UNIVERSAL THEORIES REVISITED

ENRIQUE CASANOVAS AND MARTIN ZIEGLER

This short note presents a quick proof of the main result in [1], the existence of universal theories in many cardinals.

We consider (consistent) theories in the logic $L(Q_{\omega}^{cf})$, the extension of first-order logic with the quantifier Q_{ω}^{cf} of cofinality ω . It is a compact logic (cf. [2]). In fact $L(Q_{\omega}^{cf})$ is just the main example, but everything holds in any compact logic with finitary syntactical properties like those of first-order logic.

Definition. A theory T is a consistent set of $L(Q_{\omega}^{\text{cf}})$ -sentences, with similarity type (or language) $\tau(T)$. The cardinality |T| of T is the cardinality of $\tau(T)$ if $\tau(T)$ is infinite and ω otherwise.

Definition. A theory T is existentially closed (an ec-theory, in short) if whenever a sentence $\sigma(\bar{R}, \bar{S})$ is consistent with T and \bar{R} is a tuple of symbols of $\tau(T)$, and \bar{R}, \bar{S} are all the non-logical symbols of σ , then T contains a sentence $\sigma(\bar{R}, \bar{S}')$ for some tuple \bar{S}' .

Clearly, we may assume that the symbols \overline{S} do not occur in τ .

Remark 1 (Lemma 2.3 in [1]). Every existentially closed theory T is an amalgamation basis. This means that whenever T_1 and T_2 are extensions of T with $\tau(T) = \tau(T_1) \cap \tau(T_2)$, then $T_1 \cup T_2$ is consistent.

Note that an amalgamation basis is automatically complete.

Proof. Consider two finite conjunctions $\sigma_i(\bar{R}, \bar{S}_i)$ of sentences in T_i , with \bar{R} in $\tau(T)$ an \bar{S}_i in $\tau(T_i) \setminus \tau(T)$, for i = 1, 2. Then T contains for i = 1, 2 a sentence $\sigma_i(\bar{R}, \bar{S}'_i)$. This shows that $\sigma_1(\bar{R}, \bar{S}_1) \wedge \sigma_2(\bar{R}, \bar{S}_2)$ is consistent.

Lemma 2. Any theory T can be extended to an existentially closed theory T' with the same cardinality. If $T'' \supseteq T$ is ec, we may find such T' as a subset of T''.

Proof. Let κ be the cardinality of T. We start with $T_0 = T$. Using the compactness of $L(Q_{\omega}^{\text{cf}})$ it is easy to construct an extension T_1 , of cardinality κ , such that for every sentence $\sigma(\bar{R}, \bar{S})$, with \bar{R} in $\tau(T_0)$ and \bar{S} disjoint from $\tau(T_1)$ and which is consistent with T_1 , there is

Date: v1.0-8-g3100e72, Thu Sep 19 16:25:00 2019 +0200.

some $\sigma(\overline{R}, \overline{S'})$ in T_1 . If we continue in this way, we obtain a sequence $T_0 \subseteq T_1 \subseteq T_2 \cdots$ whose union T' is ec and of cardinality κ .

If T is already contained in an ec theory T'', we can find a extension T' between T and T'' of cardinality κ such that for all $\sigma(\bar{R}, \bar{S})$, with \bar{R} in $\tau(T')$, and \bar{S} disjoint from $\tau(T'')$ the following holds

- (1) if $\sigma(\bar{R}, \bar{S})$ is consistent with T'', then some $\sigma(\bar{R}, \bar{S}')$ is in T',
- (2) if $\sigma(\bar{R}, \bar{S})$ is not consistent with T'', then $\sigma(\bar{R}, \bar{S})$ is not consistent with T'.

Obviously, T' is ec.

Definition. Let T be a theory, let κ be a cardinal number. We say that T is κ -existentially closed (a κ -ec-theory) if whenever $\Sigma(\bar{R}, \bar{S})$ is a set of sentences consistent with T and \bar{R} is a tuple (perhaps infinite) of symbols of $\tau(T)$ with $|\Sigma| \leq \kappa$ and \bar{R}, \bar{S} are all the non-logical symbols of Σ) then there is a tuple $\bar{S}' \in \tau(T)$ such that $\Sigma(\bar{R}, \bar{S}') \subseteq T$. Note that $< \omega$ -existentially closed means existentially closed.

This can be rephrased as follows. Let T_0 be contained in T and T'an extension of T_0 . Assume $T' \cup T$ is consistent, and $|T'| \leq \kappa$. Then there is an *embedding* $T' \to T$ over T_0 , that is, a mapping induced by a one-to-one mapping $\tau(T') \to \tau(T)$ preserving arities of symbols and fixing each symbol in $\tau(T_0)$.

