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Abstract

Let T1 and T2 be two countable complete theories in disjoint languages,
of finite Morley rank, the same Morley degree, with definable Morley rank
and degree. Let N be a common multiple of the ranks of T1 and T2. We
show that T1 ∪ T2 has a nice complete expansion of Morley rank N .

1 Introduction

We call a countable complete L–theory T good if it has finite definable rank1

n > 0 and definable degree2. A conservative expansion T ′ of T is a complete
expansion of T , whose rank n′ is a multiple of n, such that for all L–formulas
φ(x, b).

MRT ′ φ(x, b) =
n′

n
MRT φ(x, b)

MDT ′ φ(x, b) = MDT φ(x, b).

We call the quotient n′
n the index of the expansion.

In this note we will prove the following theorem.

Theorem 1.1. Let T1 and T2 be two good theories in disjoint languages of the
same degree e and let N be a common multiple of their ranks. Then T1 and T2

have a common good conservative expansion T of rank N .
Furthermore, if in Ti the predicates P 1

i , . . . , P
e
i define a partition of the uni-

verse into sets of degree 1, T can be chosen to imply P j
1 = P j

2 for j = 1, . . . , e.

If both, T1 and T2, have rank and degree 1, this is Hrushovski’s fusion [5],
except that we allow the language of T to be larger than the union of the
languages of T1 and T2. The core of our proof is an adaption of the exposition
of Hrushovski’s fusion given in [3] and (in Section 2.2) of ideas from Poizat’s [6].

As an immediate application we get an explanation of the title of Poizat’s
[6]:

Corollary 1.2 ([6],[1]). In any characteristic there is an algebraically closed
field K with a subset N such that (K,N) has rank 2.

∗finiterank.tex,v 2.5, May 18, 2007
1By “rank” we always mean “Morley rank”, “degree” is “Morley degree”.
2I.e. the DMP, the definable multiplicity property.
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Proof. Apply 1.1 for T1 the theory of algebraically closed fields of some fixed
characteristic and for T2 any good theory of rank 2 and degree 1, e.g. the “square
of the identity”.

For another account of 1.2 see [2].

Theorem 1.1 was motivated by the following surprising result of A. Hasson:

Corollary 1.3 ([4]). Every good theory can be interpreted in a good strongly
minimal set.

Proof. Let T1 be a good theory of rank n and degree e. Consider any good theory
T2 of rank n and degree e which can be interpreted in a strongly minimal set X
defined in T2. Use 1.1 to obtain a good theory T of rank n which conservatively
expands T1 and T2. T2 is then interpreted in X, which is still strongly minimal
in T .

The simplest example of a theory T2 as used in the above proof is the “disjoint
union of e–copies of the n–th power of the identity”: Let X be an infinite set,
Y1,. . . ,Ye be disjoint of copies of Xn and ∆ the diagonal of Y1. Then consider
the structure

(M,Y1, . . . , Ye,∆, f1, . . . , fe)

where M is the disjoint union of the Yj and fj is the canonical bijection between
∆n and Yj .

The above proof shows that every good theory of rank n and degree e with
a partition P1 ∪ · · · ∪ Pe into definable sets of degree 1 has a good conservative
expansion of index 1 which contains a strongly minimal set X such that each Pj

is in definable bijection with Xn. This yields

Corollary 1.4. Let T be a good theory and X and Y be two sets of maximal
rank and the same degree. Then T has a good conservative expansion of index
1 with a definable bijection between X and Y .

Let T be a good theory of rank N with a definable bijection between the
universe and the N–th power of a strongly minimal set X. Then the rank of
every good expansion of T is a multiple of N . This shows that in Theorem 1.1
one has to assume that N is a common multiple of the ranks of T1 and T2, even
if one is not interested in the conservativeness of the expansions. A contrasting
example is the case where the languages of the Ti have only unary predicates.
Then the rank of a completion of T1 ∪ T2 is bounded by MR(T1) + MR(T2)− 1.
So, in 1.1, one has in general to increase the language to find an expansion
whose rank is a common multiple of the ranks of T1 and T2.

I don’t know if the last corollary remains true, if one assumes only that X
and Y have the same rank (and degree). The following theorem can be used to
prove a weaker result.

Theorem 1.5. Let T be a two-sorted theory with sorts Σ1 and Σ2. Let T1 =
T ¹ Σ1 be the theory of the full induced structure on Σ1 and T ∗1 a conservative
expansion of T1 of index 1. Assume that T and T ∗1 have definable finite rank.
Then T ∗ = T ∗1 ∪ T is a conservative expansion of T of index 1 which has again
definable rank.
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There are examples where T and T ∗1 have the DMP, but T ∗ has not.

Corollary 1.6. Let T be a good theory and X and Y be two sets of the same
rank and the same degree. Then T has a conservative expansion of T ∗ of index
1 with a definable bijection between X and Y . T ∗ has definable rank.

Proof. Let T ′ be the following (good) theory with sorts Σ1 and Σ2: Σ2 is a model
of T ; Σ1 is a disjoint union of two predicates X ′ and Y ′; there are bijections
between X and X ′ and between Y and Y ′. In T ′1 = T ′ ¹ Σ1, X ′ and Y ′ have
maximal rank and same degree. By 1.4 T ′1 has a good conservative expansion
T ′∗1 of index 1 with a definable bijection between X ′ and Y ′. T ∗ = (T ′∪T ′∗1 ) ¹ Σ2

has the required properties.

In [4, Theorem 18] it is proved that for any m and n, any two good strongly
minimal sets can be glued together to form a two–sorted structure, where both
sets have rank one and there is a definable m-to-n function between them. By
Remark 3 of [4] the proof “generalizes to finite-rank”. A. Hasson has told me
that the generalized proof shows that the union of two good theories of finite
rank has a completion of finite rank. Since here the theories may have different
degree, the expansions are in general not conservative.

