
EQUATIONAL THEORIES OF FIELDS

AMADOR MARTIN-PIZARRO AND MARTIN ZIEGLER

Abstract. A �rst-order theory is equational if every de�nable set is a Boolean
combination of instances of equations, that is, of formulae such that the family
of �nite intersections of instances has the descending chain condition. Equa-
tionality is a strengthening of stability. We show the equationality of the
theory of proper extensions of algebraically closed �elds and of the theory of
separably closed �elds of arbitrary imperfection degree.

1. Introduction

Consider a �rst order theory T . A formula ϕ(x; y) is an equation (for a given
partition of the free variables into x and y) if, in every model of T , the family of
�nite intersections of instances ϕ(x, a) has the descending chain condition. The
theory T is equational if every formula ψ(x; y) is equivalent modulo T to a Boolean
combination of equations ϕ(x; y).

Quanti�er elimination implies that the theory of algebraically closed �elds is
equational. Separably closed �elds of positive characteristic have quanti�er elimi-
nation after adding λ-functions to the ring language [2]. The imperfection degree of
a separably closed �eld K of positive characteristic p encodes the linear dimension
of K over Kp. If the imperfection degree is �nite, restricting the λ-functions to a
�xed p-basis yields again equationality. A similar manipulation yields elimination
of imaginaries for separably closed �eld K of positive characteristic and �nite im-
perfection degree, in terms of the �eld of de�nition of the corresponding de�ning
ideals. However, there is not an explicit description of imaginaries for separably
closed �elds K of in�nite imperfection degree, that is, when K has in�nite linear
dimension over the de�nable sub�eld Kp.

Another important (expansion of a) theory of �elds having in�nite linear dimen-
sion over a de�nable sub�eld is the theory of an algebraically closed �eld with a
predicate for a distinguished algebraically closed proper sub�eld. Any two such
pairs are elementarily equivalent if and only if they have the same characteristic.
They are exactly the models of the theory of Poizat's belles paires [15] of alge-
braically closed �elds.

It can be far from obvious to determine whether a particular theory is equational.
So far, the only known natural example of a stable non-equational theory is the
free non-abelian �nitely generated group [16, 12]. In this paper, we will prove the
equationality of two theories of �elds: the theory of belles paires of algebraically
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closed �elds, as well as the theory of separably closed �elds of arbitrary imperfection
degree. In [5] an alternative proof for belles paires of characteristic 0 was obtained,
by showing that de�nable sets are Boolean combination of certain de�nable sets,
which are Kolchin-closed in the corresponding expansion DCF0. We generalise this
approach to arbitrary characteristic in Section 8.

We thank the anonymous referee of a previous version for the suggestions which
have improved the presentation of this article.

2. Equations and indiscernible sequences

Most of the results in this section come from [14, 6, 7]. We refer the avid reader
to [10] for a gentle introduction to equationality.

Consider a �rst order theory T . A formula ϕ(x; y), with respect to a given
partition of the free variables into x and y, is an equation if, in every model of
T , the family of �nite intersections of instances ϕ(x, b) has the descending chain
condition. If ϕ(x; y) is an equation, then so are ϕ−1(y;x) = ϕ(x, y) and ϕ(f(x); y),
whenever f is a ∅-de�nable map. Finite conjunctions and disjunctions of equations
are again equations.

The theory T is equational if every formula ψ(x; y) is equivalent modulo T to a
Boolean combination of equations ϕ(x; y).

Typical examples of equational theories are the theory of an equivalence relation
with in�nite many in�nite classes or the theory of R-modules.

{E:hilbert}
Example 2.1. In any �eld K, for every polynomial p(X,Y ) with integer coe�-
cients, the equation p(x; y) = 0 is an equation in the model-theoretic sense.

Proof. This follows immediately from Hilbert's Basis Theorem, which implies that
the Zariski topology on Kn is noetherian, i.e. the system of all algebraic sets{

a ∈ Kn
∣∣∣ m∧
i=1

qi(a) = 0
}
,

where qi ∈ K[X1, . . . , Xn], has the descending chain condition. However, there is
a simpler proof, without using Hilbert's Basis Theorem: Observe �rst that if p is
linear in the tuple x, then p(x; y) = 0 is an equation, since its instances de�ne
subspaces of Kn. Now,

p(x, y) = q(M1(x), . . . ,Mm(x), y),

for some monomials M1, . . . ,Mm in x and a polynomial q(u1, . . . , um; y) linear in
the ui's. �

Quanti�er elimination for the theory ACF of algebraically closed �elds and the above
example yield that ACF is equational.

{E:raudenbush}
Example 2.2. In any di�erential �eld (K, δ), given a di�erential polynomial p(X,Y )
with integer coe�cients, the di�erential equation p(x; y) = 0 is an equation in the
model-theoretic sense.

Proof. Note that p(x; y) can be written as q(M1, . . . ,Mm; y), for some di�erential
monomials M1, . . . ,Mm in x and a polynomial q(u1, . . . , um; y), which is linear in
the ui. �
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Equationality is preserved under unnaming parameters and bi-interpretability
[6]. It is unknown whether equationality holds if every formula ϕ(x; y), with x a
single variable, is a boolean combination of equations.

It is not hard to see that T is equational if an only if all completions of T are
equational. So for the rest of this section we assume that T is complete and work
in a su�ciently saturated model U.

By compactness, a formula ϕ(x; y) is an equation if there is no sequence (ai, bi)i∈N
such that ϕ(ai, bj) holds for i < j, but 6|= ϕ(ai, bi). We may assume that the se-
quence is indiscernible. Thus, equationality implies stability [14]. In stable theories,
non-forking provides a natural notion of independence. We say that two sets A and
B are independent over a common subset C, denoted by A |̂

C
B, if, for every �nite

tuple a in A, the type tp(a/B) does not fork over C.
{D:heir_def}

De�nition 2.3. A type q over B is an heir of its restriction q �M to the elementary
substructure M if, whenever the formula ϕ(x,m, b) belongs to q, with m in M and
b in B, then there is some m′ in M such that ϕ(x,m,m′) belongs to q �M .

A type q over B is de�nable overM if, for each formula ϕ(x, y), there is a formula
θ(y) with parameters in M such that for every b in B,

ϕ(x, b) ∈ q if and only if |= θ(b).

Observe that if q is de�nable overM , for any formula ϕ(x, y), any two such formulae
θ(y) are equivalent, so call it the ϕ-de�nition of q.

Whenever ϕ is an equation, the ϕ-de�nition of a type q over B is particularly
simple. The intersection ⋂

ϕ(x,b)∈q

ϕ(U, b)

is a de�nable set given by a formula ψ(x) over B contained in q. For the ϕ-de�nition
θ of q, it su�ces to set

θ(y) = ∀x (ψ(x)→ ϕ(x, y)) .

In a stable theory, whenever the type q over B does not fork over the elementary
substructure M , then q is de�nable over M and a heir of its restriction q �M .

By the above characterisation, a formula ϕ(x; y) is an equation if and only if
every instance ϕ(a, y) is an indiscernibly closed de�nable set [7, Theorem 3.16].
A de�nable set X is indiscernibly closed if, whenever (bi)i≤ω is an indiscernible
sequence such that bi lies in X for i < ω, then so does bω.

