Fusion of structures of finite Morleyrank*

Martin Ziegler

May 18, 2007

Abstract

Let T_{1} and T_{2} be two countable complete theories in disjoint languages, of finite Morley rank, the same Morley degree, with definable Morley rank and degree. Let N be a common multiple of the ranks of T_{1} and T_{2}. We show that $T_{1} \cup T_{2}$ has a nice complete expansion of Morley rank N.

1 Introduction

We call a countable complete L-theory T good if it has finite definable rank ${ }^{1}$ $n>0$ and definable degrec ${ }^{2}$. A conservative expansion T^{\prime} of T is a complete expansion of T, whose rank n^{\prime} is a multiple of n, such that for all L-formulas $\phi(x, b)$.

$$
\begin{aligned}
\operatorname{MR}_{T^{\prime}} \phi(x, b) & =\frac{n^{\prime}}{n} \mathrm{MR}_{T} \phi(x, b) \\
\operatorname{MD}_{T^{\prime}} \phi(x, b) & =\operatorname{MD}_{T} \phi(x, b)
\end{aligned}
$$

We call the quotient $\frac{n^{\prime}}{n}$ the index of the expansion.
In this note we will prove the following theorem.
Theorem 1.1. Let T_{1} and T_{2} be two good theories in disjoint languages of the same degree e and let N be a common multiple of their ranks. Then T_{1} and T_{2} have a common good conservative expansion T of rank N.

Furthermore, if in T_{i} the predicates $P_{i}^{1}, \ldots, P_{i}^{e}$ define a partition of the universe into sets of degree $1, T$ can be chosen to imply $P_{1}^{j}=P_{2}^{j}$ for $j=1, \ldots$, e.

If both, T_{1} and T_{2}, have rank and degree 1, this is Hrushovski's fusion [5], except that we allow the language of T to be larger than the union of the languages of T_{1} and T_{2}. The core of our proof is an adaption of the exposition of Hrushovski's fusion given in [3] and (in Section 2.2) of ideas from Poizat's 6].

As an immediate application we get an explanation of the title of Poizat's [6:

Corollary 1.2 (6,1$])$. In any characteristic there is an algebraically closed field K with a subset N such that (K, N) has rank 2.

[^0]Proof. Apply 1.1 for T_{1} the theory of algebraically closed fields of some fixed characteristic and for T_{2} any good theory of rank 2 and degree 1 , e.g. the "square of the identity".

For another account of 1.2 see [2].
Theorem 1.1 was motivated by the following surprising result of A. Hasson:
Corollary 1.3 ([4]). Every good theory can be interpreted in a good strongly minimal set.

Proof. Let T_{1} be a good theory of rank n and degree e. Consider any good theory T_{2} of rank n and degree e which can be interpreted in a strongly minimal set X defined in T_{2}. Use 1.1 to obtain a good theory T of rank n which conservatively expands T_{1} and $T_{2} . T_{2}$ is then interpreted in X, which is still strongly minimal in T.

The simplest example of a theory T_{2} as used in the above proof is the "disjoint union of e-copies of the n-th power of the identity": Let X be an infinite set, Y_{1}, \ldots, Y_{e} be disjoint of copies of X^{n} and Δ the diagonal of Y_{1}. Then consider the structure

$$
\left(M, Y_{1}, \ldots, Y_{e}, \Delta, f_{1}, \ldots, f_{e}\right)
$$

where M is the disjoint union of the Y_{j} and f_{j} is the canonical bijection between Δ^{n} and Y_{j}.

The above proof shows that every good theory of rank n and degree e with a partition $P_{1} \cup \cdots \cup P_{e}$ into definable sets of degree 1 has a good conservative expansion of index 1 which contains a strongly minimal set X such that each P_{j} is in definable bijection with X^{n}. This yields

Corollary 1.4. Let T be a good theory and X and Y be two sets of maximal rank and the same degree. Then T has a good conservative expansion of index 1 with a definable bijection between X and Y.

Let T be a good theory of rank N with a definable bijection between the universe and the N-th power of a strongly minimal set X. Then the rank of every good expansion of T is a multiple of N. This shows that in Theorem 1.1 one has to assume that N is a common multiple of the ranks of T_{1} and T_{2}, even if one is not interested in the conservativeness of the expansions. A contrasting example is the case where the languages of the T_{i} have only unary predicates. Then the rank of a completion of $T_{1} \cup T_{2}$ is bounded by $\operatorname{MR}\left(T_{1}\right)+\operatorname{MR}\left(T_{2}\right)-1$. So, in 1.1, one has in general to increase the language to find an expansion whose rank is a common multiple of the ranks of T_{1} and T_{2}.

I don't know if the last corollary remains true, if one assumes only that X and Y have the same rank (and degree). The following theorem can be used to prove a weaker result.

Theorem 1.5. Let T be a two-sorted theory with sorts Σ_{1} and Σ_{2}. Let $T_{1}=$ $T \upharpoonright \Sigma_{1}$ be the theory of the full induced structure on Σ_{1} and T_{1}^{*} a conservative expansion of T_{1} of index 1. Assume that T and T_{1}^{*} have definable finite rank. Then $T^{*}=T_{1}^{*} \cup T$ is a conservative expansion of T of index 1 which has again definable rank.

There are examples where T and T_{1}^{*} have the DMP, but T^{*} has not.
Corollary 1.6. Let T be a good theory and X and Y be two sets of the same rank and the same degree. Then T has a conservative expansion of T^{*} of index 1 with a definable bijection between X and $Y . T^{*}$ has definable rank.