2 Proof of Theorem 1.1

Theorem 1.1 follows from the next theorem, which we will prove in this section.

Theorem 2.1. Let T1 and T2 be to good theories in disjoint languages L1 and
L2 with ranks N1 ≤ N2 and of degree e, and N be the least common multiple of
N1 and N2. In Ti let the predicates P 1

i , . . . , P
e
i define a partition of the universe

into sets of degree 1. Assume also that T1 satisfies

(*)
If N1 divides N2 = N , then each non-algebraic element is interalgebraic
with infinitely many other elements. Otherwise, the universe is is a union
of infinite ∅–definable Q–vector spaces V0, . . . , Vl.

Then T1 ∪ T2 has a completion T of rank N which implies P j
1 = P j

2 and is a
good conservative expansion of T1 and T2.

Proof of 1.1. Denote the construction in 2.1 by T1 + T2. Let now T1 and T2

be as in 1.1. By adding constants we may assume that the predicates P j
i are

present. Let T0 be the theory of the disjoint union of e infinite Q–vector spaces.
T0 has rank 1 and degree e. Let N ′ be the least common multiple of the ranks
of T1 and T2. Then

T ′ = (T0 + T1) + T2

is a good conservative expansion of T1 ∪ T2 of rank N ′. Finally set T = T ′ + T3

for any good theory T3 of rank N and degree e.

Actually we need the proposition only in the case that N1 divides N2. We
have stated it in stronger form, since the proof can be given by a direct appli-
cation of Hrushovski’s fusion machinery to T1 and T2.
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It is easy to see that, by naming parameters3, we may assume the following.

(**) If N1 = N2, for each j, the theory T2 has infinitely many 1–types over ∅
of rank N2 − 1 which contain P j

2 (x).

2.1 Hrushovki’s machinery

In this section we will develop the theory without using the assumptions (*)
and (**). This is a straightforward4 generalization of sections 2–6 of [3]. We
will omit most of the proofs.

2.1.1 Codes (see [3], Section 2)

Let T be a good theory of degree e with predicates P 1, . . . , P e which define a
partition of the universe in sets of degree 1. We call a formula χ(x, b) simple, if

• it has degree 1,

• the components of a generic realization are pairwise different and not
algebraic over b.

A code c is a parameter-free formula

φc(x, y),

where |x| = nc and y lies in some sort of T eq, with the following properties.

(i) φc(x, b) is either empty5 or simple. Furthermore there are indices ec,i such
that φc(x, y) implies that the xi are pairwise different and P ec,1(x1)∧· · ·∧
P ec,nc (xnc).

(ii) All non-empty φc(x, b) have Morley rank kc and Morley degree 1.

(iii) For each subset s of {1, . . . , nc} there exists an integer kc,s such that for
every realization a of φc(x, b)

MR(a/bas) ≤ kc,s,

and equality holds for generic a.6

(iv) If both φc(x, b) and φc(x, b′) are non-empty and φc(x, b) ∼kc φc(x, b′)7,
then b = b′.

Lemma 2.2. Let χ(x, d) be a simple formula. Then there is some code c and
some b0 ∈ dcleq(d) such that χ(x, d) ∼kc φc(x, b0).

We say that c encodes χ(x, d).

3We can forget the new constants after the construction of T . So, the language is not
increased.

4 For the convenience of the reader many definition and statements are copied verbatim
from [3].

5We assume that φc(x, b) is non-empty for some b.
6as = {ai|i ∈ s}
7This means that the Morley rank of the symmetric difference of φc(x, b) and φc(x, b′) is

smaller than kc.
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Proof. As the proof of [3, 2.2]. Note is that, by definability of rank, the rank is
additive

MR(ab/B) = MR(a/Bb) + MR(b/B).

(see e.g. [7, 4.4]).

Let c be a code, φc(x, b) non-empty and p ∈ S(b) the (stationary) type of
rank kc determined by φc(x, b). (iv) implies that b is the canonical base of p.
Hence, b lies in the definable closure of a sufficiently large segment of a Morley
sequence of p (which we call a Morley sequence of φc(x, b).) Let mc be some
upper bound for the length of such a segment. Note that one can always bound
mc by the rank of the sort of y in φc(x, y).

Lemma 2.3. For every code c and every integer µ ≥ mc − 1 there exists some
formula Ψc(x0, . . . , xµ, y) without parameters satisfying the following:

(v) Given a Morley sequence e0, . . . , eµ of φc(x, b), then |= Ψc(e0, . . . , eµ, b).

(vi) For all e0, . . . , eµ, b realizing Ψc the ei’s are pairwise disjoint realizations
of φc(x, b).

(vii) Let e0, . . . , eµ, b realize Ψc. Then b lies in the definable closure of any mc

many of the ei’s.

We say for Ψc(x0, . . . , xµ, y) that “x0, . . . , xµ is a pseudo Morley sequence of
c over y”.

Proof. As the proof of [3, 2.3].

We choose for every code (and every µ) a formula Ψc as above.

Let c be a code and σ some permutation of {1, . . . , nc}. Then cσ defined by

φcσ (xσ, y) = φc(x, y)

is also a code. Similarly,

Ψcσ (x̄σ, y) = Ψc(x̄, y)

defines a pseudo Morley sequence of cσ.

We call two codes c and c′ equivalent if nc = nc′ , mc = mc′ and

• for every b there is some b′ such that φc(x, b) ≡ φc′(x, b′) and Ψc(x̄, b) ≡
Ψc′(x̄, b′) in T ,

• similarly permuting c and c′.

Theorem 2.4. There is a collection of codes C such that:

(viii) Every simple formula can be encoded by exactly one c ∈ C.

(ix) For every c ∈ C and every permutation σ, cσ is equivalent to a code in C.