Extending the indiscernible sequence so that it becomes a Morley sequence over
an initial segment, we conclude the following:

{L:icl_model}
Lemma 2.4. In a complete stable theory T , a set de�ned by the instance ϕ(a, y)
is indiscernibly closed if, for every elementary substructure M and every Morley
sequence (bi)i≤ω over M such that

a |̂
M

bi with |= ϕ(a, bi) for i < ω,

then bω realises ϕ(a, y) as well.
We may take the sequence of length κ+ 1, for every in�nite cardinal κ, and assume
that a |̂

M
{bi}i<κ.
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In [19, Theorem 2.5], Srour stated a di�erent criterion for the equationality of a
formula. We refer to an extended version of this work [11, Section 2] for another
proof of his result.

We will �nish this section with an observation on imaginaries in equational theo-
ries.

{L:eqEI}

Lemma 2.5. Assume that there is a collection F of equations, closed under �nite
conjunctions, such that every formula with parameters is a boolean combination
of instances of formulae in F . If every instance of an equation in F has a real
canonical parameter, then the theory has weak elimination of imaginaries.

Proof. Since the theory is stable, it su�ces to show that every global type q has a
real canonical base. By assumption, it su�ces to show that the ϕ-de�nition of q
(see De�nition 2.3) has a real canonical parameter for every formula ϕ in F . As
ϕ is an equation, the canonical parameter of the ϕ-de�nition of q is interde�nable
with the canonical parameter of the formula

ψ(x) =
⋂

ϕ(x,b)∈q

ϕ(U, b).

By hypothesis, the formula ψ is an instance of a formula in F and thus has a real
canonical parameter. �

3. Basics on fields
{S:fields}

In this section, we will include some basic notions of �eld theory and commutative
algebra needed in order to prove the equationality of the theories of �elds we will
consider later on. We will work inside some su�ciently large algebraically closed
�eld U.

Two sub�elds L1 and L2 are linearly disjoint over a common sub�eld F , denoted
by

L1 |ld^
F

L2,

if, whenever the elements a1, . . . , an of L1 are linearly independent over F , then
they remain so over L2, or, equivalently, if L1 has a linear basis over F which is
linearly independent over L2.

Linear disjointness implies algebraic independence and agrees with the latter
whenever the base �eld F is algebraically closed. Let us note that linear disjointness
is symmetric, and a transitive relation: If F ⊂ D2 ⊂ L2 is a sub�eld, denote by
D2 · L1 the �eld generated by D2 and L1. Then

L1 |ld^
F

L2

if and only if
L1 |ld^

F

D2 and D2 · L1 |ld^
D2

L2.

{D:spec}
De�nition 3.1. Consider a theory T of �elds in the language L extending the
language of rings Lrings = {+,−, · , 0, 1} such that there is a predicate P which is
interpreted in every model of T as a sub�eld. A sub�eld A of a su�ciently saturated
model K of T is P-special if

A |ld^
P(A)

P(K),

where P(A) equals P(K) ∩A.
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It is easy to see that elementary substructures of K are P-special.
{L:coh}

Lemma 3.2. Inside a su�ciently saturated model K of a stable theory T of �elds
in the language L ⊃ Lrings equipped with a de�nable sub�eld P(K), consider a
P-special �eld A and a �eld B, both containing an elementary substructure M of
K such that A |̂

M
B. The �elds P(K) ·A and P(K) ·B are linearly disjoint over

P(K) ·M .

Note that we write L · L′ for the �eld generated by L and L′.

Proof. It su�ces to show that elements a1, . . . , an of A which are linearly dependent
over P(K) · B are also linearly dependent over P(K) ·M . Thus, let z1, . . . , zn in
P(K) ·B, not all zero, such that

n∑
i=1

ai · zi = 0.

Multiplying by a suitable denominator, we may assume that all the zi's lie in the
subring generated by P(K) and B, so

zi =

m∑
j=1

ζijbj ,

for some ζij 's in P(K) and b1, . . . , bm in B, which we may assume to be linearly
independent over P(K).

The type tp(a1, . . . , an/Mb1, . . . bm) is a nonforking extension of tp(a1, . . . , an/M),
so it is in particular an heir of its restriction to M . Thus, there are some ηij 's in
P(K), not all zero, and c1, . . . , cm in M linearly independent over P(K), such that

n∑
i=1

ai

m∑
j=1

ηijcj = 0.

Since A is P-special, we may assume all the ηij 's lie in P(A). As the {cj}1≤j≤m
are P-linearly independent, at least one of the elements in

{
∑

1≤j≤m

η1jcj , . . . ,
∑

1≤j≤m

ηnjcj}

is di�erent from 0, as desired.
�

A natural example of a de�nable sub�eld is the �eld of pth powers Kp, whenever
K has positive characteristic p > 0. The corresponding notion of Kp-special is
separability : A non-zero polynomial f(T ) over a sub�eldK is separable if every root
(in the algebraic closure of K) has multiplicity 1, or equivalently, if f and its formal

derivative ∂f
∂T are coprime. Whenever f is irreducible, the latter is equivalent to

∂f
∂T 6= 0. In particular, every irreducible polynomial in characteristic 0 is separable.
In positive characteristic p, an irreducible polynomial f is separable if and only if
f is not a polynomial in T p.

An algebraic extension K ⊂ L is separable if the minimal polynomial over K
of every element in L is separable. Algebraic �eld extensions in characteristic 0
are always separable. In positive characteristic p, the �nite extension K ⊂ L is
separable if and only if the �elds K and Lp are linearly disjoint over Kp. This
explains the following de�nition:
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{D:sep_ext}
De�nition 3.3. An arbitrary (possibly not algebraic) �eld extension K ⊂ L is
separable if, either the characteristic is 0 or, in case the characteristic is p > 0, the
�elds K and Lp are linearly disjoint over Kp.

A �eld K is perfect if either it has characteristic 0 or if K = Kp, for p = char(K).
Any �eld extension of a perfect �eld is separable. Given a �eld K, we de�ne its
imperfection degree as follows:

• If the characteristic of K is 0, its imperfection degree is 0.
• If K has positive characteristic p and [K : Kp] is in�nite, then its imper-
fection degree is in�nite.

• If K has positive characteristic p and [K : Kp] is �nite, then [K : Kp] = pe

for some natural number e. The value e is the degree of imperfection.

Thus, a �eld is perfect if and only if its imperfection degree is 0

4. Model Theory of separably closed fields
{S:MTSCF}

Recall that the class of separably closed �elds is axiomatisable, since we need
only write for each degree d ≥ 1 a sentence in the language of rings expressing
that every non-constant separable polynomial over the �eld K of degree d has a
root in K. Separably closed �elds of characteristic zero are algebraically closed.
Let SCF denote the theory of separably closed �elds and, for a prime p, denote by
SCFp, resp. SCFp,e, the theory of separably closed �elds of characteristic p, resp. of
characteristic p and imperfection degree e, where e is either a natural number or∞.
Note that SCFp,0 is the theory ACFp of algebraically closed �elds of characteristic
p.

{F:Delon}
Fact 4.1. (cf. [2, Proposition 27]) The theory SCFp,e is complete and stable, but
not superstable if e > 0. Given a model K and a sub�eld k such that the �eld
extension k ⊂ K is separable, the type of k in K is completely determined by
its quanti�er-free type. In particular, the theory has quanti�er elimination in the
language

Lλ = Lrings ∪ {λin | 1 ≤ i ≤ n < ω},
where the value λin(a0, . . . , an) is de�ned as follows in K. If there is a unique
sequence ζ1, . . . , ζn in K with a0 = ζp1 a1 + · · ·+ ζpn an, we set λ

i
n(a0, . . . , an) = ζi.

Otherwise, we set λin(a0, . . . , an) = 0.