Proof. Let T^{\prime} be the following (good) theory with sorts Σ_{1} and $\Sigma_{2}: \Sigma_{2}$ is a model of $T ; \Sigma_{1}$ is a disjoint union of two predicates X^{\prime} and Y^{\prime}; there are bijections between X and X^{\prime} and between Y and Y^{\prime}. In $T_{1}^{\prime}=T^{\prime} \upharpoonright \Sigma_{1}, X^{\prime}$ and Y^{\prime} have maximal rank and same degree. By $1.4 T_{1}^{\prime}$ has a good conservative expansion $T_{1}^{\prime *}$ of index 1 with a definable bijection between X^{\prime} and $Y^{\prime} . T^{*}=\left(T^{\prime} \cup T_{1}^{\prime *}\right) \upharpoonright \Sigma_{2}$ has the required properties.

In [4, Theorem 18] it is proved that for any m and n, any two good strongly minimal sets can be glued together to form a two-sorted structure, where both sets have rank one and there is a definable m-to- n function between them. By Remark 3 of [4] the proof "generalizes to finite-rank". A. Hasson has told me that the generalized proof shows that the union of two good theories of finite rank has a completion of finite rank. Since here the theories may have different degree, the expansions are in general not conservative.

2 Proof of Theorem 1.1

Theorem 1.1 follows from the next theorem, which we will prove in this section.
Theorem 2.1. Let T_{1} and T_{2} be to good theories in disjoint languages L_{1} and L_{2} with ranks $N_{1} \leq N_{2}$ and of degree e, and N be the least common multiple of N_{1} and N_{2}. In T_{i} let the predicates $P_{i}^{1}, \ldots, P_{i}^{e}$ define a partition of the universe into sets of degree 1. Assume also that T_{1} satisfies

If N_{1} divides $N_{2}=N$, then each non-algebraic element is interalgebraic (*) with infinitely many other elements. Otherwise, the universe is is a union of infinite \emptyset-definable \mathbb{Q}-vector spaces V_{0}, \ldots, V_{l}.
Then $T_{1} \cup T_{2}$ has a completion T of rank N which implies $P_{1}^{j}=P_{2}^{j}$ and is a good conservative expansion of T_{1} and T_{2}.

Proof of 1.1. Denote the construction in 2.1 by $T_{1}+T_{2}$. Let now T_{1} and T_{2} be as in 1.1. By adding constants we may assume that the predicates P_{i}^{j} are present. Let T_{0} be the theory of the disjoint union of e infinite \mathbb{Q}-vector spaces. T_{0} has rank 1 and degree e. Let N^{\prime} be the least common multiple of the ranks of T_{1} and T_{2}. Then

$$
T^{\prime}=\left(T_{0}+T_{1}\right)+T_{2}
$$

is a good conservative expansion of $T_{1} \cup T_{2}$ of rank N^{\prime}. Finally set $T=T^{\prime}+T_{3}$ for any good theory T_{3} of rank N and degree e.

Actually we need the proposition only in the case that N_{1} divides N_{2}. We have stated it in stronger form, since the proof can be given by a direct application of Hrushovski's fusion machinery to T_{1} and T_{2}.

It is easy to see that, by naming parameters ${ }^{3}$, we may assume the following.
If $N_{1}=N_{2}$, for each j, the theory T_{2} has infinitely many 1-types over \emptyset of rank $N_{2}-1$ which contain $P_{2}^{j}(x)$.

2.1 Hrushovki's machinery

In this section we will develop the theory without using the assumptions (*) and $(* *)$. This is a straightforward ${ }^{4}$ generalization of sections 2 6 of 3]. We will omit most of the proofs.

2.1.1 Codes (see [3], Section 2)

Let T be a good theory of degree e with predicates P^{1}, \ldots, P^{e} which define a partition of the universe in sets of degree 1 . We call a formula $\chi(x, b)$ simple, if

- it has degree 1 ,
- the components of a generic realization are pairwise different and not algebraic over b.

A code c is a parameter-free formula

$$
\phi_{c}(x, y),
$$

where $|x|=n_{c}$ and y lies in some sort of T^{eq}, with the following properties.
(i) $\phi_{c}(x, b)$ is either empty ${ }^{5 \sqrt{5}}$ or simple. Furthermore there are indices $e_{c, i}$ such that $\phi_{c}(x, y)$ implies that the x_{i} are pairwise different and $P^{e_{c, 1}}\left(x_{1}\right) \wedge \cdots \wedge$ $P^{e_{c, n_{c}}}\left(x_{n_{c}}\right)$.
(ii) All non-empty $\phi_{c}(x, b)$ have Morley rank k_{c} and Morley degree 1.
(iii) For each subset s of $\left\{1, \ldots, n_{c}\right\}$ there exists an integer $k_{c, s}$ such that for every realization a of $\phi_{c}(x, b)$

$$
\operatorname{MR}\left(a / b a_{s}\right) \leq k_{c, s}
$$

and equality holds for generic $a \cdot{ }^{[6]}$
(iv) If both $\phi_{c}(x, b)$ and $\phi_{c}\left(x, b^{\prime}\right)$ are non-empty and $\phi_{c}(x, b) \sim^{k_{c}} \phi_{c}\left(x, b^{\prime}\right)^{7}$, then $b=b^{\prime}$.

Lemma 2.2. Let $\chi(x, d)$ be a simple formula. Then there is some code c and some $b_{0} \in \operatorname{dcl}^{\mathrm{eq}}(d)$ such that $\chi(x, d) \sim^{k_{c}} \phi_{c}\left(x, b_{0}\right)$.
We say that c encodes $\chi(x, d)$.