Proof. As the proof of [3, 2.4]. Note that we may have to change the Ψc.
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2.1.2 The δ–function (see [3], Section 3)

Let T1 and T2 be two good theories as in Theorem 1.1. We assume that the
Ti has quantifier elimination in the relational language Li. To deal with the
predicates P j

i in an effective way we replace both P j
1 and P j

2 by P j . Then L1

and L2 intersect in L0 = {P1, . . . , Pe} and T1 and T2 intersect in the theory of
a partition of the universe into e infinite sets.

Define K to be the class of all models of T1,∀ ∪ T2,∀. We allow also ∅ to be
in K.

Let Ni be rank of Ti, N = lcm(N1, N2) and N = ν1N1 = ν2N2. We define
for finite A ∈ K

(2.1) δ(A) = ν1 MR1(A) + ν2 MR2(A)−N · |A|.

By additivity of rank δ has the following properties.

δ(∅) = 0
(2.2)

δ({a}) ≤ N for single elements a
(2.3)

δ(A ∪B) + δ(A ∩B) ≤ δ(A) + δ(B)
(2.4)

(2.3) is a special case of

(2.5) δ(a/B) ≤ νi MRi(a/B), (i = 1, 2),

which holds for arbitrary tuples a.
If A \B is finite, we set

δ(A/B) = ν1 MR1(A/B) + ν2 MR2(A/B)−N |A \B|.

For finite B, it follows that δ(A/B) = δ(A ∪B)− δ(B).

B is strong in A if B ⊂ A and δ(A′/B) ≥ 0 for all finite A′ ⊂ A. We denote
this by

B ≤ A.

B � A is minimal if B ≤ A′ ≤ A for no A′ properly contained between B and
A. a is algebraic over B, if a/B is algebraic in the sense of T1 or T2. A/B is
non-algebraic if no a ∈ A \B is algebraic over B.

Lemma 2.5. B ≤ A is minimal iff δ(A/A′) < 0 for all A’ which lie properly
between B and A.

Proof. As the proof of [3, 3.1].

Lemma [3, 3.2] is not longer true, instead we have

Lemma 2.6. Let B ≤ A be a minimal extension. There are three cases

(I) δ(A/B) = 0, A = B ∪ {a} for an element a ∈ A \ B, which is algebraic
over B. ( algebraic simple extension)
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(II) δ(A/B) = 0, A/B is non-algebraic. (prealgebraic extension)

(III) A/B is non-algebraic and 1 ≤ δ(A/B) ≤ N , ( transcendental extension).
If δ(A/B) = N , we have A = B∪{a} for an element a with MRi(a/B) =
Ni for i = 1, 2. ( transcendental simple extension8)

Proof. Assume first that A/B is algebraic. That means that some element
a ∈ A \ B is algebraic over B. This implies δ(a/B) = 0 and B ∪ {a} ≤ A. So
we are in case (I).

Now assume that A/B is transcendental and δ(A/B) ≥ N . Since δ(a/B) ≤
N for all elements a ∈ A \B, Lemma 2.5 implies B ∪ {a} = A.

Note that, unlike the situation in [3], there may be prealgebraic extensions
A/B by single elements if N1 and N2 are not relatively prime. We do not call
these extensions “simple”.

Remark. If N1 and N2 are relatively prime, each strong extension by a single
element is simple.

Proof. Let A = B∪{a} be a strong extension of B. If δ(A/B) > 0, the extension
is transcendental simple. Otherwise

ν1 MR1(a/A) + ν2 MR2(a/A) = N2 MR1(a/A) +N1 MR2(a/A) = N.

It follows that MR1(a/A) is divisible by N1 and MR2(a/A) is divisible by N2.
Whence either MR1(a/A) or MR2(a/A) must be zero. So A/B is algebraic
simple.

We will work in the class

K0 = {M ∈ K|∅ ≤M}.

Fix an element M of K0. We define for finite subsets of M .

d(A) = min
A⊂A′⊂M

δ(A′).

d satisfies (2.2), (2.3), (2.4) and

d(A) ≥ 0
(2.6)

A ⊂ B ⇒ d(A) ≤ d(B)
(2.7)

We define

d(A/B) = d(AB)− d(B) = δ(cl(AB)/ cl(B)),

where cl(A), the closure of A, is the smallest strong subset of M which extends
A. Note that the closure of a finite set is again finite (cf. [3, 3.4]).

8A transcendental simple extension is a transcendental extension by a single element. Note
that simple extensions are not related to simple formulas.
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2.1.3 Prealgebraic codes (see [3], Section 4)

For each Ti fix a set Ci of codes as in 2.4. We may assume that all φc and Ψc

are quantifier free.
A prealgebraic code is a pair c ∈ C1 × C2 such that

• nc = nc1 = nc2

• ec1,j = ec2,j for all j ∈ {1, . . . , nc}.
• ν1kc1 + ν2kc2 −N · nc = 0

• ν1kc1,s + ν2kc2,s − N(nc − |s|) < 0 for all non-empty proper subsets s of
{1, . . . , nc}.

Set mc = max(mc1 ,mc2) and for each permutation σ cσ = (cσ1 , c
σ
2 ). cσ is

again prealgebraic.

Some explanatory remarks: T eq
1 and T eq

2 share only their home sort. An ele-
ment b ∈ dcleq(B) is a pair b = (b1, b2) with bi ∈ dcleqi(B) for i = 1, 2. Likewise
for acleq(B). A generic realization of φc(x, b) (over B) is a generic realization
of φci(x, bi) (over B) in Ti for i = 1, 2. A Morley sequence of φc(x, b) is a
Morley sequence both of φc1(x, b1) and φc2(x, b2). A pseudo Morley sequence
of c over b is a realization of both Ψc1(x̄, b1) and Ψc2(x̄, b2). We say that M is
independent from A over B ifM is independent from A over B both in T1 and T2.

The following three lemmas are proved as Lemmas 4.1, 4.2 and 4.3 in [3].