Notation. For the elements a0, . . . , an of K, if there is a unique sequence ζ1, . . . , ζn
in K with a0 = ζp1 a1 + · · ·+ ζpn an, we write λn(a0, a1, . . . , an)↓.

Note that λn(a0, a1, . . . , an)↓ if and only if

K |= ¬ p -Depn(a1, . . . , an) ∧ p -Depn+1(a0, a1, . . . , an),

where p -Depn(a1, . . . , an) means that a1, . . . , an are Kp-linearly dependent.
Given a sub�eld k of a model K of SCFp, the �eld extension k ⊂ K is separable

if and only if k is closed under λ-functions.
{R:fte_e_EI}

Remark 4.2. If the imperfection degree e is �nite, we can �x a p-basis b =
(b1, . . . , be) of K, that is, a tuple such that the collection of monomials

b̄ = (bν11 · · · bνee | 0 ≤ ν1, . . . , νe < p)
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is a linear basis of K over Kp. All p-bases have the same type. If we replace the
λ-functions by the functions Λν(a) = λνpe(a, b̄), then the theory SCFp,e(b), in the
language of rings with constants for b and equipped with the functions Λν(x), has
again quanti�er elimination. Furthermore, the Λ-values of a sum or a product can
be easily computed in terms of the values of each factor. In particular, the canonical
base of the type tp(a/K) in SCFp,e(b) is the �eld of de�nition of the vanishing ideal
of the in�nite tuple

(a,Λ(a),Λ(Λ(a)), . . .).

Thus, the theory SCFp,e(b) has elimination of imaginaries.
By separating the variables x and y, it follows that the formula t(x; y) = 0 is a

model-theoretic equation, for every LΛ-term t(x, y). This implies that SCFp,e(b),
and therefore SCFp,e, is equational, whenever the imperfection degree e is �nite, as
shown by Srour [18, Proposition 9].

Whether there is an explicit expansion of the language of rings in which SCFp,∞
has elimination of imaginaries is not yet known.

From now on, work inside a su�ciently saturated model K of the (incomplete)
theory SCFp. The imperfection degree of K may be either �nite or in�nite.

Since an Lλ-substructure determines a separable �eld extension, Lemma 3.2
implies the following result:

{C:coh_SCFinfty}
Corollary 4.3. Consider two sub�elds A and B of K containing an elementary
substructure M of K. Whenever

A
SCFp

|̂
M

B,

the �elds Kp ·A and Kp ·B are linearly disjoint over Kp ·M .

Note that the �eld Kp · A is actually the ring generated by Kp and A, since A is
algebraic over Kp.

Proof. The Lλ-structure A′ generated by A is a sub�eld, since a−1 = λ1
1(1, ap) for

a 6= 0. Since A′ |̂ SCFp,e
M

B, and A′ is Kp-special, we have that KP ·A′ and Kp ·B
are linearly disjoint over M . Whence KP · A and KP · B are also linearly disjoint
over M �

We will now exhibit our candidate formulae for the equationality of SCFp, uni-
formly on the imperfection degree.

{D:lambda_tame}
De�nition 4.4. The collection of λ-tame formulae is the smallest collection of
formulae in the language Lλ, containing all polynomial equations and closed under
conjunctions, such that, for any natural number n and polynomials q0, . . . , qn in
Z[x], given a λ-tame formula ψ(x, z1, . . . , zn), the formula

ϕ(x) = p -Depn(q1(x), . . . , qn(x)) ∨(
λn(q0(x), . . . , qn(x))↓ ∧ ψ(x, λn(q0(x), . . . , qn(x)))

)
is λ-tame.

Note that the formula ϕ above is equivalent to

p -Depn(q1, . . . , qn) ∨
(
p -Depn+1(q0, . . . , qn) ∧ ψ(x, λn(q(x)))

)
.
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In particular, the formula p -Depn(q1(x), . . . , qn(x)) is a tame λ-formula, since it is
equivalent to

p -Depn(q1(x), . . . , qn(x)) ∨
(
λn(0, q1(x), . . . , qn(x))↓ ∧ 0 = 1

)
.

There is a natural degree associated to a λ-tame formula, in terms of the amount
of nested λ-tame formulae it contains, where polynomial equations have degree 0.
The degree of a conjunction is the maximum of the degrees of the corresponding
formulae.

The next remark is easily proved by induction on the degree of the formula:
{R:lambda_transf}

Remark 4.5. Given a λ-tame formula ϕ in m many free variables and polyno-
mials r1(X), . . . , rm(X) in several variables with integer coe�cients, the formula
ϕ(r1(x), . . . , rm(x)) is equivalent in SCFp to a λ-tame formula of the same degree.

{P:lambda_BK}
Proposition 4.6. Modulo SCFp, every formula is equivalent to a Boolean combi-
nation of λ-tame formulae.

Proof. By Fact 4.1, it su�ces to show that the equation t(x) = 0 is equivalent to
a Boolean combination of λ-tame formulae, for every Lλ-term t(x). Proceed by
induction on the number of occurrences of λ-functions in t. If no λ-functions occur
in t, the result follows, since polynomial equations are λ-tame. Otherwise, write
t(x) = r(x, λin(q0(x), . . . , qn(x))), for some Lλ-term r(x, z1, . . . , zn), polynomials
q1, . . . , qn and 1 ≤ i ≤ n. More generally, adding dummy variables (if needed),

t(x) = r(x, λn(q0(x), . . . , qn(x))).

By our induction hypothesis, the term r(x, z̄) = 0 is equivalent to a Boolean combi-
nation BK(ψ1(x, z̄), . . . , ψm(x, z̄)) of λ-tame formulae ψ1(x, z̄), . . . , ψm(x, z̄). Con-
sider now the λ-tame formulae

ϕi(x) = p -Depn(q1(x), . . . , qn(x)) ∨
(
λn(q(x))↓ ∧ ψi(x, λn(q(x)))

)
.

Note that

SCFp |=
(

(λn(q(x))↓) −→
(
ψi(x, λn(q(x))) ↔ ϕi(x)

))
.

Therefore t(x) = 0 is equivalent to(
¬λn(q(x))↓ ∧ r(x, 0) = 0

)
∨
(
λn(q(x))↓ ∧ BK(ϕ1(x), . . . , ϕm(x))

)
,

which is, by induction, a Boolean combination of λ-tame formulae. �

We conclude this section with a homogenisation result for λ-tame formulae, which
will be used in the proof of the equationality of SCFp.

{P:lambda_hom}
Proposition 4.7. For every λ-tame ϕ(x, y1, . . . , yn) there exists a homogenisation
of ϕ with respect to y0, . . . , yn, that is, a λ-tame formula ϕ′(x, y0, y1, . . . , yn) of
same degree such that

SCFp |= ∀x, y0 . . . yn

(
ϕ′(x, y0, . . . , yn)←→

(
y0 = 0 ∨ ϕ(x,

y1

y0
, . . . ,

yn
y0

)
))

.

Proof. Let y denote the tuple (y1, . . . , yn). By induction on the degree, we need only
consider basic λ-tame formulae, since the result is preserved by taking conjunctions.
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For degree 0, suppose that ϕ(x, y) is the formula q(x, y) = 0, for some polynomial
q. Write

q(x,
y

y0
) =

q′(x, y0, y)

yN0
.

