler axiomatization.
The methods used there will be developed further in this paper in order to obtain
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a field of rank 2 with a red additive subgroup. Similar ideas yield a fusion over a
vector space over a finite field of two strongly minimal sets with DMP in [4].

The authors would like to thank the Newton Institute (Cambridge, UK) for
the hospitality provided during the semester Model Theory and its applications to
Algebra and Analysis, in which the three authors took part. Moreover, the second
author would like to thank the Deutsche Forschungsgemeinschaft for its support
during Spring Semester 2005.

2. Group sets

The following Lemma was proven in 1990 by the third author [12].

Lemma 2.1. Let G be a stable abelian group, and a, b and c in G be pairwise
independent over B with a + b + c = 0. Then:
(1) Their strong types over B have the same stabilizer U . Furthermore, U is con-

nected.
(2) a, b and c are generic elements of acl(B)–definable cosets of U .
Moreover, if G is totally transcendental, it follows that a, b and c have the same
Morley rank over B, namely MR(U), and U is definable over acl(B).

Note 2.2. Suppose that a ∈ U . Then −b and c have the same type over B, since
they are generic in the same coset of U .

As in Section 2 in [3] we will encode types using codes. These codes will enable
us to define the class of structures we are concerned with and later use them to
give an axiomatization of the Fräıssé generic model.

We work inside U, a universal algebraically closed field of prime characteristic p
and all formulae are L–formulas, where L denotes the language of rings. All sets
in this section will be subsets of some cartesian power Un, unless specified. We use
degM to denote the Morley degree.

Definition 2.3. Let X be a definable subset of Un with degM(X) = 1. We say
that X is a group set (resp. torsor set) if its generic type is the generic type of a
definable subgroup G (resp. coset of a subgroup) of (Un, +). If X is not a torsor
set, then X is called groupless.

Notation 2.4. Two definable sets X and Y are equivalent, if MR(X) = MR(Y )
and MR

(
X M Y

)
< MR

(
X

)
. We write X ∼ Y .

Given A ⊂ U, we denote by 〈A〉 the subspace generated by A (considering U as
an Fp-vector space in the natural way).

Lemma 2.5 (Hasson, Hils [5]). With notation as above, the following holds:
(1) Given Y ∼ X, if X is a group set, so is Y .
(2) Given H in GLn(Fp), if X is a group set, so is H(X) = {H~x | ~x ∈ X}.
(3) The set {~b |ϕ(U,~b) is a group-set } is definable for every formula ϕ(~x, ~y).
Similarly for torsor sets.

Proof. The first two statements are clear.
For the third point, note that algebraically closed fields have the DMP. So

degM ϕ(~x,~b) = 1 is an elementary property of ~b. We claim that ϕ(U,~b) is a group
set iff “There exist two generic ~b–independent realizations ~a1 and ~a2 of ϕ(~x,~b)



RED FIELDS 3

whose sum ~a1 + ~a2 lies in ϕ(~x,~b).” This is easily seen to be an elementary prop-
erty of b. One direction of the equivalence is clear. To prove the other direction
let ~a0, ~a1 have the property above and let k be the Morley rank of ϕ(~x,~b). We
have MR(~a0 + ~a1/~b~a0) = MR(~a1/~b~a0) = k and therefore MR(~a0 + ~a1/~b) ≥ k.
|= ϕ(~a0 + ~a1,~b) implies that MR(~a0 + ~a1/~b) = k, so ~a0, ~a1, ~a0 + ~a1 are pairwise
independent over ~b. And they all have the same type over ~b. Hence by Lemma 2.1
tp(~a0/~b) is a group type.

Note also that X is a torsor set if and only if for some x the set X−x is a group
set. ¤

Definition 2.6. Given a group set X, its invariant group is the set Inv(X) = {H ∈
GLn(Fp) |H(X) ∼ X}.

Note that “H ∈ Inv(ϕ(~x,~b))” is an elementary property of ~b.

Lemma 2.7. Let X be a B-definable set of Morley degree 1, and ~e0 and ~e1 two
generic B-independent elements. If ~e0 − H~e1 |̂

B

~e0 for some H in GLn(Fp), then

X is a torsor set. Moreover, if X is a group set, then H is in Inv(X).

Proof. From

MR(H~e1/B, ~e0 −H~e1) = MR(~e0/B,~e0 −H~e1) = MR(~e0/B) ≥ MR(H~e1/B)

we obtain that {~e0,H~e1, ~e0−H~e1} is a pairwise B-independent triple. By 2.1 X is
an torsor set. If G is the group that corresponds to X, then ~e0 and H~e1 are generic
elements of some cosets of G. That implies that H(G) = G. ¤

3. Prealgebraic Sets

Let us fix some notation. For any subset A of U let 〈A〉 be the Fp–vector
space generated by A, and dim(A) the dimension of 〈A〉. The relative dimension
dim(A/B) is the dimension of 〈A, B〉/〈B〉. We write trdeg(A/B) for the transcen-
dence degree of A over B.

Definition 3.1. Let n = 2k > 0 and X be a ~b–definable subset of Un, of Morley
rank k and Morley degree 1. We call X prealgebraic (over the parameters ~b) if for
all generic ~a ∈ X, the following holds:
a) dim(~a) = n.
b) Given a non-trivial subspace U of 〈~a〉, then

(3.1) 2 · trdeg(U/~b) > dim(U).

Equivalently,

(3.2) 2 · trdeg(~a/U~b)) < n− dim(U).

Lemma 3.2. If X is prealgebraic over ~b and ~a in X is generic, then dim(~a/~b) = n.

Proof. Clearly, 〈~a〉 ∩ acl(~b) = 0 by Equation (3.1). ¤

Lemma 3.3. Prealgebraicity is preserved under equivalence1, translation and the
action of GLn(Fp).

1in the sense of 2.4
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From the first assertion it follows that prealgebraicity does not depend on the
choice of parameters. We use this to prove the second statement.

Proof. Suppose X is prealgebraic defined over ~b and X ∼ Y with Y defined over
~b′. Choose a generic element ~a of X ∩ Y . For a subspace U of 〈~a〉, we have that
U |̂

~b

~b′ and U |̂
~b′

~b. So MR(U/~b) = MR(U/~b′) and Y is prealgebraic.