Lemma 2.7. Let B ≤ B∪{a1, . . . , an} be a prealgebraic minimal extension and
a = (a1, . . . , an). Then there is some prealgebraic code c and b ∈ acleq(B) such
that a is a generic realization of φc(a, b).

Lemma 2.8. Let B ∈ K, c a prealgebraic code and b ∈ acleq(B). Take a
generic realization a = (a1, . . . , anc) of φc(x, b) over B. Then B ∪ {a1, . . . , anc}
is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.

Lemma 2.9. Let B ⊂ A in K, c a prealgebraic code, b in acleq(B) and a ∈ A
a realization of φc(x, b) which does not lie completely in B. Then

1. δ(a/B) ≤ 0.

2. If δ(a/B) = 0, then a is a generic realization of φc(x, b) over B.

The next Lemma is the analogue of [3, 4.4].

Lemma 2.10. Let M ≤ N an extension in K and e0, . . . , eµ ∈ N a pseudo
Morley sequence of c over b. Then one of the following holds:

• b ∈ dcleq(M)

• more than µ−mc · (N(nc − 1) + 1) many of the ei lie in N \M .
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Proof. If b is not in dcleq(M), less than mc many of the ei lie in M . Let r be the
number of elements not in N \M . We change the indexing so that ei ∈ N \M
implies i ≥ r and ei ∈ M implies i < (mc − 1). By Lemma 2.9 we have
δ(ei/Me0, . . . , ei−1) < 0 for all i ∈ [mc, r). This implies, for m = min(mc, r),

0 ≤ δ(e0, . . . , er−1/M) ≤ δ(e0, . . . , em−1/M)− (r −mc).

On the other hand we have δ(e0, . . . , em−1/M) ≤ N ·m · (nc− 1), which implies

r ≤ N ·m · (nc − 1) +mc ≤ N ·mc · (nc − 1) +mc.

2.1.4 The class Kµ (see [3], Section 5)

Choose a function µ∗ from prealgebraic codes to natural numbers similar to
section 5 of [3]. µ∗ must satisfy µ∗(c) ≥ mc − 1 and be finite-to-one for every
fixed nc. Also we must have µ∗(c) = µ∗(d), if c is equivalent to a permutation
of d. Then set

µ(c) = mc · (N(nc − 1) + 1) + µ∗(c).

From now on, a pseudo Morley sequence denotes a pseudo Morley sequence of
length µ(c) + 1 for a prealgebraic code c.

The class Kµ consists of the all structures in K0 which do not contain any
pseudo Morley sequence.

The following lemma and its corollary have the same proofs as their ana-
logues [3, 5.1] and [3, 5.2].

Lemma 2.11. Let B be a finite strong subset of M ∈ Kµ and A/B a prealgebraic
minimal extension. Then there are only finitely many B–isomorphic copies of
A in M .

Corollary 2.12. Let B ≤M ∈ Kµ, B ⊂ A finite with δ(A/B) = 0. Then there
are only finitely many A′ such that: B ≤ A′ ⊂ M and A′ is B-isomorphic to
A.

Lemma [3, 5.4] may be wrong here. We have instead:

Lemma 2.13. Let M ∈ Kµ and N a simple extension of M . Then N ∈ Kµ.

Proof. Let (ei) ∈ N a pseudo Morley sequence of c over b. At least µ(c) of the
ei lie in M . Since µ(c) ≥ mc, we have b ∈ dcleq(M). Since M belongs to Kµ,
one ei does not lie in M . By 2.9 we conclude that ei is disjoint from M and
a generic realization of φc(x, b). So nc = 1 and N/M is prealgebraic, i.e. not
simple.

Proposition 2.14. Kµ has the amalgamation property with respect to strong
embeddings.

Proof. The proof is the same as the proof of [3, 5.5], the main ingredient being
Lemma 2.10. Only one point has to be checked: If A/B is strong and a ∈ A is
algebraic over b, say in the sense of T1, then tp2(a/B) is uniquely determined.
This is the case, since 0 ≤ δ(a/B) = ν2 MR2(a/B)−N ≤ ν2N2−N = 0 implies
that MR2(a/B) = N2. On the other hand, tp1(a/B) implies a ∈ P j for some j.
So the T2–type of a/B is uniquely determined since P j has degree 1 in T2.
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The proof has the following corollary.

Corollary 2.15. Two strong extensions B ≤ M and B ≤ A in Kµ can
be amalgamated in M,A ≤ M ′ ∈ Kµ such that δ(M ′/M) = δ(A/B) and
δ(M ′/A) = δ(M/B).

A structure M ∈ Kµ is rich if for every finite B ≤ M and every finite
B ≤ A ∈ Kµ there is some B-isomorphic copy of A in M . We will show in the
next section that rich structures are models of T1 ∪ T2.

Corollary 2.16. There is a unique (up to isomorphism) countable rich struc-
ture Kµ. Any two rich structures are (L1 ∪ L2)∞,ω–equivalent.

2.1.5 The theory Tµ (see [3], Section 6)

Lemma 2.17. Let M ∈ Kµ, b ∈ acleq(M), a |= φc(x, b) generic over M and
M ′ the prealgebraic minimal extension M ∪ {a1, · · · anc

}. If M ′ is not in Kµ,
then one of the following hold.

(a) M ′ contains a pseudo Morley sequence of c over b, all whose elements but
possibly one are contained in M .

(b) M ′ contains a pseudo Morley sequence for some code c′ with more than
µ∗(c′) many elements in M ′ \M .

Proof. As in the proof of [3, 6.1], this follows from 2.9 and 2.10.

As in [3], Lemmas 2.7, 2.8 and 2.17 imply that we can describe all M with
the following properties by an elementary theory Tµ.

Axioms of Tµ.

(a) M ∈ Kµ

(b) T1 ∪ T2

(c) M has no prealgebraic minimal extension in Kµ.