Then ϕ′(x, y0, y) = y0 · q′(x, y0, y) = 0 is a homogenisation.
If ϕ(x, y) has the form

p -Depm(q1(x, y), . . . , qm(x, y)) ∨
(
λm(q0, . . . , qm)↓ ∧ψ(x, y, λm(q0, . . . , qm))

)
,

let ψ′(x, y0, y, z) be a homogenisation of ψ(x, y, z) with respect to y0, y. There is a
natural number N such that for each 0 ≤ j ≤ m,

qj(x,
y

y0
) =

q′j(x, y0, y)

yN0

for polynomials q′j . Set now q′′j = y0 · q′j . Note that

λm(q′′0 (x, y, y0), . . . , q′′m(x, y, y0)) = λm(q0(x,
y

y0
), . . . , qm(x,

y

y0
))

whenever y0 6= 0, since generally λim(a0, . . . , am) = λim(b · a0, . . . , b · am), for b 6= 0.
The formula

ϕ′(x, y0, y) = p -Depm(q′′1 , . . . , q
′′
m)∨

(
λm(q′′0 , . . . , q

′′
m)↓ ∧ψ′(x, y0, y, λm(q′′0 , . . . , q

′′
m))
)

is the desired homogenisation of ϕ(x, y). �

5. Equationality of SCF
{S:EqSCFp_alt}

By Proposition 4.6, in order to show that the theory SCF is equational, we need
only show that, for a �xed p, each λ-tame formula is an equation in every SCFp.
As before, work inside a su�ciently saturated model K.

For the proof, we require generalised λ-functions: If the vectors ā1, . . . , ān in
KN are linearly independent over the �eld Kp and the system

ā0 =

n∑
i=1

ζpi āi

has a solution, then the solution is unique and denoted by λiN,n(ā0, . . . , ān). As

in the previous section, we will denote this by λN,n(ā0, . . . , ān) ↓. Otherwise,

the λ-functions λN,n are unde�ned. Observe that λi1,n = λin. We denote by
p -DepN,n(x̄1, . . . , x̄n) the formula stating that the vectors x̄1, . . . , x̄n are linearly
dependent over Kp.

{T:eq_SCF}
Theorem 5.1. Given any partition of the variables, every λ-tame formula ϕ(x; y)
is an equation in SCFp.

Proof. We proceed by induction on the degree D of the λ-tame formula. For D = 0,
it is clear. Let ϕ(x; y) be a λ-tame formula of degree D ≥ 1 and assume that the
theorem is true for all λ-tame formulae of degree smaller than D.

Claim. If

ϕ(x; y) = p -DepN,n(q̄1(xp, y), . . . , q̄n(xp, y)) ∨(
λN,n(q̄0(xp, y), . . . , q̄n(xp, y))↓ ∧ ψ(x, y, λN,n(q̄0(xp, y), . . . , q̄n(xp, y)))

)
,
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where ψ(x, y, z1, . . . , zn) is a λ-tame formula of degree D − 1, then ϕ(x; y) is an
equation.

Proof of Claim. It su�ces to show that every instance ϕ(x, b) is equivalent to a
formula ψ′(x, b′, b), where ψ′(x, y′, y) is a λ-tame formula of degree D− 1, for some
tuple b′. Indeed, our induction hypothesis will imply that ψ′(x, b′, b) is an instance
of an equation, and thus it is indiscernibly closed (see the remark after De�nition
2.3). In particular, so is ϕ(x, b), and hence ϕ(x; y) is an equation. Actually, it
follows from the proof below that one can choose ψ′(x, y′, y) independently of b.

Choose a Kp-basis b1, . . . , bN ′ of all monomials in b occurring in the q̄k(xp, b)'s

and write q̄k(xp, b) =
∑N ′

j=1 q̄j,k(x, b′)p · bj . We use the notation qk(x, b′) for the

vector of length NN ′ which consists of the concatenation of the vectors q̄j,k(x, b′).
Let Q(x, b′) be the (NN ′ × n)-matrix with columns q1(x, b′), . . . ,qn(x, b′). The
vectors q̄1(xp, b), . . . , q̄n(xp, b) are linearly dependent over Kp if and only if the
columns of Q(x, b′) are linearly dependent over K. Let J range over all n-element
subsets of {1, . . . , NN ′} and let QJ(x, b′) be the corresponding n × n-submatrix.
Thus

SCFp |=
(
p -DepN,n(q̄1(xp, b), . . . , q̄n(xp, b))←→

∧
J

det(QJ(x, b′)) = 0
)
. (?)

For a �xed n-element subset J of {1, . . . , NN ′}, if det(QJ(x, b′)) is not zero, then
the generalised λ-functions λN,n(q̄0(xp, b), . . . , q̄n(xp, b)) (see the beginning of this

section) are de�ned. Furthermore, the equality q0(x, b′) = Q(x, b′) · ζ holds if and
only if ζ = λN,n(q̄0(xp, b), . . . , q̄n(xp, b)). In that case,

ζ = det(QJ(x, b′))−1 ·BJ(x, b′) · qJ0 (x, b′),

with BJ(x, b′) the adjoint matrix of QJ(x, b′). Set rJ(x, b′) = BJ(x, b′) · qJ0 (x, b′),
so

ζ = det(QJ(x, b′))−1 · rJ(x, b′).

Consider the λ-tame formula of degree D − 1

ψ′(x, b′, b, z) =
(
ψ(x, b, z) ∧ q0(x, b′) = Q(x, b′) · z

)
.

We shall see that ϕ(x, b) is equivalent to∧
J

(
det(QJ(x, b′)) = 0 ∨ ψ′(x, b′, b,det(QJ(x, b′))−1 · rJ(x, b′))

)
.

Indeed, we consider two cases: either p -DepN,n(q̄1(xp, b), . . . , q̄n(xp, b)) holds, in
which case both formulae are true, by (?), or ¬ p -DepN,n(q̄1(xp, b), . . . , q̄n(xp, b)).

Then there is some n-element subset J0 such that det(QJ0(x, b′)) 6= 0. If the
above conjunction holds, the formula ψ′(x, b′, b,det(QJ0(x, b′))−1 ·rJ0(x, b′)) is true,
and thus the vector λN,n(q̄0(xp, b), . . . , q̄n(xp, b) is de�ned and equals the product

det(QJ0(x, b′))−1·rJ0(x, b′), so ψ(x, b, λN,n(q̄0(xp, b), . . . , q̄n(xp, b))) holds. If ϕ(x, b)
is true, so is

ψ
(
x, b, λN,n(q̄0(xp, b), . . . , q̄n(xp, b))

)
.

By the previous discussion, if there is a solution, then it is unique. Thus, for every n-
element subset J with det(QJ(x, b′)) 6= 0, the formula ψ′(x, b′, b,det(QJ(x, b′))−1 ·
rJ(x, b′)) must hold.

Since the above conjunction is a λ-tame formula of degree D− 1, by Remark 4.5
and Proposition 4.7, we conclude the desired result.
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� Claim

For the proof of the theorem, since a conjunction of equations is again an equa-
tion, we may assume that

ϕ(x; y) = p -Depn(q1(x, y), . . . , qn(x, y)) ∨(
λn(q0(x, y), . . . , qn(x, y))↓ ∧ ψ(x, y, λn(q0(x, y), . . . , qn(x, y)))

)
for some λ-tame formula ψ(x, y, z1, . . . , zn) of degree D−1. It su�ces to show that
ϕ(a, y) is indiscernibly closed. By Lemma 2.4, consider an elementary substructure
M of K and a Morley sequence (bi)i≤ω over M such that

a |̂
M

bi with |= ϕ(a, bi) for i < ω.