Let now ~m be in Un. We want to show that X− ~m is again prealgebraic. Choose
~a in X, generic over ~m,~b. Hence, ~a − ~m is generic in X − ~m over ~b, ~m. Given x

in 〈~a〉 ∩ acl(~b~m), it follows from ~a |̂
~b

~m that x lies in acl(~b). By 3.2 x = 0. In

particular,
〈~a〉 ∩ acl(~m) = 0

Therefore, the coordinates of ~a− ~m are linearly independent. Let U ⊂ 〈~a− ~m〉 be
a non-trivial subspace. There is some subspace V ⊂ Fn

p with

U = {v · (~a− ~m) | v ∈ V }
where · denotes the scalar product. By the above, dim U = dim V and we have

2 · trdeg(U/b, m) = 2 · trdeg(V a/b, m) = 2 · trdeg(V a/b) > dim(V a) = dim(U).

The case of a transformation via an invertible matrix is clear. ¤

4. Codes

Definition 4.1. The formula ϕ(~x, ~y) encodes X if there is some ~b in U such that
X ∼ ϕ(~x,~b).

Definition 4.2. A code α is a tuple consisting of the following objects: natural
numbers nα and kα and a formula ϕα(~x, ~y) with the following properties:
(a) length(~x) = nα = 2kα.
(b) The set ϕα(~x,~b) is either empty or has Morley rank kα and Morley degree 1.
(c) Let ~a be a realization of ϕα(~x,~b). Then dim(~a) = nα and Equation (3.2) in

Definition 3.1 holds for all non-trivial subspaces of 〈a〉.
(d) ϕα(~x,~b) ∼ ϕα(~x,~b′) =⇒ b = b′.
(e) If some non-empty ϕα(~x,~b) is groupless, then all ϕα(~x,~b′) are. (We call hence

α a groupless or coset code accordingly.)
(f) ϕα(~x + ~m,~b) is encoded by ϕα for all ~m.
(g) For all H in GLnα(Fp), the set ϕα(H~x,~b) is encoded by ϕα.

It follows from (d) that ~b is a canonical basis of the type of Morley rank kα

determined by ϕα(~x,~b). Moreover, either ϕα(~x,~b) is empty or prealgebraic by (c).
We first show that these codes enable us to encode prealgebraic sets.

Lemma 4.3. Every prealgebraic set X ⊂ Un is encoded by some code α as above.

Proof. A straight-forward generalization of the argument exhibited in Lemma 2.3
[3] following [6] shows how to find such a formula ϕ0(~x,~b) with properties (a)-(d)
for a given set X as above.2

By case 3 in Lemma 2.5, we can strengthen ϕ0 so that (e) holds. Let us call such
a formula ϕ0(~x,~b) a good formula.

2 For (c) we use that the dimension of 〈a〉 can be elementarily expressed, since Fp is finite.
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Let T (~x) denote an affine transformation (compositum of an element of GLn(Fp)
and a translation by some tuple ~m). By Lemma 3.3 T (X) is again a set as in the
statement, hence it can be encoded by a good formula. Therefore, by compactness
there are finitely many ϕ1, . . . , ϕr that encode all possible T (X)’s. Moreover, we
may assume that either all (or none) encode groupless sets by 2.5. Choose now
w1, . . . , wr different Fp-tuples with the same length. Define:

θ1
i (~b) = “ No ϕj (j < i) encodes ϕi(~x,~b)”

θ2
i (~b) = “ ϕαi

(~x,~b) is equivalent to some ϕ0(H~x + ~m′,~b′) ”

ϕ′i(~x, ~y) = ϕi(~x, ~y) ∧ θ1
i (~y) ∧ θ2

i (~y)

Finally, let

ϕα(~x, ~y1, ~y) =
r∨

i=1

(ϕ′i(~x, ~y) ∧ ~y1 = wi)

It is clear that ϕα has properties (a)-(e). To show that (f) and (g) hold, let ~b, ~m

and H be given. By construction, ϕα(~x,~b) is equivalent to some ϕ0(H ′~x + ~m′,~b′).
Hence,

ϕα(H~x + ~m,~b) ∼ ϕ0

(
(H ′H)~x + (H ′ ~m + ~m′),~b′

)

The above is again encoded by α by construction. ¤

Now, we can choose our set of representatives:

Theorem 4.4. There is a set C of codes such that any definable prealgebraic set
X of Morley degree 1 is encoded by a unique α in C.
Proof. Let αi be a list of all codes. Again, define:

θi(~b) = “ No αj (j < i) encodes ϕαi(~x,~b)”

ϕα′i(~x, ~y) = ϕα(~x, ~y) ∧ θi(~y)

We need only show that the ϕα′i still satisfy (f) and (g). By construction,
ϕα′i(H~x + ~m,~b) is encoded by αi. We need only show that no αj with j < i
encodes it. Suppose that

ϕαi(H~x + ~m,~b) ∼ ϕαj (~x,~b′)

Then
ϕαi(~x,~b) ∼ ϕαj (H

−1~x−H−1 ~m,~b′) ∼ ϕαj (~x,~b′′)

for some ~b′′, which contradicts our definition of ϕ′α. Finally set

C = {α′i | i = 0, 1, . . . }.
¤

For the rest of the paper we fix a set C of codes as given by the above theorem.
We call the codes in C good codes.

We now choose for each α in C a natural number mα such for each Morley
sequence ~ei of ϕα(~x,~b) of length mα and all ~b′ with |~b′| = |~b| we have ~ei |̂

~b

~b′ for

some i. We can always find mα ≤ |~b|+ 1.
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Theorem 4.5. For each α ∈ C and λ ≥ mα there is a formula Ψα(~x0, . . . , ~xλ) with
following properties:
(a) For any initial segment {~e0, . . . , ~eλ, f} of a Morley sequence of ϕα(~x,~b),

Ψα(~e0 − f, . . . , ~eλ − f)

holds.
(b) For each realization (~e0, . . . , ~eλ) of Ψα there is a unique ~b with |= ϕα(~ei,~b) for

0 ≤ i ≤ λ. Moreover, ~b ∈ dcl(~ei1 , . . . , ~eimα
) for any i1 < · · · < imα

. (We call ~b
the canonical parameter of the sequence ~e0, . . . , ~eλ).