To prove the analogue of Theorem [3, 6.3], which says that the rich struc-
tures are the ω–saturated models of Tµ we need the assumptions (*) and (**).
Whithout this we can only show9

Lemma 2.18. Rich structures are models of Tµ.

Proof. Let K be rich. Consider an quantifier free L1–formula χ(x) with pa-
rameters in K which is T1–consistent. Let B be a finite strong subset of K
which contains the parameters. If χ(x) is not realized in B, realize χ(x) by
a new element a and define the structure A = B ∪ {a} in such a way that
MR2(a/B) = N2. Then δ(a/B) = ν1 MR1(a/B), so B ≤ A and A/B is simple.
So by 2.13 B belong to Kµ. Since K is rich, it contains a copy of A/B. This
proves that χ(x) is realized in K. This shows that K is model of T1. The same
proof shows that K is also a model of T2.

Axiom (c) is proved like in the proof of [3, 6.3].
9 It is conceivable that T µ might be incomplete. We even do not know wether T µ has an

ω–stable completion. (This question was raised by the referee.)
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2.2 Poizat’s argument

We assume now conditions (*) and (**) of Theorem 2.1. We want to show that
ω–saturated models of Tµ are rich. We start with two lemmas.

Lemma 2.19. T1 has the following property. Let M1 > 0 and M2 be two natural
numbers, a an element of an ∅–definable Q–vector space Vα. Let B be a set of
parameters such that Vα contains elements which are of rank 1 over B. Then
there are elements c1, . . . , cM2 of Vα such that for all s ⊂ {1, . . . ,M2}

min(M1, |s|) ≤ MR1(cs/Ba) ≤M1

(2.8)

and, if |s| > M1

MR1(cs/B) = MR1(cs/Ba) + MR1(a/B).
(2.9)

Proof. We start with a sequence v1, . . . , vM2 of elements of QM1 such that

• any M1 elements of the sequence are Q–linearly independent,

• any M1 + 1 elements of the sequence are linearly dependent, but affinely
independent.

Then we choose any B–independent sequence ē = (e1, . . . , eM1) of elements of
Vα which have rank 1 over B, such that ē is independent from a over B We
consider ē as a column vector and the vi as a row vectors and define

ci = vi · ē+ a.

Since all ci are algebraic over Baē, it is clear that

MR1(cs/Ba) ≤ MR1(ē/Ba) = M1.

To show min(M1, |s|) ≤ MR1(cs/Ba), we may assume that |s| ≤ M1. Since
the vi, i ∈ s are linearly independent there is a subsequence ē′ of ē of length
M1 − |s| such that the elements of ē′ and vs · ē span the same Q–vector space
as the elements of ē. So we have

M1 = MR1(ē/Ba) = MR1(ē′, vs · ē/Ba) ≤ (M1 − |s|) + MR1(vs · ē/Ba)

and hence
|s| ≤ MR1(vs · ē/Ba) = MR1(cs/Ba).

The last equation follows from the fact that each M1 + 1 many of the ei span
an affine subspace which contains a. The reason for this is that the according
vi are linearly dependent, but affinely independent, and therefore span an affine
space which contains 0.

Lemma 2.20. If N1 = N2, T2 has the following property. Let B be any set of
parameters, and p be the type over B of an M2–tuple of independent elements of
rank N2 over B. Then p is the limit of types of tuples of independent elements
of rank N2 − 1 over B.
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Proof. We indicate the proof forM2 = 2. Let p = tp(a1a2/B) and φ(x1, x2) ∈ p.
The formula φ1(x1) = “ MRx2 φ(x1, x2) ≥ N ′′

2 has rank N2. Therefore, by (**),
there is a type q1 over B which has rank N2 − 1 and contains φ1(x1). Let b1
be a realization of q1. By the open mapping theorem, and (**) again, φ(b1, x2)
contains a type q2 over Bb1, of rank N2−1 which does not fork over B. Realize
q2 by b2. The type of b1b2 over B contains φ, b1 and b2 are independent and of
rank N2 − 1 over B.

Proposition 2.21. The rich structures are exactly the ω–saturated models of
Tµ.

Proof. That rich structure are models of Tµ was proved in 2.18. As in the proof
of [3, 6.3] one sees that it suffices to prove that ω–saturated models of Tµ are
rich. So let K be an ω–saturated model, B ≤ K finite and B ≤ A a minimal
extension which belongs to Kµ. We show that A/B can be strongly embedded
in K by induction over d = δ(A/B).

If d = 0 the extension is algebraic or prealgebraic and the claim follows
from 2.14, since K has no algebraic or prealgebraic extensions. So we assume
d > 0. All we use from the minimality of A/B in this case is that A 6= B and
δ(X/B) > 0 for all subsets of A, which are not contained in B.

We may assume that B is large enough to have, for each j, parameters for
an L2–formula in P j which has rank N2 − 1 in T2. Choose two numbers M1

and M2 such that
ν1M1 − ν2M2 = −1.

The Mi are uniquely determined if we impose the condition 0 ≤ M1 < ν2. We
have then

M1 =
ν2M2 − 1

ν1
< M2,

since ν2 ≤ ν1.
Let a be an arbitrary element of A \B. Since δ(a/B) > 0, a is not algebraic

over B.
If N1 divides N2, i.e. if ν2 = M2 = 1 and M1 = 0, we choose an element

c1 6∈ A, which is in the sense of T1 interalgebraic with a and has rank N2 over
A in the sense of T2. We set C = A ∪ {c1}. If N1 does not divide N2, we have
M1 > 0. We define then C = A∪{c1, . . . , cM2} where the ci are given by Lemma
2.19 and are – in the sense of T1 – independent from A over Ba. In the sense
of T2 they are chosen to be A–independent and of rank N2 − 1 over A.

We compute

δ(C/A) = ν1M1 + ν2M2(N2 − 1)−NM2 = ν1M1 − ν2M2 = −1.