[^1]Proof. As the proof of [3, 2.2]. Note is that, by definability of rank, the rank is additive

$$
\operatorname{MR}(a b / B)=\operatorname{MR}(a / B b)+\operatorname{MR}(b / B)
$$

(see e.g. [7, 4.4]).
Let c be a code, $\phi_{c}(x, b)$ non-empty and $p \in \mathrm{~S}(b)$ the (stationary) type of rank k_{c} determined by $\phi_{c}(x, b)$. (iv) implies that b is the canonical base of p. Hence, b lies in the definable closure of a sufficiently large segment of a Morley sequence of p (which we call a Morley sequence of $\phi_{c}(x, b)$.) Let m_{c} be some upper bound for the length of such a segment. Note that one can always bound m_{c} by the rank of the sort of y in $\phi_{c}(x, y)$.

Lemma 2.3. For every code c and every integer $\mu \geq m_{c}-1$ there exists some formula $\Psi_{c}\left(x_{0}, \ldots, x_{\mu}, y\right)$ without parameters satisfying the following:
(v) Given a Morley sequence e_{0}, \ldots, e_{μ} of $\phi_{c}(x, b)$, then $\models \Psi_{c}\left(e_{0}, \ldots, e_{\mu}, b\right)$.
(vi) For all $e_{0}, \ldots, e_{\mu}, b$ realizing Ψ_{c} the e_{i} 's are pairwise disjoint realizations of $\phi_{c}(x, b)$.
(vii) Let $e_{0}, \ldots, e_{\mu}, b$ realize Ψ_{c}. Then b lies in the definable closure of any m_{c} many of the e_{i} 's.

We say for $\Psi_{c}\left(x_{0}, \ldots, x_{\mu}, y\right)$ that " x_{0}, \ldots, x_{μ} is a pseudo Morley sequence of c over y ".

Proof. As the proof of [3, 2.3].
We choose for every code (and every μ) a formula Ψ_{c} as above.
Let c be a code and σ some permutation of $\left\{1, \ldots, n_{c}\right\}$. Then c^{σ} defined by

$$
\phi_{c^{\sigma}}\left(x^{\sigma}, y\right)=\phi_{c}(x, y)
$$

is also a code. Similarly,

$$
\Psi_{c^{\sigma}}\left(\bar{x}^{\sigma}, y\right)=\Psi_{c}(\bar{x}, y)
$$

defines a pseudo Morley sequence of c^{σ}.
We call two codes c and c^{\prime} equivalent if $n_{c}=n_{c^{\prime}}, m_{c}=m_{c^{\prime}}$ and

- for every b there is some b^{\prime} such that $\phi_{c}(x, b) \equiv \phi_{c^{\prime}}\left(x, b^{\prime}\right)$ and $\Psi_{c}(\bar{x}, b) \equiv$ $\Psi_{c^{\prime}}\left(\bar{x}, b^{\prime}\right)$ in T,
- similarly permuting c and c^{\prime}.

Theorem 2.4. There is a collection of codes C such that:
(viii) Every simple formula can be encoded by exactly one $c \in C$.
(ix) For every $c \in C$ and every permutation σ, c^{σ} is equivalent to a code in C.

Proof. As the proof of [3, 2.4]. Note that we may have to change the Ψ_{c}.

2.1.2 The δ-function (see [3], Section 3)

Let T_{1} and T_{2} be two good theories as in Theorem 1.1. We assume that the T_{i} has quantifier elimination in the relational language L_{i}. To deal with the predicates P_{i}^{j} in an effective way we replace both P_{1}^{j} and P_{2}^{j} by P^{j}. Then L_{1} and L_{2} intersect in $L_{0}=\left\{P_{1}, \ldots, P_{e}\right\}$ and T_{1} and T_{2} intersect in the theory of a partition of the universe into e infinite sets.

Define \mathcal{K} to be the class of all models of $T_{1, \forall} \cup T_{2, \forall}$. We allow also \emptyset to be in \mathcal{K}.

Let N_{i} be rank of $T_{i}, N=\operatorname{lcm}\left(N_{1}, N_{2}\right)$ and $N=\nu_{1} N_{1}=\nu_{2} N_{2}$. We define for finite $A \in \mathcal{K}$
(2.1) $\delta(A)=\nu_{1} \operatorname{MR}_{1}(A)+\nu_{2} \operatorname{MR}_{2}(A)-N \cdot|A|$.

By additivity of rank δ has the following properties.

$$
\begin{equation*}
\delta(\emptyset)=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\delta(\{a\}) \leq N \quad \text { for single elements } a \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\delta(A \cup B)+\delta(A \cap B) \leq \delta(A)+\delta(B) \tag{2.4}
\end{equation*}
$$

(2.3) is a special case of
$(2.5) \delta(a / B) \leq \nu_{i} \operatorname{MR}_{i}(a / B), \quad(i=1,2)$,
which holds for arbitrary tuples a.
If $A \backslash B$ is finite, we set

$$
\delta(A / B)=\nu_{1} \operatorname{MR}_{1}(A / B)+\nu_{2} \operatorname{MR}_{2}(A / B)-N|A \backslash B|
$$

For finite B, it follows that $\delta(A / B)=\delta(A \cup B)-\delta(B)$.
B is strong in A if $B \subset A$ and $\delta\left(A^{\prime} / B\right) \geq 0$ for all finite $A^{\prime} \subset A$. We denote this by

$$
B \leq A
$$

$B \nRightarrow A$ is minimal if $B \leq A^{\prime} \leq A$ for no A^{\prime} properly contained between B and A. a is algebraic over B, if a / B is algebraic in the sense of T_{1} or $T_{2} . A / B$ is non-algebraic if no $a \in A \backslash B$ is algebraic over B.

Lemma 2.5. $B \leq A$ is minimal iff $\delta\left(A / A^{\prime}\right)<0$ for all A^{\prime} which lie properly between B and A.