(c) Each realization of Ψα is Fp–linear independent.
(d) If |= Ψα(~e0, . . . , ~eλ), then for i ∈ {0, . . . , λ}:

|= Ψα(~e0 − ~ei, . . . , ~ei−1 − ~ei,−~ei, ~ei+1 − ~ei, . . . , ~eλ − ~ei)

(e) Given a realization (~e0, . . . , ~eλ) of Ψα with canonical parameter ~b as in (b), we
have the following:

Suppose α is groupless:
1) If ~ei generic in ϕα(~x,~b), then

~ei −H~ej 6 |̂
~b

~ei

for all H in GLnα(Fp) and j 6= i.

Suppose α is an coset code, then:
2) ϕα(~x,~b) is a group-set.
3) Ψα(e0, . . . , ei−1, ei − ej , ei+1, . . . , eλ) for j 6= i.3

4) Ψα(e0, . . . , ei−1,Hei, ei+1, . . . , eλ) for all H in Inv(ϕα(~x,~b)).3

5) Moreover, if ~ei is generic in ϕα(~x,~b), then

~ei −H~ej 6 |̂
~b

~ei

for all j 6= i and H in GLnα(Fp) \ Inv(ϕα(~x,~b)).

In Section 7 we will assign a fixed large λ = µ(α) to every α.

Proof. Consider the following partial type

Σ(~e0, . . . , ~eλ) = “ there is some ~b′ and some Morley sequence ~a0, . . . ,~aλ, ~f of

ϕα(~x,~b′) with ~ei = ~ai − ~f”.

Claim. Σ has properties (a)–(e).

Proof of the claim. By definition, Σ has property (a). Given a realization ~e0, . . . , ~eλ

of Σ, there are some ~b′ and ~a0, . . . ,~aλ, ~f as above. Hence, {~ei}0≤i≤λ is a Morley
sequence of ϕα(~x + ~f,~b′). Then ϕα(~x + ~f,~b′) ∼ ϕα(~x,~b) for some ~b by (f) in
Definition 4.2. Since ~b is the canonical base of the type determined by ϕα(~x,~b),
the sequence {~ei}0≤i≤λ is a Morley sequence for ϕα(~x,~b). Given another ~b∗ which
satisfies ϕα(~ei, ~y) for mα many i’s, there is some i such that

U |= ϕα(~ei,~b
∗)

3By (b) and λ ≥ mα this new sequence has also canonical parameter ~b.
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and
~ei |̂

~b

~b∗

by the choice of mα. It follows that ϕα(~x,~b∗) ∼ ϕα(~x,~b) and by (d) in Definition
4.2, ~b∗ = ~b. Hence, (b) holds for Σ.

The linear independence in (c) follows from Lemma 3.2. We get

acl(~b,~e0, . . . , ~ei−1) ∩ 〈~ei〉 = 0.

Given ~a0, . . . ,~aλ, ~f as above, the sequence ~a0 . . . ,~ai−1, ~f,~ai+1, . . . ,~aλ,~ai is again
Morley for ϕα(~x,~b′). Hence,

(~a0 − ~ai, . . . ,~ai−1 − ~ai, ~f − ~ai,~ai+1 − ~ai, . . . ,~aλ − ~ai) |= Σ

i.e.
(~e0 − ~ei, . . . , ~ei−1 − ~ei,−~ei, ~ei+1 − ~ei, . . . , ~eλ − ~ei) |= Σ

This yields (d).
For (e), if α is groupless, then ϕα(~x,~b) is not a torsor set and the result follows

by Lemma 2.7. Otherwise, the set X = ϕα(U,~b′) defines a torsor set. Hence,
X − ~f ∼ ϕα(~x,~b) is a group set (note that ~f is in X). In the case of a group code,
extend the Morley sequence {~ei}0≤i≤λ by an element ~d. Therefore, the sequence
~e0 + ~d, . . . , ~ei−1 + ~d,~ei − ~ej + ~d,~ei+1 + ~d, . . . , ~eλ + ~d, ~d is again Morley for ϕα(~x,~b).
Hence,

Σ(~e0, . . . , ~ei − ~ej , . . . , ~eλ).

Likewise, given H in Inv(ϕα(~x,~b)), the sequence

~e0 + ~d, . . . , ~ei−1 + ~d,H~ei + ~d,~ei+1 + ~d, . . . , ~eλ + ~d, ~d

is again Morley for ϕα(~x,~b). Therefore, Σ(~e0, . . . , H~ei, . . . , ~eλ). The last point
follows again from Lemma 2.7. ¤(Claim)

Take now some finite part Ψ′α of Σ which implies (b), (c), (e1), (e2) and (e5) by
compactness (note that (a) follows trivially).

If α is groupless, consider the following operations:

Vi(~x0, . . . , ~xλ) = (~x0 − ~xi, . . . , ~xi−1 − ~xi,−~xi, ~xi+1 − ~xi, . . . , ~xλ − ~xi)

and let V be the subgroup generated by these operations (Observe that V has
cardinality (λ + 1)!(λ + 2)).

Now, the formula

Ψα(~x0, . . . , ~xλ) =
∧

V ∈V
Ψ′α(V (~x0, . . . , ~xλ))

satisfies (d), and lies also in Σ.
If α is an coset code, property (d) follows from (e3) and (e4). Hence, it is

enough to find Ψα which satisfy the latter. Let W(~x0, . . . , ~xλ) be the subgroup
of GLnα(λ+1)(Fp) generated by the operations mentioned in (e3) and (e4). Again,
W is finite, and depends on Inv(ϕα(~x,~b)). Note that λ ≥ mα, hence ~b remains
constant after applying these operations by (b). Set therefore:

Ψα(~x0, . . . , ~xλ) =
∧

W∈W(~x0,...,~xλ)

Ψ′α(V (~x0, . . . , ~xλ)),
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which has the required properties. ¤

Definition 4.6. Let α, λ and Ψα be as above. A realization of Ψα is called a
difference sequence for α.

Moreover, given a realization ~e0, . . . , ~eλ of Ψα, we denote by a derived difference
sequence one obtained by composition of the following operations:

~e0 − ~ei, . . . , ~ei−1 − ~ei,−~ei, ~ei+1 − ~ei, . . . , ~eλ − ~ei.

If ν ≤ λ and we use the above operation only for i ≤ ν then we speak about a
ν-derived difference sequence .