Claim 1: B ≤ C. Proof: Let X be a set between B and A and Y be a subset
of {c1, . . . , cM2} of size y. Note that δ(XY/B) ≥ δ(Y/A) + δ(X/B) and by
equation (2.8) we have

δ(Y/A) ≥ ν1 min(M1, y) + ν2y(N2 − 1)−Ny = ν1 min(M1, y)− ν2y.

Case 1: y ≤M1. Then δ(XY/B) ≥ δ(Y/A) ≥ (ν1 − ν2)y ≥ 0.

Case 2: M1 < y. Then we have δ(Y/A) = ν1M1 − ν2y ≥ ν1M1 − ν2M2 = −1
and distinguish two cases: If X = B, then, by (2.9), MR1(Y/B) > MR1(Y/A)
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and therefore δ(XY/B) = δ(Y/B) > δ(Y/A) ≥ −1. If X is different from B we
have δ(XY/B) ≥ −1 + δ(X/B) ≥ 0. This proves the claim.

Claim 2: The closure of A in C equals C. Proof: Let Y be a proper subset of
{c1, . . . , cM2} of size y. We have to show that δ(Y/A) > −1. By the above this
is clear if y ≤M1. Otherwise we have

δ(Y/A) = ν1M1 − ν2y > ν1M1 − ν2M2 = −1.

This proves the claim.

It follows (if N1 does not divide N2, from the proof of Lemma 2.19) that
one can produce a sequence of extensions A ⊂ Ci like above such that the types
tp1(Ci/A) converge against a type tp1(D/A) where the elements d0, . . . , dM2

are of rank ≥ 1 and algebraically independent10 over A in the sense of T1. If
N1 < N2 we simply choose the types tp2(Ci/A) and tp2(D/A) to be all the
same and with components of rank N2 − 1 independent over A in the sense of
T2. If N1 = N2, it follows from Lemma 2.20 that we may assume that the types
tp2(Ci/A) converge to tp2(D/A) and that the di have rank N2 over A and are
independent over A in the sense of T2.

If N1 < N2, we have

δ(di/Ad0 . . . di−1) ≥ ν1 · 1 + ν2(N2 − 1)−N = ν1 − ν2 > 0.

If N1 = N2 we have for every i

δ(di/Ad0 . . . di−1) ≥ ν1 · 1 + ν2N2 −N = ν1 > 0.

So D is a strong extension of A which splits into a sequence of transcendental
simple extensions. So, by Lemma 2.13, D belongs to Kµ.

Claim: For large enough i we have Ci ∈ Kµ. Proof: Since the Ci have all the
same size, if Ci does not belong to Kµ and µ is finite-to-1 for fixed nc, there is a
certain finite set of prealgebraic codes which can be responsible for this. Since
D ∈ Kµ, almost all Ci belong to Kµ.

Now by induction for large enough i, Ci can be strongly embedded over B
into K. Since K is ω–saturated this implies that D can be strongly embedded
into K. Such an embedding also strongly embeds A, since A ≤ D.

Corollary 2.22. Tµ is complete. In models of Tµ two tuples have the same
type iff they have isomorphic closures.

Proof. Same as the proof of [3, 7.1].

2.3 Rank computation

Proposition 2.23. In Tµ we have for tuples a

MR(a/B) = d(a/B).

10It suffices that di is not in acl1(Ad0 . . . di−1).
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Proof. We prove first MR(a/B) ≤ d(a/B). Since the closure is algebraic we
may assume that B and A = B ∪ {a} are closed. Then d(a/B) = δ(a/B), so it
suffices to show that MR(a/B) ≤ δ(a/B) for all closed B and arbitrary a. We
do this by induction on d = δ(a/B).

Let M be an ω–saturated model, which contains B such that the (a priori
infinite) rank of a over M is the same as the rank of a over B. Then δ(a/M) ≤
δ(a/B) and by induction we may assume that δ(a/M) = d. Also we may assume
that a is disjoint from M . Write a = (a1, . . . , an).

Choose for i = 1, 2 an Li(M)-formula φi(x) ∈ tpi(a/M) with the following
properties.

(i) φi has degree 1

If a′ is any realization of φ(x), then

(ii) the components of a′ are pairwise different

(iii) MRi(a′/Ma′s) ≤ ki,s, where s is any subset of {1, . . . , n} and ki,s =
MRi(a/Mas).

It follows that MRi φi = ki,∅ = MRi(a/M).
Let a′ be any realization of φ(x, b) = φ1(x, b) ∧ φ2(x, b). The inequality

MR(a/M) ≤ d follows the from ω–saturation of M and the next claim.

Claim: Either MR(a′/M) < d or tp(a′/M) = tp(a/M).

Proof:
Case 1. δ(a′/M) < d. Then MR(a′/M) < d by induction.

Case 2. δ(a′/M) ≥ d. Set s = {i | a′i ∈M} consider the inequality

δ(a′/M) = ν1 ·MR1(a′/Ma′s) + ν2 MR2(a′/Ma′s)−N · (n− |s|)
≤ ν1 · k1,s + ν2k2,s −N · (n− |s|)
= δ(a/Mas) ≤ δ(a/M).

Our assumption implies MRi(a′/Ma′s) = ki,s and δ(a/Mas) = δ(a/M). The
latter implies δ(as/M) = 0, so as/M is algebraic in the sense of Tµ (2.12),
which is only possible if s is empty. So we have MRi(a′/M) = MRi(a/M),
which implies that a′ and a are isomorphic over M , and δ(a′/M) = d.

Case 2.1 M ∪{a′} is not closed. Then a′ has an extension a′′ with δ(a′′/M) < d.
It follows MR(a′/M) ≤ MR(a′′/M) < d by induction.

Case 2.2 M ∪ {a′} is closed. Then tp(a′/M) = tp(a/M).