Proof. As the proof of [3, 3.1].
Lemma [3, 3.2] is not longer true, instead we have
Lemma 2.6. Let $B \leq A$ be a minimal extension. There are three cases
(I) $\delta(A / B)=0, A=B \cup\{a\}$ for an element $a \in A \backslash B$, which is algebraic over B. (algebraic simple extension)
(II) $\delta(A / B)=0, A / B$ is non-algebraic. (prealgebraic extension)
(III) A / B is non-algebraic and $1 \leq \delta(A / B) \leq N$, (transcendental extension). If $\delta(A / B)=N$, we have $A=B \cup\{a\}$ for an element a with $\operatorname{MR}_{i}(a / B)=$ N_{i} for $i=1,2$. (transcendental simple extensior ${ }^{88}$)

Proof. Assume first that A / B is algebraic. That means that some element $a \in A \backslash B$ is algebraic over B. This implies $\delta(a / B)=0$ and $B \cup\{a\} \leq A$. So we are in case (I).

Now assume that A / B is transcendental and $\delta(A / B) \geq N$. Since $\delta(a / B) \leq$ N for all elements $a \in A \backslash B$, Lemma 2.5 implies $B \cup\{a\}=A$.

Note that, unlike the situation in 3, there may be prealgebraic extensions A / B by single elements if N_{1} and N_{2} are not relatively prime. We do not call these extensions "simple".

Remark. If N_{1} and N_{2} are relatively prime, each strong extension by a single element is simple.

Proof. Let $A=B \cup\{a\}$ be a strong extension of B. If $\delta(A / B)>0$, the extension is transcendental simple. Otherwise

$$
\nu_{1} \operatorname{MR}_{1}(a / A)+\nu_{2} \operatorname{MR}_{2}(a / A)=N_{2} \operatorname{MR}_{1}(a / A)+N_{1} \operatorname{MR}_{2}(a / A)=N
$$

It follows that $\operatorname{MR}_{1}(a / A)$ is divisible by N_{1} and $\operatorname{MR}_{2}(a / A)$ is divisible by N_{2}. Whence either $\operatorname{MR}_{1}(a / A)$ or $\operatorname{MR}_{2}(a / A)$ must be zero. So A / B is algebraic simple.

We will work in the class

$$
\mathcal{K}^{0}=\{M \in \mathcal{K} \mid \emptyset \leq M\} .
$$

Fix an element M of \mathcal{K}^{0}. We define for finite subsets of M.

$$
\mathrm{d}(A)=\min _{A \subset A^{\prime} \subset M} \delta\left(A^{\prime}\right)
$$

d satisfies (2.2), (2.3), (2.4) and

$$
\begin{equation*}
\mathrm{d}(A) \geq 0 \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
A \subset B \Rightarrow \mathrm{~d}(A) \leq \mathrm{d}(B) \tag{2.7}
\end{equation*}
$$

We define

$$
\mathrm{d}(A / B)=\mathrm{d}(A B)-\mathrm{d}(B)=\delta(\mathrm{cl}(A B) / \mathrm{cl}(B))
$$

where $\operatorname{cl}(A)$, the closure of A, is the smallest strong subset of M which extends A. Note that the closure of a finite set is again finite (cf. [3, 3.4]).

[^2]
2.1.3 Prealgebraic codes (see [3], Section 4)

For each T_{i} fix a set C_{i} of codes as in 2.4. We may assume that all ϕ_{c} and Ψ_{c} are quantifier free.

A prealgebraic code is a pair $c \in C_{1} \times C_{2}$ such that

- $n_{c}=n_{c_{1}}=n_{c_{2}}$
- $e_{c_{1}, j}=e_{c_{2}, j}$ for all $j \in\left\{1, \ldots, n_{c}\right\}$.
- $\nu_{1} k_{c_{1}}+\nu_{2} k_{c_{2}}-N \cdot n_{c}=0$
- $\nu_{1} k_{c_{1}, s}+\nu_{2} k_{c_{2}, s}-N\left(n_{c}-|s|\right)<0$ for all non-empty proper subsets s of $\left\{1, \ldots, n_{c}\right\}$.

Set $m_{c}=\max \left(m_{c_{1}}, m_{c_{2}}\right)$ and for each permutation $\sigma c^{\sigma}=\left(c_{1}^{\sigma}, c_{2}^{\sigma}\right) . c^{\sigma}$ is again prealgebraic.

Some explanatory remarks: T_{1}^{eq} and T_{2}^{eq} share only their home sort. An element $b \in \operatorname{dcl}^{\text {eq }}(B)$ is a pair $b=\left(b_{1}, b_{2}\right)$ with $b_{i} \in \operatorname{dcl}^{\text {eq }}{ }_{i}(B)$ for $i=1,2$. Likewise for $\operatorname{acl}^{\text {eq }}(B)$. A generic realization of $\phi_{c}(x, b)$ (over B) is a generic realization of $\phi_{c_{i}}\left(x, b_{i}\right)$ (over B) in T_{i} for $i=1,2$. A Morley sequence of $\phi_{c}(x, b)$ is a Morley sequence both of $\phi_{c_{1}}\left(x, b_{1}\right)$ and $\phi_{c_{2}}\left(x, b_{2}\right)$. A pseudo Morley sequence of c over b is a realization of both $\Psi_{c_{1}}\left(\bar{x}, b_{1}\right)$ and $\Psi_{c_{2}}\left(\bar{x}, b_{2}\right)$. We say that M is independent from A over B if M is independent from A over B both in T_{1} and T_{2}.

The following three lemmas are proved as Lemmas 4.1, 4.2 and 4.3 in [3].
Lemma 2.7. Let $B \leq B \cup\left\{a_{1}, \ldots, a_{n}\right\}$ be a prealgebraic minimal extension and $a=\left(a_{1}, \ldots, a_{n}\right)$. Then there is some prealgebraic code c and $b \in \operatorname{acl}^{\text {eq }}(B)$ such that a is a generic realization of $\phi_{c}(a, b)$.