We must show that K |= ϕ(a, bω).
Choose a (Kp ·M)-basis a1, . . . , aN of the monomials in a which occur in the

qk(a, y) and write qk(a, y) =
∑N
j=1 qj,k(a′p,m, y) · aj , for some tuple m in M and

a′ in K. Let q̄k(a′p,m, y) be the vector
(
qj,k(a′p,m, y)

)
1≤j≤N and consider the

formula

ϕ′(x, x′; y′, y) = p -DepN,n(q̄1(x′p, y′, y), . . . , q̄n(x′p, y′, y)) ∨(
λN,n(q̄0(x′p, y′, y), . . . , q̄n(x′p, y′, y))↓ ∧

ψ(x, y, λN,n(q̄0(x′p, y′, y), . . . , q̄n(x′p, y′, y)))
)
.

Observe that for any c in K we have the following:

• If the vectors q̄1(a′p,m, c), . . . , q̄n(a′p,m, c) are Kp-linearly dependent, then
so are the elements q1(a, c), . . . , qn(a, c).

• If q1(a, c), . . . , qn(a, c) are Kp-linearly independent and the functions

λN,n(q̄0(a′p,m, c), . . . , q̄n(a′p,m, c))

are de�ned, then so are the functions λn(q0(a, c), . . . , qn(a, c)) and further-
more

λn(q0(a, c), . . . , qn(a, c)) = λN,n(q̄0(a′p,m, c), . . . , q̄n(a′p,m, c)),

so
SCFp |= ϕ′(a, a′,m, c)→ ϕ(a, c).

• If a1, . . . , aN remain linearly independent over Kp ·M(c), then the vectors
q̄1(a′p,m, c), . . . , q̄n(a′p,m, c) are Kp-linearly dependent if and only if the
elements q1(a, c), . . . , qn(a, c) are. Therefore,

SCFp |= ϕ′(a, a′,m, c)↔ ϕ(a, c).

Let us now show that K |= ϕ(a, bω). By Corollary 4.3, the elements a1, . . . , aN are
linearly independent over the �eld Kp ·M(bi), so ϕ

′(a, a′,m, bi) holds in K, since
K |= ϕ(a, bi) for i < ω. By the previous claim, the λ-tame formula ϕ′(x, x′; y′, y) is
an equation. Since the sequence (m, b0), . . . , (m, bω) is indiscernible, we have that
ϕ′(a, a′,m, bω) holds in K, so K |= ϕ(a, bω), as desired. �

Together with Proposition 4.6, the above theorem yields the following:
{C:SCF_eq}

Corollary 5.2. The theory SCF of separably closed �eld is equational.

Lemma 2.5 and Theorem 5.1 yield a partial elimination of imaginaries for SCFp,e.
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{C:EI_SCF}
Corollary 5.3. The theory SCFp,e of separably closed �elds of characteristic p > 0
and imperfection degree e has weak elimination of imaginaries, after adding canon-
ical parameters for all instances of λ-tame formulae.

Question. Is there an explicit description of the canonical parameters of instances
of λ-tame formulae, similar to the geometric sorts introduced in [13]?

In [11, Lemma 7.5 & Proposition 7.7], we provide an alternative proof to the
equationality of SCFp,∞, by showing inside a particular model of SCFp,∞, namely
a di�erentially closed �eld of positive characteristic, that every λ-tame formula is
equivalent to an S-formula, as de�ned in [19, p.211]. Srour showed in [19] that S-
formulae are equations. In the aforementioned extended version [11] of the present
work , we give another proof of his result.

6. Model Theory of Pairs
{S:MTPairs}

The second theory of �elds we will consider in this work is the theory ACFP of
proper pairs of algebraically closed �elds.

Work inside a su�ciently saturated model (K,E) of ACFP in the language LP =
Lrings ∪ {P}, where E = P (K) is the proper sub�eld. We will use the index P to
refer to the expansion ACFP.

A sub�eld A of K is tame if A is algebraically independent from E over EA =
E ∩A, that is,

A
ACF

|̂
EA

E.

Tameness was called P -independence in [1], but in order to avoid a possible confu-
sion, we have decided to use a di�erent terminology.

The following fact appears in this form in [15, 1]. It can be deduced from the
proof of completeness in [8].

{F:Kiesler}
Fact 6.1. The completions of the theory ACFP of proper pairs of algebraically
closed �elds are obtained by �xing the characteristic. Each of these completions
is ω-stable of Morley rank ω. The LP -type of a tame sub�eld of K is uniquely
determined by its LP -quanti�er-free type.

Every sub�eld of E is automatically tame, so the induced structure on E agrees
with the �eld structure. The sub�eld E is a pure algebraically closed �eld and has
Morley rank 1.

If A is a tame sub�eld, then its LP -de�nable closure coincides with the insepa-
rable closure of A and its LP -algebraic closure is the �eld algebraic closure acl(A)
of A, with EaclP (A) = acl(EA).

Based on the above fact, Delon [3] considered the following expansion of the
language LP :

LD = LP ∪ {Depn, λ
i
n}1≤i≤n∈N,

where the relation Depn is de�ned as follows:

K |= Depn(a1, . . . , an)⇐⇒ a1, . . . , an are E-linearly dependent.
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The λ-functions take values in E and are de�ned by the equation

a0 =

n∑
i=1

λin(a0, a1 . . . , an) ai,

if K |= ¬Depn(a1, . . . , an) ∧ Depn+1(a0, a1, . . . , an), and are 0 otherwise. Clearly,
a �eld A is closed under the λ-functions if and only if it is linearly disjoint from E
over EA, that is, if it is P -special, as in De�nition 3.1. Note that the fraction �eld
of an LD-substructure is again closed under λ-functions and thus tame. The theory
ACFP has therefore quanti�er elimination [3] in the language LD. Note that the
formula P (x) is equivalent to Dep2(1, x). Likewise, the predicate Depn(a1, . . . , an)
is equivalent to λ1

n(a1, a1 . . . , an) = 0.
Since the de�nable closure of a set is P -special, we conclude the following result

by Lemma 3.2.
{C:coh_pair}

Corollary 6.2. Given two sub�elds A and B of K containing an Lp-elementary

substructure M of K such that A |̂ ACFP

M
B, then the �elds E · A and E · B are

linearly disjoint over E ·M .

Our candidates for the equations in the theory ACFP will be called tame formu-
lae.

{D:tame_formel}

De�nition 6.3. Let x be a tuple of variables. A formula ϕ(x) in the language LP
is tame if there are polynomials q1, . . . , qm in Z[X,Z], homogeneous in the variables
Z, such that

ϕ(x) = ∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j≤m

qj(x, ζ) = 0

)
.

Let X, Y and Z be tuples of variables.
{L:segre}

Lemma 6.4. Let q1, . . . , qm be polynomials in Z[X,Y, Z] homogeneous in Y and
homogeneous in Z. The LP -formula

∃ υ ∈ P r ∃ζ ∈ P s
(
¬υ = 0 ∧ ¬ζ = 0 ∧

∧
k≤m

qk(x, υ, ζ) = 0
)

is equivalent in ACFP to a tame formula.

Proof. With the notation ξ∗,j = ξ1,j , . . . , ξr,j and ξi,∗ = ξi,1, . . . , ξi,s, the previous
formula is equivalent in ACFP to the tame formula

∃(ξ1,1, . . . , ξr,s) ∈ P rs \ 0

r,s,m∧
i,j,k=1

qk(x, ξ∗,j , ξi,∗) = 0.

Indeed, given v = (vi) and ζ = (ζj), set ξi,j = vi · ζj , and use that each qk is
homogeneous both in Y and in Z. For the converse, given (ξi,j), choose indices i0
and j0 with ξi,j 6= 0, and set v = (ξi,j0) and ζ = (ξi0,j).