Now we prove d(a/B) ≤ MR(a/B) by induction on d = d(a/B). We may
we may assume that B is finite, that B and B ∪{a} are closed and (using 2.15)
that B has, for each j, parameters for an L2–formula in P j which has rank
N2 − 1 in T2. If d = 0, there is nothing to show. If d > 0, we decompose A/B
into B ≤ B′ ≤ A, where B′ is maximal with δ(B′/B) = 0.

Now we can use the construction in proof of 2.21 to obtain a sequence of
extensions A ⊂ Ci and A ≤ D, such that B′ ≤ Ci, δ(Ci/A) = d − 1, all in

14



Kµ, such that Ci is the closure of A and the qf-types of the Ci over A converge
against the qf-type of D over A. We may assume that D is closed (in the
monster model). We also choose a copies C ′i of Ci over B′ which are closed.
Let A′i be the corresponding copy of A in C ′i. Since the types of the tp(C ′i/B)
converge against tp(D/B), the types tp(A′i/B) converge against tp(A/B). Now
d(A′i/B) = δ(C ′i/B) = d− 1, so by induction d− 1 ≤ MR(C ′i/B), which implies
d ≤ MR(A/B).

The referee has pointed out that our proof of MR(a/B) ≤ d(a/B) can be
rephrased as follows: It it easy to see that d–independence defines a notion of
independence. The claim in the proof of 2.23 shows that types over ω–saturated
models are isolated among the types of at least the same rank. This implies the
above inequality.

Lemma 2.24. Let φ(x) be an Li–formula (with parameters). Then

MRφ = νi MRi φ.

Proof. Consider i = 1, the case i = 2 works the same. Let φ(x) be defined over
the closed set B. If a is any realization of φ, we have by (2.5)

MR(a/B) ≤ δ(a/B) ≤ ν1 MR1(a/B) ≤ ν1 MR1 φ.

So MRφ ≤ ν1 MR1 φ. For the converse choose a generic realization a =
(a1, . . . , an) of φ. Choose tp2(a/B) of maximal possible rank11. Then clearly
δ(a/B) = ν1 MR1(a/B) = ν1 MR1 φ. Also, for every i, B ∪ {a1, . . . , ai} is equal
to, or a simple extension of, B ∪{a1, . . . , ai−1}. So, by 2.13, B ∪{a} belongs to
Kµ. We can therefore find B ∪ {a} as a closed subset of a model of Tµ. This
implies MR(a/B) = δ(a/B) = ν1 MR1 φ.

Lemma 2.25. Let φ(x) be an Li–formula (with parameters). Then

MDφ = MDi φ.

Proof. Consider i = 1. Let φ(x) be defined over the closed set B. We may
assume that φ is simple in the sense of T1. Let a be a realization of φ(x) with
MR(a/B) = MRφ. Then MR1(a/B) = MR1 φ, which determines tp1(a/B)
uniquely, since MD1 φ = 1. In the sense of T2 the ai are B–independent generic
elements of certain P j ’s, so the type tp2(a/B) is uniquely determined. Finally
B ∪ {a} must be closed. This implies that tp(a/B) is uniquely determined and
MDφ = 1.

2.4 Definable rank and degree

It remains to show that Tµ has definable rank and degree. If N1 does not
divide N2 the definability of rank follows from the fact that the universe of Tµ

is covered by a finite set of definable groups. We give a proof which works also
for the case N1|N2.

We use the following observation, due to M. Hils. Call a formula φ(x, b) of
rank n and degree 1 normal if b satisfies a formula θ(y) such that φ(x, b′) has
rank n and degree 1 for all realizations b′ of θ. A type is normal if it contains
a normal formula of the same rank. We have then

11This is N2 times the number of different ai’s
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Lemma 2.26. Let T be a complete theory of finite rank. Then

1. T has definable rank and degree iff every type over a model M is normal.

2. If tp(a, a′/M) is normal, and a′ is algebraic over Ma, then also tp(a/M)
is normal.

In 1. it suffices to consider ω–saturated models M . Also, if M is ω–saturated
and b ∈ M , then φ(x, b) is normal iff there is a θ(y) defined over M such that
φ(x, b′) has rank n and degree 1 for all b′ in θ(M).

Consider an ω–saturated model M of Tµ and a type p = tp(a/M) of rank
d = d(a/M). We want to show that p is normal. By 2.26.2 we may assume
that M ∪ {a} is closed, i.e. d = δ(a/M). We may also assume that a is disjoint
from M and that all components of a are different. Choose for each i = 1, 2
formulas φi(x,m) ∈ tpi(a/M) with properties (i), (ii), (iii) as in the first part of
the proof of proposition 2.23. Choose a formula θ(x) over M , which is satisfied
by m, such that for all m′ ∈ θ(M) the formulas φ(x,m′) satisfy (i), (ii), and
(iii) and MRi φi(x,m′) = ki,∅ for i = 1, 2. Let a′ be a generic realization of
φ(x,m′), which has a unique qf-type over M . Then δ(a′s/M) = δ(as/M) for all
s ⊂ {1, . . . , n}, especially δ(a′/M) = d. This implies that Mm′ = M ∪ {a′} is a
strong extension of M . One sees easily, like in [3, 6.2], that we can strengthen θ
to ensure that Mm′ ∈ Kµ12. So we can find a′ with Mm′ closed in the universe.
This implies MR(a′/M) = d.

The proof of 2.23 shows that for all realizations a′′ of φ(x,m′) either
MR(a′′/M) < d or tp(a′′/M) = tp(a′/M). This shows that φ(x,m′) has rank d
degree 1 and that φ(x,m) is normal.

This completes the proof of Theorem 2.1.

3 Proof of Theorem 1.5

We start with an easy lemma.

Lemma 3.1. Let T be a complete two–sorted theory with sorts Σ1 and Σ2.
Then the following are equivalent.

a) Σ1 is stably embedded.

b) Let T ∗1 be a one–sorted complete expansion of T1 = T ¹ Σ1. Then T ∗ = T ∗1 ∪T
is complete.