Lemma 2.8. Let $B \in \mathcal{K}$, c a prealgebraic code and $b \in \operatorname{acl}^{\mathrm{eq}}(B)$. Take a generic realization $a=\left(a_{1}, \ldots, a_{n_{c}}\right)$ of $\phi_{c}(x, b)$ over B. Then $B \cup\left\{a_{1}, \ldots, a_{n_{c}}\right\}$ is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.
Lemma 2.9. Let $B \subset A$ in \mathcal{K}, c a prealgebraic code, b in $\operatorname{acl}^{\mathrm{eq}}(B)$ and $a \in A$ a realization of $\phi_{c}(x, b)$ which does not lie completely in B. Then

1. $\delta(a / B) \leq 0$.
2. If $\delta(a / B)=0$, then a is a generic realization of $\phi_{c}(x, b)$ over B.

The next Lemma is the analogue of [3, 4.4.
Lemma 2.10. Let $M \leq N$ an extension in \mathcal{K} and $e_{0}, \ldots, e_{\mu} \in N$ a pseudo Morley sequence of c over b. Then one of the following holds:

- $b \in \operatorname{dcl}^{\text {eq }}(M)$
- more than $\mu-m_{c} \cdot\left(N\left(n_{c}-1\right)+1\right)$ many of the e_{i} lie in $N \backslash M$.

Proof. If b is not in $\operatorname{dcl}^{\text {eq }}(M)$, less than m_{c} many of the e_{i} lie in M. Let r be the number of elements not in $N \backslash M$. We change the indexing so that $e_{i} \in N \backslash M$ implies $i \geq r$ and $e_{i} \in M$ implies $i<\left(m_{c}-1\right)$. By Lemma 2.9 we have $\delta\left(e_{i} / M e_{0}, \ldots, e_{i-1}\right)<0$ for all $i \in\left[m_{c}, r\right)$. This implies, for $m=\min \left(m_{c}, r\right)$,

$$
0 \leq \delta\left(e_{0}, \ldots, e_{r-1} / M\right) \leq \delta\left(e_{0}, \ldots, e_{m-1} / M\right)-\left(r-m_{c}\right)
$$

On the other hand we have $\delta\left(e_{0}, \ldots, e_{m-1} / M\right) \leq N \cdot m \cdot\left(n_{c}-1\right)$, which implies

$$
r \leq N \cdot m \cdot\left(n_{c}-1\right)+m_{c} \leq N \cdot m_{c} \cdot\left(n_{c}-1\right)+m_{c} .
$$

2.1.4 The class \mathcal{K}^{μ} (see [3], Section 5)

Choose a function μ^{*} from prealgebraic codes to natural numbers similar to section [5] of [3]. μ^{*} must satisfy $\mu^{*}(c) \geq m_{c}-1$ and be finite-to-one for every fixed n_{c}. Also we must have $\mu^{*}(c)=\mu^{*}(d)$, if c is equivalent to a permutation of d. Then set

$$
\mu(c)=m_{c} \cdot\left(N\left(n_{c}-1\right)+1\right)+\mu^{*}(c) .
$$

From now on, a pseudo Morley sequence denotes a pseudo Morley sequence of length $\mu(c)+1$ for a prealgebraic code c.

The class \mathcal{K}^{μ} consists of the all structures in \mathcal{K}^{0} which do not contain any pseudo Morley sequence.

The following lemma and its corollary have the same proofs as their analogues [3, 5.1] and [3, 5.2].

Lemma 2.11. Let B be a finite strong subset of $M \in \mathcal{K}^{\mu}$ and A / B a prealgebraic minimal extension. Then there are only finitely many B-isomorphic copies of A in M.

Corollary 2.12. Let $B \leq M \in \mathcal{K}^{\mu}, B \subset A$ finite with $\delta(A / B)=0$. Then there are only finitely many A^{\prime} such that: $B \leq A^{\prime} \subset M$ and A^{\prime} is B-isomorphic to A.

Lemma [3, 5.4] may be wrong here. We have instead:
Lemma 2.13. Let $M \in \mathcal{K}^{\mu}$ and N a simple extension of M. Then $N \in \mathcal{K}^{\mu}$.
Proof. Let $\left(e_{i}\right) \in N$ a pseudo Morley sequence of c over b. At least $\mu(c)$ of the e_{i} lie in M. Since $\mu(c) \geq m_{c}$, we have $b \in \operatorname{dcl}^{\text {eq }}(M)$. Since M belongs to \mathcal{K}^{μ}, one e_{i} does not lie in M. By 2.9 we conclude that e_{i} is disjoint from M and a generic realization of $\phi_{c}(x, b)$. So $n_{c}=1$ and N / M is prealgebraic, i.e. not simple.

Proposition 2.14. \mathcal{K}^{μ} has the amalgamation property with respect to strong embeddings.

Proof. The proof is the same as the proof of [3, 5.5], the main ingredient being Lemma 2.10. Only one point has to be checked: If A / B is strong and $a \in A$ is algebraic over b, say in the sense of T_{1}, then $\operatorname{tp}_{2}(a / B)$ is uniquely determined. This is the case, since $0 \leq \delta(a / B)=\nu_{2} \mathrm{MR}_{2}(a / B)-N \leq \nu_{2} N_{2}-N=0$ implies that $\mathrm{MR}_{2}(a / B)=N_{2}$. On the other hand, $t p_{1}(a / B)$ implies $a \in P^{j}$ for some j. So the T_{2}-type of a / B is uniquely determined since P^{j} has degree 1 in T_{2}.