Note 4.7. A general transposition (ij) (and therefore all permutations of {0, . . . , λ})
is obtained as follows:

~e0, . . . , ~ei, . . . , ~ej , . . . , ~eλ

(Vj) ~e0 − ~ej , . . . , ~ei − ~ej , . . . ,−~ej , . . . , ~eλ − ~ej

(Vi) ~e0 − ~ej − (~ei − ~ej), . . . , ~ej − ~ei, . . . ,−~ej − (~ei − ~ej), . . . , ~eλ − (~ej − (~ei − ~ej) =

~e0 − ~ei, . . . , ~ej − ~ei, . . . ,−~ei, . . . , ~eλ − ~ei

(Vj) ~e0, . . . , ~ej , . . . , ~ei, . . . , ~eλ

5. δ-pregeometry and red extensions

Let Lmorley be the language which consist of 0, +,−, and a relation symbol for
every quantifier free L–formula. U becomes an Lmorley–structure in a natural way.
We extend this language to L∗ = Lmorley∪{R}, where R is a unary predicate, which
will yield the red coloring. The L∗-structures A we consider are additive subgroups
of U with a distinguished additive subgroup R(A) (viewed as an Fp-vector space).
The elements of R(A) are the red points of A, the others white. We write A ⊂ B
if in the extended language we also have that R(A) = R(B) ∩ A. We consider the
following function, as introduced by B. Poizat in [11]:

δ(A) = 2 trdeg A− dim R(A)
for finite A.

Note that δ satisfy the following (cf. [3]):

(1) δ(0) = 0,
(2) δ〈A,B〉+ δ(A ∩B) ≤ δ(A) + δ(B).

If dim(R(A)/R(B)) is finite4, we define the relative δ-value of A over B by:

δ(A/B) = 2 trdeg(A/B)− dim(R(A)/R(B)).

If also B is finite, we have

δ(A/B) = δ〈A,B〉 − δ(B).

We will later make also use of the notation δ(~a/B) for δ(〈~a〉/B).

4We do not assume that B is included in A.
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Following [7], we say that Y is self-sufficient or strong in X (denoted as Y ≤ X)
if for all finite A ⊂ X, we have that δ(A/Y ) ≥ 0. It is easy5 to see that self-
sufficiency is transitive. Moreover, the intersection of self-sufficient subsets of X is
again self-sufficient and each subset S of X is contained in a smallest self-sufficient
subset, its self-sufficient closure clX(S).

A proper extension Y ≤ Z is minimal if no Y ( Y ′ ( Z is self-sufficient in Z.
The set Z \ Y must be finite, which allows us to express minimality by

δ(Z/Y ′) < 0 for all Y ( Y ′ ( Z.

We state a basic fact (whose proof is similar as in Lemma 4.1 in [3]):

Lemma 5.1. Let B ≤ A be a minimal extension. We have one of the following
cases:
(1) A = 〈B, a〉 for a white element a and R(A) = R(B). Moreover, δ(A/B) = 0

or 2, depending whether a is algebraic or transcendental over B.
(2) A = 〈B,~a〉 for a basis ~a = (a1, . . . , an) of R(A) over B. We have two subcases:

(a) n ≥ 2, δ(A/B) = 0 and ~a is a generic element of a prealgebraic X ⊂ Un

defined over acl(B). In this case we call A a minimal prealgebraic extension
of B.

(b) n = 1, δ(A/B) = 1 and a1 is transcendental over B.

Note that in (2) all new elements of A are transcendental over B. We call such an
extension transcendental.

Proof. First assume that all red elements in A are in B. Let a be in A \ B. Then
〈B, a〉 is self-sufficient in A and by minimality it is A.
If A is algebraic over B, then δ(A/B) = 0. Otherwise δ(A/B) = 2. So we are in
case (1).

Otherwise choose a basis ~a = (a1, . . . , an) of R(A) over B and set A′ = 〈B,~a〉.
Then A′ ≤ A and by minimality A′ = A: We are in case (2). There are two subcases:

(2a): There is a proper extension C of B in A such that δ(C/B) = 0. By minimality
we have C = A. Then n = 2k where k is the transcendence degree of A over B. By
minimality we have 2 · trdeg(~a/U,B) < n− dim(U) for all non–trivial subspaces U
of 〈~a〉. Choose an acl(B)–definable set X of Morley rank k and Morley degree 1,
which contains ~a. Then ~a is generic in X and X is prealgebraic.

(2b): Otherwise every extension A′′ of B in A with δ(A′′/B) = 1 is self-sufficient
in A. Hence we get A = 〈B, a1〉 and δ(A/B) = 1. ¤
Theorem 4.4 now yields the following result:

Lemma 5.2. Let B ≤ A minimal prealgebraic extension of B. Then there is a
unique code α and parameters ~b in acl(B) such that A is generated over B by a
generic red realization of ϕα(~x,~b). ¤

The final lemma of this section can be proved as Lemma 3A in [6] (see Lemma 4.5
in [3]). We will all throughout this paper use it in order to show that a realization
of a code is generic over some set of parameters.

5Actually the following facts are formal consequences of (1) and (2).
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Lemma 5.3. Let α be a code, ~b ∈ acl(B) and ~a be a red realization of ϕα(~x,~b)
which does not completely lie in B. Then, the following holds:

(1) δ(~a/B) ≤ 0
(2) If δ(~a/B) = 0, ~a is a generic realization of ϕα(~x,~b). In particular ~a is Fp–

linearly independent over acl(B). ¤

6. A counting result

Definition 6.1. Let K be the class of all L∗-structures M (i.e colored subspaces
of U) such that ∅ ≤ M .

So M ∈ K iff δ(A) ≥ 0 for all finite subsets A of M . It is easy to see that K can
be described by a set of universal sentences.6

If M belongs to K the self-sufficient closure of a finite subset of M is finite.

Definition 6.2. In K we define that M ′ is an amalgam of M and A over B, if

• M and A are self-sufficient in M ′,
• M and A are algebraically independent over B,
• M ′ = 〈M, A〉.

If in addition

• M ∩A = B,

we call M ′ a free amalgam.

Using standard arguments (cf.[10]) one shows:

Lemma 6.3. If M , B, and A are in K and B ≤ M and B ≤ A, there is an
amalgam M ′ of M and A over B. If M or A are transcendental over B, we can
find a free amalgam M ′. ¤

Definition 6.4. For structures in K a difference sequence for α ∈ C of length λ is
a red realization ~e0, . . . , ~eλ of Ψα( ~x0, . . . , ~xλ).

