Canonical-p-bases^{*}

Martin Ziegler

14.3.2003

The purpose of this note is to give a proof of a remark¹ in [1]:

Theorem 1. Every ω -saturated strict \mathcal{D} -field has a canonical p-basis.

I will use the definitions and notation of [1]. As there, all fields have characteristic p. We start the proof with a couple of Lemmas.

In our application the following lemma, except of its last sentence, can be replaced by Lemma 3.

Lemma 2. Let K be a field, d_1, \ldots, d_e be a sequence of commuting derivations of K, and $C = C_1 \cap \cdots \cap C_e$, where C_i is the field of constants of d_i . Assume that

a) $d_i^p = 0$ for i = 1, ..., e

b) $(K:C) = p^{e}$

Then there are elements b_1, \ldots, b_e such that $d_i(b_j) = \delta_{i,j}$. Each such sequence generates K over C.

Proof. The proof of [1, Lemma 2.1] shows that, for every i, C is a proper subfield of $F_i = \bigcap_{j \neq i} C_j$, which is closed under d_i . Choose $b_i \in F_i$ with $d_i(b_i) = 1$. Consider the sequence

$$K = B_0 \supset B_1 \supset \cdots \supset B_e = C,$$

where $B_i = C_1 \cap \cdots \cap C_i$. b_i generates B_{i-1} over B_i , so $C(b_1, \ldots, b_e) = K$. \Box

Note that $K^p \subset C$. If $C = K^p$, the b_i form a *p*-basis of *K*.

Lemma 3. Let K and d_1, \ldots, d_e as in Lemma 2. For any sequence x_1, \ldots, x_e of elements of K the following are equivalent:

1. There is a $y \in K$ such that $d_i(y) = x_i$ for $i = 1, \ldots, e$.

^{*}Revision: 1.3

¹After Lemma 4.1

Proof. That 1 implies 2 is clear. We prove the converse by induction on e.

Case e = 1:

 $d = d_1$ is a *C*-linear map, its kernel has dimension 1. This implies that the dimension of d(K) is p-1 and the dimension of ker d^{p-1} at most p-1. Since $d(K) \subset \ker d^{p-1}$, we have $d(K) = \ker d^{p-1}$.

Case e > 1:

Since $(K : C_e) = p$, we can apply the first case to obtain an element $z \in K$ with $d_e(z) = x_e$. Set $x'_i = x_i - d_i(z)$. The x'_i again satisfy our assumption. They belong to C_e , since $d_e(x'_i) = d_i(x'_e) = d_i(0) = 0$. We apply the induction hypothesis to C_e , with derivations d_1, \ldots, d_{e-1} , and x'_1, \ldots, x'_{e-1} . This gives us a $y' \in C_e$ such that $d_i(y') = x'_i$ for $i = 1, \ldots, e-1$. Finally we set y = y' + z. \Box

Lemma 4. Let K be a strict \mathcal{D} -field and n > 0. Assume that we have an element a such that for all m < n

$$\mathbf{D}_{i,p^n} \mathbf{D}_{j,p^m}(a) = 0 \tag{1}$$

for all i, j. Then there is an a' in K such that for all $j \mathbf{D}_{j,p^n}(a') = 0$ and

$$\mathbf{D}_{j,p^m}(a') = \mathbf{D}_{j,p^m}(a)$$

for all m < n.

Proof. Set $x_i = \mathbf{D}_{i,p^n}(a)$. If we can find a y in

$$F = \{z \in K \mid D_{j,p^m}(z) = 0, \text{ for all } j \text{ and all } m < n\} = K^{p^n}$$

such that $\mathbf{D}_{i,p^n}(y) = x_i$ for all i, a' = a - y will do the job. We observe first, that the x_i belong to F, because for all j and m < n

$$\mathbf{D}_{j,p^m} x_i = \mathbf{D}_{j,p^m} \mathbf{D}_{i,p^n}(a) = \mathbf{D}_{i,p^m} \mathbf{D}_{j,p^m}(a) = 0.$$

The field F together with the derivations \mathbf{D}_{i,p^n} satisfies the conditions of Lemma 3. So it remains only to check the conditions on the x_i :

$$\mathbf{D}_{i,p^{n}}^{p-1}(x_{i}) = \mathbf{D}_{i,p^{n}}^{p}(a) = 0$$

$$\mathbf{D}_{i,p^{n}}(x_{j}) = \mathbf{D}_{i,p^{n}}\mathbf{D}_{j,p^{n}}(a) = \mathbf{D}_{j,p^{n}}\mathbf{D}_{i,p^{n}}(a) = \mathbf{D}_{j,p^{n}}(x_{i})$$

Proof of Theorem 1: Let K be a strict \mathcal{D} -field and n a natural number. Choose a p-basis b_1, \ldots, b_e by Lemma 2 such that $\mathbf{D}_{i,1}(b_j) = \delta_{i,j}$. Now for every *i*, if we start with $a = b_i$ and apply Lemma 4 *n*-times, we get an element b'_i such that for all $0 < m \le n \mathbf{D}_{j,p^m}(b'_i) = 0$ and $\mathbf{D}_{j,1}(b'_i) = \mathbf{D}_{j,1}(b_i)$ for all j. (Note that (1) holds trivially, since all $\mathbf{D}_{j,p^m}(a)$ are 0 or 1.)

The b_i' form a canonical p -basis "of depth p^{n+1} ", i.e. we have for all $0 < m < p^{n+1}$

$$\mathbf{D}_{i,m}(b'_j) = \begin{cases} 1 & \text{if } m = 1 \text{ and } i = j \\ 0 & \text{otherwise} \end{cases}.$$

References

 Martin Ziegler. Separably closed fields with Hasse derivations. J. Symbolic Logic, 68:311–318, December 2003.