Lemma 3. If $|T| = 2^{\lambda}$, there is some λ -ec-theory $T' \supseteq T$ such that $|T'| = 2^{\lambda}$.

Proof. Starting with $T_0 = T$ we construct a continuous ascending chain $(T_i \mid i < \lambda^+)$ of ec-theories T_i of cardinality 2^{λ} with the property that whenever $\Sigma(\bar{R}, \bar{S})$ is as in the definition above, with $|\Sigma| \leq \lambda$, \bar{R} in $\tau(T_i)$ and \bar{S} disjoint with $\tau(T_i)$, then for some $\bar{S}', \Sigma(\bar{R}, \bar{S}') \subseteq T_{i+1}$. The number of sets Σ that we need to consider is 2^{λ} and we can assume that the common language of each two such sets is $\tau(T_i)$. Let $(\Sigma_j \mid j < 2^{\lambda})$ enumerate these sets. Since T_i is an amalgamation basis, $T_i \cup \bigcup_{j < 2^{\lambda}} \Sigma_j$ is consistent and can be extended to some ec-theory T_{i+1} of cardinality $\leq 2^{\lambda}$. Then $T' = \bigcup_{i < \lambda^+} T_i$ has the required properties.

Proposition 4. Let κ be uncountable and T be the union of an ascending sequence $(T_{\lambda} \mid \lambda < \kappa)$, where λ ranges over infinite cardinal numbers, and each T_{λ} is λ -ec. Let T^* be an amalgamation basis, contained in T_{ω} and of smaller cardinality than κ . Then every extension T' of T^* , of cardinality at most κ , is embeddable in T over T^* .

Proof. By Lemma 2, we can assume that T' is ec and that $T' = \bigcup_{i < \kappa} T'_i$, where $T^* \subseteq T'_0$, each T'_i is ec, $|T'_i| < \kappa$ and $(T'_i \mid i < \kappa)$ is a continuous ascending chain. We inductively construct a continuous ascending

chain $(f_i \mid i < \kappa)$ of embeddings $f_i : T'_i \to T$ over T^* such that $\operatorname{rng}(f_i) \subseteq T_{|T'_i|}$. Let $\mu_i = |T'_i|$. Since T_{μ_0} is μ_0 -ec, it is easy to get $f_0 : T'_0 \to T_{\mu_0}$. In the limit case we take the union.

Consider now the case T_{i+1} . We have a surjective embedding f_i : $T'_i \to T^0 \subseteq T_{\mu_i}$ over T^* . Extend f_i to a bijective map f^1 between T'_{i+1} and an extension T^1 of T^0 . We may assume that $\tau(T^1)$ and $\tau(T)$ intersect in $\tau(T^0)$. Since T^0 is an amalgamation basis, $T^1 \cup T_{\mu_{i+1}}$ is consistent. So there is an embedding $g: T^1 \to T_{\mu_{i+1}}$ over T^0 . The composition $f_{i+1} = g \circ f_i$ is our extension of f_i . Clearly, $f = \bigcup_{i < \kappa} f_i$ is an embedding of T' on T over T^* .

Definition. A theory T is universal over the subtheory T^* if every $T' \supseteq T^*$ of cardinality $\leq |\tau(T)|$ is embeddable in T over T^* .

Corollary 5 ([1] Theorem 2.7). Assume $\kappa = 2^{<\kappa}$. Any amalgamation basis T^* of cardinality $< \kappa$ can be extended to a theory T of cardinality κ which is universal over T^* .

Proof. By Lemma 3 and the choice of κ , we may obtain an ascending chain $(T_{\lambda} \mid \lambda < \kappa)$ (λ ranging over infinite cardinal numbers) such that $T^* \subseteq T_{\omega}$ and each T_{λ} is a λ -ec theory of cardinality $2^{\lambda} \leq \kappa$. Then, by Proposition 4, $T = \bigcup_{\lambda < \kappa} T_{\lambda}$ is universal.

Let M be structure of cardinality κ with language $\tau(M) \leq \kappa$. We say that is *compactly expandable* if for every theory T with $\tau(M) \subset \tau(T)$ and $|T| \leq \kappa$ can be realised in an expansion of M, whenever every finite subset of T can be realised in an expansion of M. Note that then any restriction of M to a sublanguage of $\tau(M)$ is also compactly expandable.

We have now:

Remark 6 ([1]). Let T be universal over T^* , and $|T| = \kappa$, and M a model of T of cardinality κ . Then the restriction of M to $\tau(T^*)$ is compactly expandable.

References

- E. Casanovas and S. Shelah. Universal theories and compactly expandable models. *The Journal of Symbolic Logic*, 84:1215–1223, 2019.
- [2] E. Casanovas and M. Ziegler. An exposition of the compactness of L(Q^{cf}), https://arxiv.org/abs/1903.00579, submitted, 2019.