The proof has the following corollary.
Corollary 2.15. Two strong extensions $B \leq M$ and $B \leq A$ in \mathcal{K}^{μ} can be amalgamated in $M, A \leq M^{\prime} \in \mathcal{K}^{\mu}$ such that $\delta\left(M^{\prime} / M\right)=\delta(A / B)$ and $\delta\left(M^{\prime} / A\right)=\delta(M / B)$.

A structure $M \in \mathcal{K}^{\mu}$ is rich if for every finite $B \leq M$ and every finite $B \leq A \in \mathcal{K}^{\mu}$ there is some B-isomorphic copy of A in M. We will show in the next section that rich structures are models of $T_{1} \cup T_{2}$.

Corollary 2.16. There is a unique (up to isomorphism) countable rich structure K^{μ}. Any two rich structures are $\left(L_{1} \cup L_{2}\right)_{\infty, \omega}$-equivalent.

2.1.5 The theory T^{μ} (see [3], Section 6)

Lemma 2.17. Let $M \in \mathcal{K}^{\mu}, b \in \operatorname{acl}^{\text {eq }}(M), a \models \phi_{c}(x, b)$ generic over M and M^{\prime} the prealgebraic minimal extension $M \cup\left\{a_{1}, \cdots a_{n_{c}}\right\}$. If M^{\prime} is not in \mathcal{K}^{μ}, then one of the following hold.
(a) M^{\prime} contains a pseudo Morley sequence of c over b, all whose elements but possibly one are contained in M.
(b) M^{\prime} contains a pseudo Morley sequence for some code c^{\prime} with more than $\mu^{*}\left(c^{\prime}\right)$ many elements in $M^{\prime} \backslash M$.

Proof. As in the proof of $3,6.1$, this follows from 2.9 and 2.10 .
As in 3, Lemmas 2.7, 2.8 and 2.17 imply that we can describe all M with the following properties by an elementary theory T^{μ}.

Axioms of T^{μ}.

(a) $M \in \mathcal{K}^{\mu}$
(b) $T_{1} \cup T_{2}$
(c) M has no prealgebraic minimal extension in \mathcal{K}^{μ}.

To prove the analogue of Theorem [3, 6.3, which says that the rich structures are the ω-saturated models of T^{μ} we need the assumptions $\left(^{*}\right)$ and $\left({ }^{* *}\right)$. Whithout this we can only show ${ }^{9}$

Lemma 2.18. Rich structures are models of T^{μ}.
Proof. Let K be rich. Consider an quantifier free L_{1}-formula $\chi(x)$ with parameters in K which is T_{1}-consistent. Let B be a finite strong subset of K which contains the parameters. If $\chi(x)$ is not realized in B, realize $\chi(x)$ by a new element a and define the structure $A=B \cup\{a\}$ in such a way that $\operatorname{MR}_{2}(a / B)=N_{2}$. Then $\delta(a / B)=\nu_{1} \operatorname{MR}_{1}(a / B)$, so $B \leq A$ and A / B is simple. So by $2.13 B$ belong to \mathcal{K}^{μ}. Since K is rich, it contains a copy of A / B. This proves that $\chi(x)$ is realized in K. This shows that K is model of T_{1}. The same proof shows that K is also a model of T_{2}.

Axiom (c) is proved like in the proof of [3, 6.3].

[^3]
2.2 Poizat's argument

We assume now conditions $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ of Theorem 2.1. We want to show that ω-saturated models of T^{μ} are rich. We start with two lemmas.

Lemma 2.19. T_{1} has the following property. Let $M_{1}>0$ and M_{2} be two natural numbers, a an element of an \emptyset-definable \mathbb{Q}-vector space V_{α}. Let B be a set of parameters such that V_{α} contains elements which are of rank 1 over B. Then there are elements $c_{1}, \ldots, c_{M_{2}}$ of V_{α} such that for all $s \subset\left\{1, \ldots, M_{2}\right\}$

$$
\begin{equation*}
\min \left(M_{1},|s|\right) \leq \operatorname{MR}_{1}\left(c_{s} / B a\right) \leq M_{1} \tag{2.8}
\end{equation*}
$$

and, if $|s|>M_{1}$

$$
\begin{equation*}
\operatorname{MR}_{1}\left(c_{s} / B\right)=\operatorname{MR}_{1}\left(c_{s} / B a\right)+\operatorname{MR}_{1}(a / B) \tag{2.9}
\end{equation*}
$$

Proof. We start with a sequence $v_{1}, \ldots, v_{M_{2}}$ of elements of $\mathbb{Q}^{M_{1}}$ such that

- any M_{1} elements of the sequence are \mathbb{Q}-linearly independent,
- any $M_{1}+1$ elements of the sequence are linearly dependent, but affinely independent.

Then we choose any B-independent sequence $\bar{e}=\left(e_{1}, \ldots, e_{M_{1}}\right)$ of elements of V_{α} which have rank 1 over B, such that \bar{e} is independent from a over B We consider \bar{e} as a column vector and the v_{i} as a row vectors and define

$$
c_{i}=v_{i} \cdot \bar{e}+a
$$

Since all c_{i} are algebraic over $B a \bar{e}$, it is clear that

$$
\operatorname{MR}_{1}\left(c_{s} / B a\right) \leq \operatorname{MR}_{1}(\bar{e} / B a)=M_{1}
$$