�

Observe that a polynomial q(X,Y ) homogeneous in Y can be seen as a poly-
nomial in X, Y and Z, which is both homogeneous in Y and in Z. If q1(X,Y ) is
homogeneous in Y and q2(X,Z) is homogeneous in Z, then q1(X,Y ) · q2(X,Z) is
homogeneous both in Y and in Z. Therefore, we deduce the following result:
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{C:conj_tame}
Corollary 6.5. The collection of tame formulae is closed under conjunctions and
disjunctions.

Proof. Given

ϕ(x) = ∃ υ ∈ P r
(
¬υ = 0 ∧

∧
j≤m

qj(x, υ) = 0

)
and

ψ(x) = ∃ ζ ∈ P s
(
¬ζ = 0 ∧

∧
k≤n

rk(x, ζ) = 0

)
,

then the conjunction (ϕ ∧ ψ)(x) is equivalent to

∃ υ ∈ P r ∃ ζ ∈ P s
(
¬υ = 0 ∧ ¬ζ = 0 ∧

∧
j≤m

qj(x, υ) ∧
∧
k≤n

rk(x, ζ) = 0

)
and the disjunction (ϕ ∨ ψ)(x) is equivalent to

∃ υ ∈ P r ∃ ζ ∈ P s
(
¬υ = 0 ∧ ¬ζ = 0 ∧

∧
j≤m
k≤n

qj(x, υ) · rk(x, ζ) = 0

)
.

�

Before proving that tame formulae determine types in ACFP, we �rst need some
basic notions from linear algebra (cf. [4, Résultats d'Algèbre]) in order to describe
by tame formulae the E-annihilator of a (possibly in�nite) tuple.

Let V be a vector subspace of En with basis {v1, . . . , vk}. Observe that

V =
{
v ∈ En

∣∣ v ∧ (v1 ∧ · · · ∧ vk) = 0 in
∧k+1

En
}
.

The vector v1 ∧ · · · ∧ vk depends only on V , up to scalar multiplication, and
determines V completely. The Plücker coordinates Pk(V ) of V are the homogeneous

coordinates of v1 ∧ · · · ∧ vk with respect to the canonical basis of
∧k

En. The
kth-Grassmannian Grk(En) of En is the collection of Plücker coordinates of all k-
dimensional subspaces of En. Clearly Grk(En) is contained in Pr−1(E), for r =

(
n
k

)
.

The kth-Grassmannian is Zariski-closed. Indeed, given an element ζ of
∧k

En,

there is a smallest vector subspace Vζ of En such that ζ belongs to
∧k

Vζ . The

vector space Vζ is the collection of vectors e y ζ, for e in
∧k−1

(En)∗, where the
interior product

y :
∧k−1

(En)∗ ×
∧k

(En)→ E

is a bilinear map uniquely determined by the relation

〈µ, e y ζ〉1 = 〈µ ∧ e, ζ〉k

for every µ in E∗, with 〈·, ·〉i the dual pairing between
∧i

(En) and
∧i

(En)∗.

A non-trivial element ζ of
∧k

En determines a k-dimensional subspace of En if
and only if

ζ ∧ (e y ζ) = 0,
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for every e in
∧k−1

(En)∗. Letting e run over a �xed basis of
∧k−1

(En)∗, we see
that the kth-Grassmannian is the zero-set of a �nite collection of homogeneous
polynomials.

Fix some enumeration (Mi(x1, . . . , xs))i=1,2,... of all monomials in s variables.
Given a tuple a of length s, denote

Annn(a) =

{
(λ1, . . . , λn) ∈ En

∣∣∣∣ n∑
i=1

λi ·Mi(a) = 0

}
.

Notation. If we denote the scalar multiplication of two tuples x and y of length
n by

x · y =

n∑
i=1

xi · yi,

then

Annn(a) = {λ ∈ En | λ · (M1(a), . . . ,Mn(a)) = 0}.
{L:tp_ann}

Lemma 6.6. Two tuples a and b of K have the same ACFP-type if and only if

ldimE Annn(a) = ldimE Annn(b)

and the type tp(Pk(Annn(a))) equals tp(Pk(Annn(a))) (in the pure �eld language),
for every n in N.

Proof. We need only prove the right-to-left implication. Since Pk(Anni(a)) is de-
termined by Pk(Annn(a)), for i ≤ n, we obtain an automorphism of E mapping
Pk(Annn(a)) to Pk(Annn(b)) for all n. This automorphism maps Annn(a) to
Annn(b) for all n and hence extends to an isomorphism of the rings E[a] and
E[b]. It clearly extends to a �eld isomorphism of the tame sub�elds E(a) and E(b)
of K, which in turn can be extended to an automorphism of (K,E). So a and b
have the same ACFP-type, as required. �

{P:Tame_Type}
Proposition 6.7. Two tuples a and b of K have the same ACFP-type if and only
if they satisfy the same tame formulae.

Proof. Let q1(Z), . . . , qm(Z) be homogeneous polynomials over Z. By Lemma 6.6,
it su�ces to show that

� Annn(x) has a k-dimensional subspace V such that
∧
j≤m qj(Pk(V )) = 0 �

is expressible by a tame formula. Indeed, if the qj 's are all the 0 polynomial,
this expression encodes the linear dimension of Annn(x). Furthermore, for k =
ldimE Annn(x), the above encodes a �nite fragment of the type tp(Pk(Annn(x))).

To see that the above expression is equivalent to a tame formula, it su�ces to
guarantee that there is an element ζ in Grk(En) such that

(e y ζ) · (M1(x), . . . ,Mn(x)) = 0

for all e from a a �xed basis of
∧k−1

(En)∗, where Mi(X) is the above enumeration
of all monomials in the tuple x, and∧

j≤m

qj(ζ) = 0.

In particular, the tuple ζ is not trivial, so we conclude that the above is a tame
formula. �
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By compactness, we conclude the following:
{C:Tame_BK}

Corollary 6.8. In the theory ACFP of proper pairs of algebraically closed �elds,
every formula is a Boolean combination of tame formulae.

7. Equationality of belles paires of algebraically closed fields
{S:EqPairs}

Though the theory of algebraically closed �elds has elimination of quanti�ers,
the projection of a Zariski-closed set need not be again closed. For example, the
closed set

V = {(x, z) ∈ E × E | x · z = 1}
projects onto the open set {x ∈ E |x 6= 0}.

{R:proj_complete}
Remark 7.1. An algebraic variety Z is complete if, for all varieties X, the projec-
tion X × Z → X is a Zariski-closed map. Projective varieties are complete.

In order to show that the theory ACFP of proper pairs of algebraically closed
�elds is equational, we need only to show that tame formulae are equations with
respect to any partition of the variables, by Corollary 6.8. As before, work inside
a su�ciently saturated model (K,E) of ACFP in the language LP = Lrings ∪ {P},
where E = P (K) is the proper sub�eld.

Consider the following special case as an auxiliary result.
{L:tame_vble_in_P}

Lemma 7.2. Let ϕ(x; y) be a tame formula. The formula

ϕ(x; y) ∧ x ∈ P
is an equation.

Proof. Let b be a tuple in K of length |y|, and suppose that the formula ϕ(x, b) has
the form

ϕ(x, b) = ∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j≤k

qj(x, b, ζ) = 0

)
.

for some polynomials q1, . . . , qk with integer coe�cients and homogeneous in ζ.
Express each of the monomials in b appearing in the above equation as a linear
combination of a basis of K over E. We see that there are polynomials r1, . . . , rs
with coe�cients in E, homogeneous in ζ, such that the formula ϕ(x, b) ∧ x ∈ P is
equivalent to

∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j≤s

rj(x, ζ) = 0

)
∧ x ∈ P.