The next Lemma is the key tool in order to classify the structures which will
be amalgamated with Fräıssé’s method. This characterization will be useful for
exhibiting the theory of the Fräıssé limit to be obtained in Section 8.

Lemma 6.5. Given a code α and a natural number r, there is some λ(r, α) = λ ≥ 0
such that for every strong extension M ≤ N and every difference sequence ~e0, . . . , ~eµ

in N , with canonical parameter ~b and λ ≤ µ, either

• the canonical parameter of some λ-derived sequence of ~e0, . . . , ~eµ lies in
dcl(M),

or

• the sequence ~e0, . . . , ~eλ contains a Morley sequence of ϕα(~x,~b) over M of
length r.

By “Morley sequence” we mean Morley sequence in the sense of ACFp.

6Her we use again the finiteness of Fp.
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Proof. If there are more than mα many of the ~ei in the same class of R(N)nα/R(M)nα ,
we subtract one of these elements from the others and obtain a derived sequence
with mα many elements in M , whose canonical base lies in dcl(M). So we as-
sume that each class of Nnα/Mnα contains at most mα many ~ei. Work over
M ′ = M ∪ {~e0, . . . , ~emα−1} and observe that ~b ∈ dcl(M ′). All we need now from
the sequence (~ei) is that the ~ei realize ϕα(~x,~b).

Set
s = dim(~e0, . . . , ~eλ/〈M ′〉).

Then dim(~e0, . . . , ~eλ/M) ≤ s + mαnα. Thus by our assumption

λ + 1 ≤ mα p(s+mαnα)nα .

Consider the following sets of indices:

X1 = {i ≤ λ | trdeg(~ei/M
′, ~e0, . . . , ~ei−1) = kα},

X2 = {i 6∈ X1 | dim(~ei/〈M ′, ~e0, . . . , ~ei−1〉) > 0}.
It is clear that

s ≤ |X1|nα + |X2|nα.

With the notation δ(i) = δ(~ei/〈M ′, ~e0, . . . , ~ei−1〉), Lemma 5.3 implies that δ(i) < 0
if x ∈ X2, and δ(i) = 0 otherwise. Since M ≤ N we have

0 ≤ δ(~e0, . . . , ~eλ/M) = δ(~e0, . . . , ~emα−1/M) +
λ∑

i=1

δ(i) ≤ mαnα − |X2|.

If we put the three inequalities together, we obtain

λ + 1 ≤ mα p((|X1|+mαnα)nα+mαnα)nα .

If λ is large enough, |X1| ≥ r and (~ei)i∈X1 is our Morley sequence. ¤

7. Leaving Kµ

We choose two finite-to-one functions µ∗ and µ defined on C with values on N
such that the following inequalities hold:

• µ(α) ≥ mα

• µ∗(α) ≥ max(λ(mα + 1, α) + 1, nα + 1)
• µ(α) ≥ λ(µ∗(α), α) + 1

Definition 7.1. The class Kµ is the class of all L∗-structures M (i.e colored sub-
spaces of U) such that:

• ∅ ≤ M .
• No α in C has a difference sequence in M of length µ(α) + 1.

It is easy to see that Kµ, as K, is axiomatizable by universal L∗–sentences. In fact,
we have

Remark 7.2. For all α there is a universal sentence θα, which is true in M ∈ K
iff M has no difference sequence for α of length µ(α) + 1.

All models of the L∗-theory Tµ we intend to construct will be in Kµ. We want
that as many copies as possible of a prealgebraic extension of a strong subset of a
model are realized. In this section we show that this is an elementary property of
the model. The results are also important for the amalgamation in Kµ.
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Lemma 7.3. Assume M and M ′ are structures in K. M ′ is a prealgebraic minimal
extension of M , M is in Kµ and M ′ is not in Kµ. Let ~e0, . . . , ~eµ(α) be a difference
sequence for a good code α in M ′, such that its canonical parameter ~c is in acl(M).7

Then we find such a difference sequence ~d0, . . . , ~dµ(α) for α in M ′ with the same
canonical parameter such that ~d0, . . . , ~dµ(α)−1 are in M , ~dµ(α) is an M -generic
realization of ϕα(~x,~c) and generates M ′ over M .

If we cannot find the new sequence by a permutation of the old one, then α is a
group code and the new sequence is obtained using operations as ~ej is replaced by
some H~ej − ~ei where H is in Inv(ϕα(~x,~c)).

Furthermore α is the unique good code that describes M ′ over M .

Proof. Since M is in Kµ, there is some ~ei not completely contained in M . Since
M is strong in M ′ by Lemma 5.3 ~ei is M -generic. Since M ′ is minimal over M it
generates M ′ over M . If there is some other ~ej not completely contained in M ,
then again ~ej is M -generic and generates M ′ over M . Hence ~ei = H~ej − ~mj where
H is GLnα

(Fp) and ~mj is in M . Then H~ej − ~ei is in M. Since ~ej is M -generic, we
have

~ej |̂
~c

H~ej − ~ei.

By the properties of a difference sequence it follows that α is a group code
and H is in Inv(ϕα(~x,~c)). If we replace ~ej by H~ej − ~ei, then we obtain again a
difference sequence with the same canonical parameter and this sequence has one
more element in M . We can iterate the argument to obtain the assertion.

Finally every prealgebraic set that gives us M ′ over M determines a unique
code by Theorem 4.4. All such prealgebraic sets can be transformed into each
other using GLnα(Fp) and translations. Hence there is a unique good code for this
situation. ¤

Corollary 7.4. Let M be in Kµ and M ≤ M ′ a minimal extension. If M ′ has
linear dimension 1 over M , then M ′ is in Kµ.

Otherwise, in the prealgebraic case, M ′ is in Kµ if and only if none of the
following two conditions holds:

a) There is a code α ∈ C and a difference sequence ~e0, . . . , ~eµ(α) for α in M ′

such that:
(i) ~e0, . . . , ~eµ(α)−1 are contained in M .
(ii) M ′ = 〈M,~eµ(α)〉.
(iii) In this case α is the unique good code that describes M ′ over M .

b) There exists a code α ∈ C and a difference sequence for α in M ′ of length
µ(α)+ 1 with canonical parameter ~b with µ∗(α) many elements which form
a Morley sequence of ϕα(~x,~b) over M .