To show $\min \left(M_{1},|s|\right) \leq \operatorname{MR}_{1}\left(c_{s} / B a\right)$, we may assume that $|s| \leq M_{1}$. Since the $v_{i}, i \in s$ are linearly independent there is a subsequence \bar{e}^{\prime} of \bar{e} of length $M_{1}-|s|$ such that the elements of \bar{e}^{\prime} and $v_{s} \cdot \bar{e}$ span the same \mathbb{Q}-vector space as the elements of \bar{e}. So we have

$$
M_{1}=\operatorname{MR}_{1}(\bar{e} / B a)=\operatorname{MR}_{1}\left(\bar{e}^{\prime}, v_{s} \cdot \bar{e} / B a\right) \leq\left(M_{1}-|s|\right)+\operatorname{MR}_{1}\left(v_{s} \cdot \bar{e} / B a\right)
$$

and hence

$$
|s| \leq \operatorname{MR}_{1}\left(v_{s} \cdot \bar{e} / B a\right)=\operatorname{MR}_{1}\left(c_{s} / B a\right)
$$

The last equation follows from the fact that each $M_{1}+1$ many of the e_{i} span an affine subspace which contains a. The reason for this is that the according v_{i} are linearly dependent, but affinely independent, and therefore span an affine space which contains 0 .

Lemma 2.20. If $N_{1}=N_{2}, T_{2}$ has the following property. Let B be any set of parameters, and p be the type over B of an M_{2}-tuple of independent elements of rank N_{2} over B. Then p is the limit of types of tuples of independent elements of rank $N_{2}-1$ over B.

Proof. We indicate the proof for $M_{2}=2$. Let $p=\operatorname{tp}\left(a_{1} a_{2} / B\right)$ and $\phi\left(x_{1}, x_{2}\right) \in p$. The formula $\phi_{1}\left(x_{1}\right)=" \mathrm{MR}_{x_{2}} \phi\left(x_{1}, x_{2}\right) \geq N_{2}^{\prime \prime}$ has rank N_{2}. Therefore, by (${ }^{* *}$), there is a type q_{1} over B which has rank $N_{2}-1$ and contains $\phi_{1}\left(x_{1}\right)$. Let b_{1} be a realization of q_{1}. By the open mapping theorem, and $\left({ }^{* *}\right)$ again, $\phi\left(b_{1}, x_{2}\right)$ contains a type q_{2} over $B b_{1}$, of rank $N_{2}-1$ which does not fork over B. Realize q_{2} by b_{2}. The type of $b_{1} b_{2}$ over B contains ϕ, b_{1} and b_{2} are independent and of rank $N_{2}-1$ over B.

Proposition 2.21. The rich structures are exactly the ω-saturated models of T^{μ}.

Proof. That rich structure are models of T^{μ} was proved in 2.18. As in the proof of [3, 6.3] one sees that it suffices to prove that ω-saturated models of T^{μ} are rich. So let K be an ω-saturated model, $B \leq K$ finite and $B \leq A$ a minimal extension which belongs to \mathcal{K}^{μ}. We show that A / B can be strongly embedded in K by induction over $d=\delta(A / B)$.

If $d=0$ the extension is algebraic or prealgebraic and the claim follows from 2.14, since K has no algebraic or prealgebraic extensions. So we assume $d>0$. All we use from the minimality of A / B in this case is that $A \neq B$ and $\delta(X / B)>0$ for all subsets of A, which are not contained in B.

We may assume that B is large enough to have, for each j, parameters for an L_{2}-formula in P^{j} which has rank $N_{2}-1$ in T_{2}. Choose two numbers M_{1} and M_{2} such that

$$
\nu_{1} M_{1}-\nu_{2} M_{2}=-1
$$

The M_{i} are uniquely determined if we impose the condition $0 \leq M_{1}<\nu_{2}$. We have then

$$
M_{1}=\frac{\nu_{2} M_{2}-1}{\nu_{1}}<M_{2},
$$

since $\nu_{2} \leq \nu_{1}$.
Let a be an arbitrary element of $A \backslash B$. Since $\delta(a / B)>0, a$ is not algebraic over B.

If N_{1} divides N_{2}, i.e. if $\nu_{2}=M_{2}=1$ and $M_{1}=0$, we choose an element $c_{1} \notin A$, which is in the sense of T_{1} interalgebraic with a and has rank N_{2} over A in the sense of T_{2}. We set $C=A \cup\left\{c_{1}\right\}$. If N_{1} does not divide N_{2}, we have $M_{1}>0$. We define then $C=A \cup\left\{c_{1}, \ldots, c_{M_{2}}\right\}$ where the c_{i} are given by Lemma 2.19 and are - in the sense of T_{1} - independent from A over $B a$. In the sense of T_{2} they are chosen to be A-independent and of rank $N_{2}-1$ over A.

We compute

$$
\delta(C / A)=\nu_{1} M_{1}+\nu_{2} M_{2}\left(N_{2}-1\right)-N M_{2}=\nu_{1} M_{1}-\nu_{2} M_{2}=-1 .
$$

Claim 1: $B \leq C$. Proof: Let X be a set between B and A and Y be a subset of $\left\{c_{1}, \ldots, c_{M_{2}}\right\}$ of size y. Note that $\delta(X Y / B) \geq \delta(Y / A)+\delta(X / B)$ and by equation (2.8) we have

$$
\delta(Y / A) \geq \nu_{1} \min \left(M_{1}, y\right)+\nu_{2} y\left(N_{2}-1\right)-N y=\nu_{1} \min \left(M_{1}, y\right)-\nu_{2} y
$$

Case 1: $y \leq M_{1}$. Then $\delta(X Y / B) \geq \delta(Y / A) \geq\left(\nu_{1}-\nu_{2}\right) y \geq 0$.
Case 2: $M_{1}<y$. Then we have $\delta(Y / A)=\nu_{1} M_{1}-\nu_{2} y \geq \nu_{1} M_{1}-\nu_{2} M_{2}=-1$ and distinguish two cases: If $X=B$, then, by (2.9), $\operatorname{MR}_{1}(Y / B)>\operatorname{MR}_{1}(Y / A)$
and therefore $\delta(X Y / B)=\delta(Y / B)>\delta(Y / A) \geq-1$. If X is different from B we have $\delta(X Y / B) \geq-1+\delta(X / B) \geq 0$. This proves the claim.