Working inside the algebraically closed sub�eld E, the expression inside the brackets
is a projective variety, which is hence complete. By Remark 7.1, its projection is
again Zariski-closed, as desired. �

{P:tame_ic}
Proposition 7.3. Let ϕ(x; y) be a tame formula. The formula ϕ(x; y) is an equa-
tion.

Proof. We need only show that every instance ϕ(a, y) of a tame formula is indis-
cernibly closed. By Lemma 2.4, it su�ces to consider a Morley sequence (bi)i≤ω
over an elementary substructure M of (K,E) with

a
ACFP

|̂
M

bi with |= ϕ(a, bi) for i < ω.
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Suppose that the formula ϕ(a, y) has the form

ϕ(a, y) = ∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j≤k

qj(a, y, ζ) = 0

)
,

for polynomials q1, . . . , qk with integer coe�cients and homogeneous in ζ.
Let (cν) be a basis of E ·M(a) over E ·M By appropriately writing each monomial

in a in terms of the basis, and after multiplication with a common denominator,
we have that ϕ(a, y) is equivalent to

∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j

∑
ν

rj,ν (e,m, y, ζ) · cν = 0

)
,

where the polynomials rj,ν(X,Y ′, Y, Z) are homogeneous in Z, the tuple e is from
E and m is a tuple from M . By Corollary 6.2, the �elds E ·M(a) and E ·M(bi)
are linearly disjoint over E(M) for every i < ω. Hence,

K |= ∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j,ν

rj,ν(e,m, bi, ζ) = 0

)
for i < ω.

By Lemma 7.2, the formula

ϕ′(e, y′, y) = ∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j,ν

rj,ν(e, y′, y, ζ) = 0

)
is indiscernibly closed. Since the sequence (m, bi)i≤ω is indiscernible, we have K |=
ϕ′(e,m, bω), so K |= ϕ(a, bω), as desired.

�

Corollary 6.8 and Proposition 7.3 yield now the equationality of ACFP.
{T:eq}

Theorem 7.4. The theory of proper pairs of algebraically closed �elds is equational.

8. Linear Formulae
{S:LinFor}

A stronger relative quanti�er elimination for ACFP0 was provided by Günayd�n
[5, Theorem 1.1], which yields a nicer description of the equations to consider in
ACFP0. We will provide an alternative approach to his result, valid in arbitrary
characteristic. We work inside a su�ciently saturated model (K,E) of ACFP.

A tame formula ϕ(x) (cf. De�nition 6.3) is linear if the corresponding polyno-
mials in ϕ are linear in Z, that is, if there is a matrix (qi,j(X)) of polynomials with
integer coe�cients such that

ϕ(x) = ∃ζ ∈ P s
¬ζ = 0 ∧

k∧
j=1

ζ1q1,j(x) + · · ·+ ζsqs,j(x) = 0

 .

A linear formula is simple if k = 1, that is, if it has the form

Deps(q1(x), . . . , qs(x)),

for polynomials qi in Z[X1, . . . , Xn].
We will show that every tame formula is equivalent in ACFP to a conjunction of

simple formulae. For this, we �rst need a de�nition: Every ideal I of K[X1, . . . , Xn]
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admits an E-hull, which is the smallest ideal IE containing I and generated by
elements of E[X1, . . . , Xn]. Note that, if I is homogeneous, i.e. it is the sum of all

Id = {f ∈ I | h homogeneous of degree d},

then so is IE , with (IE)d = (Id)
E .

{L:linear}
Lemma 8.1. Every tame formula is equivalent in ACFP to a linear formula.

Proof. Consider a tame formula

ϕ(x) = ∃ ζ ∈ P r
(
¬ζ = 0 ∧

∧
j≤m

qj(x, ζ) = 0

)
.

Denote by Z the tuple of variables (Z1, . . . , Zlength(ζ)). For a tuple a in K of
length |x|, denote by I(a, Z) the ideal in K[Z] generated by q1(a, Z), . . . qm(a, Z).
Since I(a, Z) ⊂ I(a, Z)E , a zero of I(a, Z)E is a zero of I(a, Z). A relative converse
holds: If the tuple ζ in Er is a zero of the ideal I(a, Z), then I(a, Z) is contained
in the ideal generated by all Zi− ζi's, which is E-de�ned, so ζ is a zero of I(a, Z)E .
So (K,E) |= ϕ(a) if an only if I(a, Z)E has a non-trivial zero in Er. Since E is an
elementary substructure of K, this is equivalent to I(a, Z)E having a non-trivial
zero in Kr.

The ideal I(a, Z)E is generated by polynomials from qj(a, Z)E . In particular,
there is a degree d, independent from a, such that I(a, Z)E has a non-trivial zero
if and only if the E-hull (I(a, Z)E)d of I(a, Z)d is not all of K[Z]d, the homo-
geneous polynomials of degree d. As a vector space, the ideal I(a, Z)d is gene-
rated by all products M · qj(a, Z), with M a monomial in Z such that deg(M) +
degZ(qj(X,Z)) = d. Given an enumeration M1, . . . ,Ms of all monomials in Z
of degree d, the vector space I(a, Z)d is generated by a sequence of polynomials
f1, . . . , fk of the form

fj = M1r1,j(a) + · · ·+Msrs,j(a),

for polynomials ri,j(X) ∈ Z[X] which do not depend of a. Thus, the tuple a
realises ϕ(x) if and only if (I(a, Z)E)d 6= K[Z]d, that is, if and only if there is a
tuple ξ ∈ Es \ 0 such that ξ1r1,j(a) + · · · + ξsrs,j(a) = 0 for all j = 1, . . . , k. The
latter is expressible by a linear formula. �

In order to show that every tame formula is equivalent to a conjunction of simple
formulae, we need the following result:

{P:simple}
Proposition 8.2. For all natural numbers m and n, there is a natural number
N and an n ×N -matrix (rj,k) of polynomials from Z[x1,1, . . . , xm,n] such that the
linear formula

∃ ζ ∈ Pm
¬ζ = 0 ∧

n∧
j=1

ζ1x1,j + · · ·+ ζmxm,j = 0

 (1){linpaar}{linpaar}

is equivalent in ACFP to the conjunction of∧
j1<···<jm

det((xi,ji′ )) = 0 (2){minoren}{minoren}
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and

N∧
k=1

Depm
( n∑
j=1

x1,jrj,k(x̄), . . . ,

n∑
j=1

xm,jrj,k(x̄)
)
. (3){reduktion}{reduktion}

Proof. The implication (1) ⇒ ((2) ∧ (3)) always holds, regardless of the choice of
the polynomials rj,k: Whenever a matrix A = (ai,k) over K is such that there is a
non-trivial vector ζ in Em with

n∧
j=1

m∑
i=1

ζiai,j = 0,

then the rows of A are linearly dependent, so det((ai,ji′ )) = 0 for all j1 < · · · < jm.
For all k, we have that

m∑
i=1

ζi
( n∑
j=1

ai,jrj,k(ā)
)

=

n∑
j=1

( m∑
i=1

ζiai,j
)
rj,k(ā) = 0.

For the converse, an easy compactness argument yields the existence of the
polynomials rj,k, once we show that (1) follows from (2) together with the in�nite
conjunction ∧

r1,...rn∈Z[x̄]

Depm
( n∑
j=1

x1,jrj(x̄), . . . ,

n∑
j=1

xm,jrj(x̄)
)
. (4) {infreduktion}{infreduktion}

Hence, let A = (ai,k) be a matrix over K witnessing (2) and (4). The rows of A
are K-linearly dependent, by (2). If the matrix were de�ned over E, its rows would
then be E-linearly dependent, which yields (1). Thus, if we R is the subring of K
generated by the entries of A, we may assume that the ring extension E ⊂ E[R] is
proper.