Proof. Consider first the case where dim(M ′/M) = 1. If R(M ′) = R(M), then
M ′ does not contain new difference sequences, so M ′ is in Kµ. Now assume that
dim(R(M ′)/M) = 1, and that M ′ is not in Kµ witnessed by some difference se-
quence ~e0, . . . , ~eµ(α). If the canonical parameter ~b lies in dcl(M), since no ~ei can be
linearly independent over M , all ei would be in M , which is not possible. Therefore,

7The Lemma implies c ∈ dcl(M).
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since µ(α) ≥ λ(1, α)8 and M ≤ M ′, some ~ej is an M–generic realization of ϕα(~x,~b),
impossible.

Finally, let M ′/M be prealgebraic. Clearly, if a) or b) hold, then M ′ is not in
Kµ. Assume, for the converse, that M ′ is not in Kµ, witnessed by some good code α

and a difference sequence {~ei}0≤i≤µ(α) with canonical parameter ~b. First, suppose
that the canonical parameter of some derived difference sequence lies in acl(M).
Then Lemma 7.3 yields case a) as desired.

Otherwise, since µ(α) ≥ λ(µ∗(α), α), {~ei}0≤i≤µ(α) contains a Morley sequence
of ϕα(~x,~b) over M of length µ∗(α). Therefore, b) holds. ¤

Corollary 7.5. For each good code α there is an ∀∃–sentence χα such that a
structure M in Kµ satisfies χα iff M has no prealgebraic minimal extension in Kµ,
which is given by α.

Proof. Let M ′ = 〈M,~a〉, where ~a is a red M–generic realization of ϕα(~x,~b), for some
~b ∈ M . If M ′ is not in Kµ, we are in the cases a) or b) of Corollary 7.4. In case
a) M ′ contains a difference sequence of length µ(α) + 1 for α, in case b) difference
sequence of length µ(β) + 1 for a good code β, which contains a subsequence of
length µ∗(β), linearly independent over M , so µ∗(β)nβ ≤ nα. Since µ∗ is finite-to-1,
only a finite set Cα of codes β can occur.

Set C ′α = Cα∪{α}. Then M has no prealgebraic minimal extension in Kµ, given
by α iff

∀~b ∈ M, ∀ red M–generic realizations ~a of ϕα(~x,~b)
∨

β∈C′α

〈M,~a〉 |= ¬ θβ .

Since the L–type of ~a over M is uniformly definable over ~b, this can easily expressed
by an ∀∃–sentence. ¤

8. The Fräıssé model

We show now that the class Kµ has the Amalgamation Property, and hence, we
can obtain rich fields as introduced by Poizat in [10].

The following lemma replaces an easy argument in the case of black points by a
more sophisticated one for our purposes.

Lemma 8.1. Let A, B,M be structures in K where B is a strong substructure of M
and of A. Let M ′ be a free amalgam of M and A over B. Assume that ~e0, . . . , ~eµ(α)

is a difference sequence for a good code α in M ′.
Then there is a derived difference sequence of the above sequence with the canon-

ical parameter in acl(M) or in acl(A).

Proof. We assume that the assertion of the lemma is not true. Let~b be the canonical
parameter of the sequence. If we apply Lemma 6.5, then, since µ∗(α) ≥ λ(mα +
1, α) + 1 we get a subsequence with more than λ(mα + 1, α) elements that form
a Morley sequence of ϕα(~x,~b) over M . From this again we get a subsequence of
length mα + 1 that is a Morley sequence over M and also over A. Write these

8We silently assume that λ is monotonous in the first argument.
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elements as ~ei for 0 ≤ i ≤ mα. If E = {~e0, . . . , ~emα−1}, we have that ~b ∈ dcl(E)
and

~emα
|̂
~b

M, E, ~emα
|̂
~b

A,E.

Write every element of E as the sum of a tuple in M and a tuple in A. Define EM

to be the set of all elements of M which occur, EA similarly and set E′ = EM ∪EA.
Then also ~b ∈ dcl(E′) and, since E′ and E are interdefinable over M and over A,
we have

~emα
|̂
~b

M, E′, ~emα
|̂
~b

A,E′.

Whence
~emα

|̂
BE′

M, ~emα
|̂

BE′
A.

Furthermore
M |̂

BE′
A.

Write ~emα
= ~m + ~a for ~m ∈ M and ~a ∈ A. Then {~emα

, ~m,~a} is a pairwise
independent triple over B,E′. Whence ϕα(~x,~b) is a group formula for a definable
group G and ~b is the canonical parameter of G. Now, ~a is a generic element of
an acl(B, E′)–definable coset of G and ~b is definable from the canonical base of
p = tp(~a/ acl(B,E′)). Note that

~a |̂
BEA

E′

so the canonical base of p is in acl(A), and we have b ∈ acl(A). This contradicts
our assumption. ¤

A self-sufficient embedding of B in A is an isomorphism of B onto a self-sufficient
subset of A.

Theorem 8.2. The class Kµ has the amalgamation property with respect to self-
sufficient embeddings.

Proof. Let B ≤ M and B ≤ A be structures in Kµ. We need to show that there is
an extension M ′ of M in Kµ, with M ≤ M ′ and some B ≤ A′ ≤ M ′ such that A
and A′ are isomorphic over B. We may assume that both extensions B ≤ A and
B ≤ M are minimal, by splitting them into minimal ones.

Case 1. dim(M/B) = 1 or dim(A/B) = 1. By Lemma 6.3 M and A can be strongly
embedded in an amalgam M ′. Since dim(M ′/A) ≤ 1 or dim(M ′/M) ≤ 1, Corollary
7.4 implies that M ′ ∈ Kµ.

Case 2. Both extensions M/B and A/B are prealgebraic. Let M ′ be a free amalgam
of M and A over B, which exists by Lemma 6.3. We are done if M ′ belongs to Kµ.
So assume that M ′ does not belong to Kµ. We need then show that M and A are
isomorphic over B.