Proof. a)→b): Consider S = (S∗1 , S2) two saturated models S′ = (S′∗1 , S
′
2) of T ∗

of the same cardinality. Since T and T ∗1 are complete, there are isomorphisms
f : (S1, S2) → (S′1, S

′
2) and g : S∗1 → S′∗1 . f−1g ¹S1 is an automorphism of the

structure induced on S1. Since S1 is stably embedded, there is an extension of
12The argument is as follows. Decompose the extension M ≤ M∪{a} into a sequence of min-

imal extensions, where the prealgebraic extensions are given by codes c1, . . . , ck. Strengthen
θ so that the extensions M ≤ M ∪ {a′} are also composed of prealgebraic extension coming
from c1, · · · , ck. The argument of [3, 6.2] shows now that “M ∪ {a′} ∈ Kµ” is an elementary
property of m′.
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f−1g ¹S1 to an automorphism h of (S1, S2). Then fh is an isomorphism S → S′.

b)→a): This is not used in this article and left to the reader.

We fix for the rest of the section T , T1, T ∗1 and T ∗ be as in 1.5. Let L, L1,
L∗1 and L∗ = L∗1 ∪ L be the respective languages. We may assume that T1 has
elimination of imaginaries.13

The following lemma is due to Anand Pillay. We need only that Σ1 is stably
embedded.

Corollary 3.2. In T ∗ every L∗–formula Φ(x) is equivalent to a formula of the
form

ψ∗(t(x)),

where ψ∗(y) is an L∗1–formula and t is a T–definable function with values in
some power of Σ1.

Proof. Let S = (S1, S2) be a model of T , where S1 is a model of T1 and S∗ be
an expansion to a model of T ∗. Let a be a tuple from S. Since S1 is stably
embedded and has elimination of imaginaries, every a–definable relation on S1

has a canonical parameter in S1. B = dcl(a)∩S1 is the set of these parameters
and (S1, b)b∈B is the structure induced by (S, a) on S1.

By 3.1
Th(S∗, a) = Th(S1, b)b∈B ∪ Th(S, a).

This means that tp∗(a) is axiomatized by tp1(B) ∪ tp(a), which implies the
lemma.

Corollary 3.3. S∗1 is the structure induced by S∗ on S1.

Proof of Theorem 1.5: We prove the following claim by induction on k.

1) For every L–definable X with MRX ≤ k we have MRD∗X = MRDX.

2) For all L∗–formulas Φ(x, y) is “MR∗ Φ(x, b) = k” an L∗–elementary property
of b.

Case k = 0: Let Φ(x, b) be of the form ψ∗(t(x)), where ψ∗ and t are defined
from b. Consider t as a map S → S1. Then ψ∗(t(x)) is finite iff the L∗1–formula
∃x (y ·= t(x)∧ψ∗(y)) and all the fibers t(x) = a for |= ψ∗(a) are finite. This can
be elementarily expressed since finiteness can be expressed in T ∗1 and T . This
proves 2). 1) is clear.

Case k + 1:

1): Assume MRX ≤ k+1. If all L∗–definable subsets of X are L–definable, it is
clear that MRD∗X = MRDX. So assume that there is an L∗–definable A ⊂ X
which is not L–definable. By Corollary 3.2 there is an L–definable surjection
t : X → Y ⊂ Sn

1 and an L∗–definable B ⊂ Y such that A = t−1B. Since
MR is definable in T we can partition Y into finitely many L-definable sets

13For this we replace T1 by T eq
1 . Actually the sort Σ1 may be itself a many-sorted structure.
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on each of which the ranks of the fibers t−1y have constant rank. The inverse
image of this partition is an L–definable partition of X. Since it is enough to
prove 1) for each of the sets of the partition, we may assume that all fibers
of t have the same rank f . Since A is not L–definable, Y must be infinite.
So we have f = MRX − MRY ≤ k. By induction all fibers have T ∗–rank
f . Since, again by induction, all T ∗–ranks ≤ k are definable, it follows14 that
MR∗X = f + MR∗(Y ) = f + MRY = MRX.

To prove that MD∗X = MDX, we may assume that MDX = 1. We have
to show that MR∗(X \ A) < MRX for every L∗–definable A ⊂ X of T ∗–
rank MRX. This is clear if A is L–definable. If not, we choose Y , t and
B as above. Again we may assume that all fibers have rank f . We have
then MD∗ Y = MDY = 1. Since f ≤ k, we have again by induction that
MR∗B = MR∗A − f = MRX − f = MRY = MR∗ Y . So MR∗(X \ A) =
f + MR∗(Y \B) < f + MR∗(Y ) = f + MRY = MR(X).

2): Consider L∗–definable sets A ⊂ Sm. Let N be the T–rank of Sm. MR∗X ≥
k + 1 is

∧
–definable and

∨
–definable , since this is equivalent to “for all/some

L–definable t : Sm → Sn
1 with A = t−1B for B = t(A) there is a number f ≤ N

such that the T ∗–rank of Cf = {b ∈ B | MR(t−1b) = f} is ≥ k + 1 − f”. In
deed, if there is such a t and f , we have

MR∗A ≥ f + MR∗ Cf ≥ k + 1.

If conversely MR∗A ≥ k + 1 and t is such that A = t−1B for B = t(A), there
is a Cf such that MR∗ t−1Cf ≥ k+ 1. If MR∗ Cf ≤ k− f we would have f ≤ k
and by definability of T ∗–ranks ≤ k we have MR∗ t−1Cf = f + MR∗ Cf ≤ k.
So MR∗ Cf ≥ k + 1− f .

Finally let us state an open problem: Let T be a good theory with two sorts
Σ1 and Σ2 and T ′ be a conservative expansion of T ¹ Σ1. Does T ′∪T have finite
Morley rank?
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