Claim 1. There is a non-zero element r in R which is not a unit in E[R]. {C:nonunit}

Proof of Claim 1. The �eld E(R) has transcendence degree τ ≥ 1 over E. As
in the proof of Noether's Normalisation Theorem [9, Theorem X 4.1], there is a
transcendence basis r1, . . . , rτ of R over E, such that E[R] is an integral extension
of E[r1, . . . , rτ ]. If r1 were a unit in E[R], its inverse would u be a root of a
polynomial with coe�cients in E[r1, . . . , rτ ] and leading coe�cient 1. Multiplying
by a suitable power of r1, we obtain a non-trivial polynomial relation among the
r′js, which is a contradiction. � Claim 1

Claim 2. Given a sequence V1, . . . Vn of �nite dimensional E-subvector spaces {C:seq_ind}
of E[R], there is a sequence z1, . . . , zn of non-zero elements of R such that the
subspaces V1z1, . . . , Vnzn are independent.

Proof of Claim 2. Assume that z1, . . . , zk−1 have been already constructed. Let
z be as in Claim 1. If we consider the sequence of ideals zkE[R], an easy case
of Krull's Intersection Theorem ([9, Theorem VI 7.6]) applied to the noetherian
integral domain E[R] yields that

0 =
⋂
k∈N

zkE[R].

Choose some natural number Nk large enough such that

(V1z1 + · · ·+ Vk−1zk−1) ∩ zNkE[R] = 0,
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and set zk = zNk . � Claim 2

Let us now prove that the matrix A satis�es (1). Let Vj be the E-vector space
generated by a1,j , . . . , am,j , that is, by the j-th column of A. Choose 0 6= zj in R
as in Claim 2, and write each zj = rj(ā), for some polynomial rj(x̄) with integer
coe�cients. Since A satis�es (4), there is a non-trivial tuple ζ in Em such that

m∑
i=1

ζi
( n∑
j=1

ai,jzj
)

=

n∑
j=1

( m∑
i=1

ζiai,j
)
zj = 0.

Observe that
(∑m

i=1 ζiai,j
)
zj belongs to Vjzj . The subspaces Viz1, . . . , Vnzn are

independent, so each
(∑m

i=1 ζiai,j
)
zj must equal 0. Therefore so is

m∑
i=1

ζiai,j = 0,

as desired. �

Question. Can the integer N and the polynomials ri,j in Proposition 8.2 be ex-
plicitly computed?

{T:simple}
Theorem 8.3. Every tame formula is equivalent in ACFP to a conjunction of
simple formulae.

Proof. By Lemma 8.1, it su�ces to show that every linear formula is equivalent in
ACFP to a conjunction of simple formulae. This follows immediately from Proposi-
tion 8.2, since the polynomial equation q(x) = 0 is equivalent in ACFP to the simple
formula Dep1(q(x)). �

Lemma 8.1 and Corollary 6.5 yield that a �nite conjunction of linear formulae
is again linear. However, we do not think that the same holds for simple formulae.

Together with Corollary 6.8, we deduce another proof of [5, Theorem 1.1], valid
in all characteristics:

{C:simple}

Corollary 8.4. In the theory ACFP of proper pairs of algebraically closed �eld,
every formula is equivalent in to a boolean combination of simple formulae.

We can use the above theorem to give another proof of Proposition 7.3 in char-
acteristic 0. Indeed, it su�ces to show that every simple formula ϕ(x; y) is an
equation in every model (K,E) of ACFP. Consider a di�erential �eld (K, δ) with
algebraically closed �eld of constants E = {x ∈ K | δ(x) = 0}. As noted in the
example 2.2, it su�ces to show that every simple formula is equivalent to a di�er-
ential equation. Now, the elements a1, . . . , ak of K are linearly dependent over E
if and only if their Wronskian

W(a1, . . . , ak) = det


a1 a2 . . . ak
δ(a1) δ(a2) . . . δ(ak)
...

...
δk−1(a1) δk−1(a2) . . . δk−1(ak)


equals 0. Thus, the formula Deps(x1, . . . , xs) is equivalent to the di�erential equa-
tion W(x1, . . . , xs) = 0. In [11, Proposition 9.9], we give a more explicit trans-
formation of a tame formula into a system of di�erential equations to avoid using
Lemma 8.1 and Proposition 8.2.
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A key point in the proof of [5, Theorem 1.1] is the fact that each LD-function λin
de�nes, on its domain, a continuous function with respect to the topology generated
by instances of simple formulae [5, Proposition 2.6]. We will conclude with an easy
proof that all functions λin×id× · · ·×id are continuous with respect to this topology.
For this, we need an auxiliary de�nition (cf. De�nition 4.4):

{D:lambda_formula}
De�nition 8.5. The collection of λP -formulae is the smallest collection of formu-
lae in the language LD, closed under conjunctions and containing all polynomial
equations, such that, for any natural number n and polynomials q0, . . . , qn in Z[x],
given a λP -formula ψ(x, z1, . . . , zn), the formula

ϕ(x) = Depn(q1(x), . . . , qn(x)) ∨(
λn(q0(x), . . . , qn(x))↓ ∧ ψ(x, λn(q0(x), . . . , qn(x)))

)
is λP -tame, where λn(y0, . . . , yn)↓ is an abbreviation for

¬Depn(y1, . . . , yn) ∧Depn+1(y0, . . . , yn).
{P:tame_lambda}

Proposition 8.6. Up to equivalence in ACFP, tame formulae and λP -formulae
coincide.

Proof. Notice that every simple formula is λP -tame, since

Depn(y1, . . . , yn) ⇔ Depn(y1, . . . , yn) ∨
(
λn(0, y1, . . . , yn)↓ ∧ (1 = 0)

)
.

By Theorem 8.3, we conclude that all tame formulae are λP -tame.
We prove the other inclusion by induction on the degree of the λP -formula ϕ(x).

Polynomial equations are clearly tame. By Corollary 6.5, the conjunction of tame
formulae is again tame. Thus, we need only show that ϕ(x) is tame, whenever

ϕ(x) = Depn(q1, . . . , qn) ∨
(
λn(q0, . . . , qn)↓ ∧ ψ(x, λn(q0, . . . , qn))

)
,

for some tame formula ψ(x, z1, . . . , zn). Write

ψ(x, z) = ∃ζ ∈ P s
(
¬ζ = 0 ∧

∧
k≤m

pk(x, z, ζ) = 0
)
,

for some polynomials p1(x, z, u), . . . , pm(x, z, u) with integer coe�cients and homo-
geneous in u.

Homogenising with respect to the variables z0, z1, . . . , zn, there is some natural
number N such that, for each k ≤ m,

pk(x, z−1
0 z, u)zN0 = rk(x, z0, z, u),

where rk is both homogeneous in (z0, z) and in u. Thus,

ACFP |=
(
ϕ(x)←→

(
∃(ζ0, ζ) ∈ Pn+1 ∃υ ∈ P s

(
¬(ζ0, ζ) = 0 ∧ ¬υ = 0

∧ ζ0q0(x) + · · ·+ ζnqn(x) = 0 ∧
∧
k≤m

rk(x, ζ0, ζ, υ) = 0
)))

.

The right-hand expression is a tame formula, by Lemma 6.4, and so is ϕ, as desired.
�
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