There is a good code α with a difference sequence ~e0, . . . , ~eµ(α) in M ′. By Lemma
8.1 and symmetry we may assume that its canonical parameter ~b lies in acl(M). By
Lemma 7.3 we may assume that ~e0, . . . , ~eµ(α)−1 are in M and ~eµ(α) is an M–generic
realization of ϕα(~x,~b) which generates M ′ over M .
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Subcase 2.a We first assume that the canonical parameter for some (µ(α) − 1)-
derived difference sequence, is in dcl(B). Since this difference sequence has the
same properties, we denote it again by {~ei}0≤i≤µ(α). By Lemma 5.3 there are two
cases:

Subcase 2.a.1 ~eµ(α) is in A. By minimality of A over B, we have that A = 〈B,~eµ(α)〉.
Since A is in Kµ, there exists an ~ei which lies in M but not in B. It follows from
B ≤ M and Lemma 5.3 that ~ei is B-generic, and isomorphic to A over B. This
shows that M and A are isomorphic over B.

Subcase 2.a.2 ~eµ(α) is an A-generic realization of ϕα(~x,~b). Write ~eµ(α) = ~m + ~a,
and note that 0 = δ(~eµ(α)/M) = δ(~a/M) = δ(~a/B), so ~a generates A over B (again
by minimality of B ≤ A). Moreover, {~eµ(α), ~m,~a} is a B-independent triple. By
Note 2.2, −~m and ~a have the same type over B and hence we obtain the desired
isomorphism.

Subcase 2.b No (µ(α) − 1)-derived difference sequence has canonical basis ~c in
dcl(B). Write ~eµ(α) = ~m + ~a (as above, ~a generates A over B). Note that only
nα many elements of a Morley sequence may fork with a fixed tuple of length nα,
so Lemma 6.5 (applied to B ≤ M ′) gives us an ~ei ∈ M which is an B, ~m–generic
realization of ϕα(~x,~c) since µ∗(α) ≥ nα + 1. In this case, ~ei − ~m is B-isomorphic
to ~a. ¤

We call M in Kµ rich if for any B ≤ M finite and any finite extension B ≤ A
of members of Kµ, there is a self-sufficient substructure A′ ≤ M with B ≤ A′ and
B-isomorphic to A.

Corollary 8.3. There is a unique (up to isomorphism) countable rich structure M
in Kµ. All rich structures are L∗∞,ω-equivalent.

9. Axiomatization

In this section we will show that rich fields in Kµ are exactly the ω-saturated
models of a specific theory Tµ. We work in the extended language L∗.

Let Tµ denote following axiom schemes:
Universal Axioms:

(1) Any model is a member of Kµ.
∀∃ Axioms:

(2) Any model is an algebraically closed field of characteristic p.
(3) Given a good code α and ~b in the model, the extension of M generated

by a M -generic red realization of ϕα(~x,~b) does not belong to Kµ.
Corollary 7.5 shows that axiom (3) is elementary. The following result gives us

an equivalent description of a rich model, and moreover, yields an explicit axioma-
tization of its theory.

Theorem 9.1. An L∗-structure is rich if and only if it is an ω-saturated model of
Tµ.

Proof. The argument of the proof is similar to the one in [3] based on ideas from
[10]. We first show that ω-saturated models of T are rich, and also that a rich
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model satisfies all axioms. Hence, by the above and ∞-equivalence of rich models,
we obtain the other implication.

Let M |= Tµ be ω-saturated. Let B ≤ M and B ≤ A be finite L∗-structures
in Kµ. We may assume that B ≤ A is minimal. We can distinguish four different
cases, as given by Lemma 5.1:

A/B is algebraic: We are done by Axiom (2).

A/B is prealgebraic: Consider the free amalgam M ′ of M and A over B. In this
case A is given over B by a red generic realization of a good code. Axiom (3) yields
that M ′ does not belong to Kµ. By Theorem 8.2 A has a strong embedding over
B into M .

A is generated over B by a red element that is transcendental over B: We will
approximate this extension by prealgebraic minimal extensions An = 〈B, x1, x2〉,
where the xi are red, transcendental over B and xn

1 = x2. The sequence An/B
converges (in the space of colored L-types) to the extension A∞/B, where A∞ =
〈B, a1, a2〉, with a1, a2 red and algebraically independent over B. This extension
decomposes into B ≤ 〈B, a1〉 ≤ A∞, which implies by Corollary 7.4 that A∞ be-
longs to Kµ. So, since µ is finite to one, An belongs to Kµ for large n. As shown
above, we can find self-sufficient B-copies of An in M for large n. By saturation of
M , A∞ is also self-sufficiently embeddable over B. Since A is isomorphic to 〈B, a1〉,
we conclude that there is a self-sufficient B-copy of A in M .

A is generated over B by a white element that is transcendental over B and
R(A) = R(B): Consider for each n the extension B ≤ 〈B, z1〉 ≤ 〈B, z1, z2〉 = Cn,
where z1 is red, zn

1 = z2 is white and R(Cn) = 〈R(B), z1〉. By the above each
Cn can be strongly embedded in M . Therefore also the limit C∞ = 〈B, c1, c2〉 can
be strongly embedded in M . Since 〈C, c2〉 ≤ C∞ is B–isomorphic to A, we are done.

Suppose now that M is a rich field. We first show that M is algebraically closed.
Let a ∈ acl(M). Choose a finite set B in M such that a is in acl(B). Taking the
self-sufficient closure of B in M , we can assume that B ≤ M . Paint 〈B, a〉 \ B in
white. It is clear that 〈B, a〉 is in Kµ (since B is) and B ≤ 〈B, a〉. By richness, we
find a copy of a in M over B. This yields (2).

For Axiom (3), let α and ~b be as in the statement such that 〈M,~a〉 is in Kµ, where
~a is some generic red realization of ϕα(~x,~b) over M . We show a contradiction.
Choose some set B ≤ M containing ~b. Again, B ≤ 〈B,~a〉, and by richness, we get a
B-copy of ~a in M , say ~a′. Take now some finite C ≤ M containing B∪~a′. We have
that C ≤ 〈C,~a〉. We can iterate and obtain a Morley sequence in M for ϕα(~x,~b) of
length µ(α) + 2. This yields a difference sequence for α of length µ(α) + 1 in M by
property (a) of Ψα. ¤

Corollary 9.2. Tµ is complete. Two tuples ~a and ~a′ in two models M and M ′

have the same type iff there is an isomorphism f : cl(~a) → cl(~a′) which maps ~a to
~a′.
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Proof. Corollary 8.3 and Theorem 9.1 provides us a rich model M∗ of Tµ. Let M
be any model of T . By theorem 9.1 there is a rich M ′ ≡ M . So M ′ ≡∞,ω M∗,
which proves completeness.

To prove the second statement choose ω–saturated elementary extensions M ≺
N and M ′ ≺ N ′ . By Corollary 9.3 (we use only the part which does not rely on
9.2.) is M ≤ N and M ′ ≤ N ′, so “cl” does not change.

An isomorphism f : cl(~a) → cl(~a′) is now part of a back-and-forth-system of partial
isomorphisms. Whence f is a elementary map.

For the converse suppose that ~a and ~a′ have the same type. There is an elementary
map f : cl(~a) → M ′ which maps ~a onto ~a′. We write A′ for f(cl(~a)). Since A′

has the same type as cl(~a), A′ is self-sufficient in M , and we can conclude that
A′ = cl(~a′).

¤

Corollary 9.3. Let M ⊂ N be an extension of two models of T . Then M ≺ N iff
M ≤ N .

Proof. If M 6≤ N , there is an a ∈ N with δ(a/M) < 0. We find a finite B ≤ M

with δ(a/B) < 0. This is witnessed by the truth of an L1 ∪ L2–formula ϕ(a,~b).
ϕ(x,~b) is not satisfiable in M , whence M 6≺ N .

The converse M ≤ N ⇒ M ≺ N follows directly from 9.2, since M ≤ N
ensures that cl(a) is the same in M and N . ¤

10. Rank computations

In this section we show that Tµ has Morley rank 2. First we describe algebraic
closure acl∗ in models M of Tµ.

Definition 10.1. Let M |= Tµ, B a subset of M . Then cld(B) is the union of all
finite A ⊂ M with δ(A/ cl(B)) = 0.

It is easy to see that

cld(B) = {a ∈ M | d(a/B) = 0},
where we use the notation

d(A/B) = δ(cl〈A,B〉/ cl(B)).

Lemma 10.2. Both closures acl∗ and cld agree on models M of Tµ.

Proof. We may assume that M is ω-saturated by Lemma 9.3. If B is finite, then
so is cl(B), hence contained in acl∗(B). So we may assume that B is finite and
self-sufficient in M .

First we show cld is part of acl∗. We consider δ(A/ cl(B)) = 0. We decompose
the extension A/B into a sequence of minimal extensions and use induction on the
length of the sequence. Hence we have to consider A/B minimal δ(A/B) = 0 with
B ≤ M . By Lemma 5.1 two cases may arise:

Case 1) A is algebraic over B in the field sense. But then A ⊆ acl∗(B).
Case 2) A is a prealgebraic extension of B.



18 A. BAUDISCH, A. MARTIN-PIZARRO, AND M. ZIEGLER

By Theorem 4.4 there are a good code α and parameters ~b in acl(B) such that
A = 〈B,~a〉 where ~a is a generic red solution of ϕα(~x,~b). We show that ϕα(~x,~b)
has only finitely many red solutions, which implies ~a ∈ acl∗(B) and therefore A ⊂
acl∗(B). Assume that there are infinitely many solutions. Then there is a solution
~e0 which is not contained in B. By Lemma 5.3 ~e0 is a B-generic realization of
ϕα(~x,~b). We have δ(~e0/B) = 0, and therefore B′ = 〈B, ~e0〉 ≤ M . Since B′ is
again finite, we can find a B′–generic solution ~e1, etc. So we find an infinite Morley
sequence (~ei) for ϕα(~x,~b) in M . As above, this contradicts Axiom (1).

Now consider an element a outside of cld(B). If A = cl(B, a), we have δ(A/B) >
0. Decompose A/B into minimal extensions:

B = A0 ≤ A1 ≤ · · · ≤ An = A

There is some i < n with δ(Ai+1/Ai) > 0, which implies that dim(Ai+1/Ai) = 1
by 5.1. We saw in 7.4 that free amalgams with transcendental strong extensions of
dimension 1 cannot leave Kµ. So, since M is rich, there are infinitely many A′ ≤ M
which are over Ai isomorphic to Ai+1. By 9.2 they have all the same type over Ai.
Hence Ai+1 is not ∗–algebraic over Ai. Since Ai+1 is algebraic over Ba, it follows
that a 6∈ acl∗(B). ¤

Theorem 10.3. Tµ has Morley rank 2. In particular, the generic type has rank 2
and the generic red type has rank 1. The algebraic closure in models of Tµ is cld.

Proof. We consider an ω-saturated model M of Tµ inside a monster model. We
compute MR∗(a/M) for elements a in the monster model.

We have

0 ≤ d(a/M) ≤ δ(a/M) ≤ 2.

So there are three cases:

d(a/M) = 0: Then a is algebraic over M , i.e. a ∈ M and we have MR∗(a/M) = 0.

d(a/M) = 1: If a is red, it follows that 〈M, a〉 is self–sufficient. So tp∗(a/M) is
uniquely determined. Since all other red types over M are algebraic, we conclude
that MR∗(a/M) = 1 and the red subgroup is strongly minimal. If a is not red,
then cl(M, a) contains a red element c outside M . If follows 〈M, c〉 ≤ cl(M, a)
and d(a/M, c) = 0. This implies that a and c are L∗–interalgebraic over M and
MR∗(a/M) = MR∗(c/M) = 1.

d(a/M) = 2: Then 〈M,a〉 is self–sufficient. So tp∗(a/M) is uniquely determined,
since the isomorphism type of of 〈M, a〉 is determined by R(〈M, a〉) = R(M). Since
all other types over M have Morley rank ≤ 1, we have MR∗(a/M) ≤ 2. But R(M)
is an infinite subgroup of M of infinite index. Hence Tµ has Morley rank 2 and
MR∗(a/M) = 2. ¤

Remark 10.4. We note the following without proof.

(1) As any complete theory of fields of finite Morley rank Tµ is ω1–categorical.
(2) Lindström’s theorem implies that Tµ is model complete. This can be di-

rectly proved as in [4].
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(3) For every natural number r ≥ 2 there is a theory of a field of Morley rank
r with an additive red subgroup of Morley rank r − 1. This can be proved
as in [3] using

δ(A) = r · trdeg(A)− dim(A).

(4) In models (K,R) of Tµ, we have

Fp = {x ∈ K |x ·R ⊂ R}.
If we consider Fpn–vector spaces R and use Fpn–linear dimension, we can
produce a field (K, R) of Morley rank 2, where

Fpn = {x ∈ K |x ·R ⊂ R}.
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