Claim 2: The closure of A in C equals C. Proof: Let Y be a proper subset of $\left\{c_{1}, \ldots, c_{M_{2}}\right\}$ of size y. We have to show that $\delta(Y / A)>-1$. By the above this is clear if $y \leq M_{1}$. Otherwise we have

$$
\delta(Y / A)=\nu_{1} M_{1}-\nu_{2} y>\nu_{1} M_{1}-\nu_{2} M_{2}=-1
$$

This proves the claim.
It follows (if N_{1} does not divide N_{2}, from the proof of Lemma 2.19) that one can produce a sequence of extensions $A \subset C_{i}$ like above such that the types $\operatorname{tp}_{1}\left(C_{i} / A\right)$ converge against a type $\operatorname{tp}_{1}(D / A)$ where the elements $d_{0}, \ldots, d_{M_{2}}$ are of rank ≥ 1 and algebraically independent ${ }^{10}$ over A in the sense of T_{1}. If $N_{1}<N_{2}$ we simply choose the types $\operatorname{tp}_{2}\left(C_{i} / A\right)$ and $\operatorname{tp}_{2}(D / A)$ to be all the same and with components of rank $N_{2}-1$ independent over A in the sense of T_{2}. If $N_{1}=N_{2}$, it follows from Lemma 2.20 that we may assume that the types $\operatorname{tp}_{2}\left(C_{i} / A\right)$ converge to $\operatorname{tp}_{2}(D / A)$ and that the d_{i} have rank N_{2} over A and are independent over A in the sense of T_{2}.

If $N_{1}<N_{2}$, we have

$$
\delta\left(d_{i} / A d_{0} \ldots d_{i-1}\right) \geq \nu_{1} \cdot 1+\nu_{2}\left(N_{2}-1\right)-N=\nu_{1}-\nu_{2}>0
$$

If $N_{1}=N_{2}$ we have for every i

$$
\delta\left(d_{i} / A d_{0} \ldots d_{i-1}\right) \geq \nu_{1} \cdot 1+\nu_{2} N_{2}-N=\nu_{1}>0
$$

So D is a strong extension of A which splits into a sequence of transcendental simple extensions. So, by Lemma 2.13, D belongs to \mathcal{K}^{μ}.

Claim: For large enough i we have $C_{i} \in \mathcal{K}^{\mu}$. Proof: Since the C_{i} have all the same size, if C_{i} does not belong to \mathcal{K}^{μ} and μ is finite-to- 1 for fixed n_{c}, there is a certain finite set of prealgebraic codes which can be responsible for this. Since $D \in \mathcal{K}^{\mu}$, almost all C_{i} belong to \mathcal{K}^{μ}.

Now by induction for large enough i, C_{i} can be strongly embedded over B into K. Since K is ω-saturated this implies that D can be strongly embedded into K. Such an embedding also strongly embeds A, since $A \leq D$.

Corollary 2.22. T^{μ} is complete. In models of T^{μ} two tuples have the same type iff they have isomorphic closures.

Proof. Same as the proof of [3, 7.1].

2.3 Rank computation

Proposition 2.23. In T^{μ} we have for tuples a

$$
\operatorname{MR}(a / B)=\mathrm{d}(a / B)
$$

[^4]Proof. We prove first $\operatorname{MR}(a / B) \leq \mathrm{d}(a / B)$. Since the closure is algebraic we may assume that B and $A=B \cup\{a\}$ are closed. Then $\mathrm{d}(a / B)=\delta(a / B)$, so it suffices to show that $\operatorname{MR}(a / B) \leq \delta(a / B)$ for all closed B and arbitrary a. We do this by induction on $d=\delta(a / B)$.

Let M be an ω-saturated model, which contains B such that the (a priori infinite) rank of a over M is the same as the rank of a over B. Then $\delta(a / M) \leq$ $\delta(a / B)$ and by induction we may assume that $\delta(a / M)=d$. Also we may assume that a is disjoint from M. Write $a=\left(a_{1}, \ldots, a_{n}\right)$.

Choose for $i=1,2$ an $L_{i}(M)$-formula $\phi_{i}(x) \in \operatorname{tp}_{i}(a / M)$ with the following properties.
(i) ϕ_{i} has degree 1

If a^{\prime} is any realization of $\phi(x)$, then
(ii) the components of a^{\prime} are pairwise different
(iii) $\operatorname{MR}_{i}\left(a^{\prime} / M a_{s}^{\prime}\right) \leq k_{i, s}$, where s is any subset of $\{1, \ldots, n\}$ and $k_{i, s}=$ $\mathrm{MR}_{i}\left(a / M a_{s}\right)$.

It follows that $\mathrm{MR}_{i} \phi_{i}=k_{i, \emptyset}=\mathrm{MR}_{i}(a / M)$.
Let a^{\prime} be any realization of $\phi(x, b)=\phi_{1}(x, b) \wedge \phi_{2}(x, b)$. The inequality $\operatorname{MR}(a / M) \leq d$ follows the from ω-saturation of M and the next claim.

Claim: Either $\operatorname{MR}\left(a^{\prime} / M\right)<d$ or $\operatorname{tp}\left(a^{\prime} / M\right)=\operatorname{tp}(a / M)$.
Proof:
Case 1. $\delta\left(a^{\prime} / M\right)<d$. Then $\operatorname{MR}\left(a^{\prime} / M\right)<d$ by induction.
Case 2. $\delta\left(a^{\prime} / M\right) \geq d$. Set $s=\left\{i \mid a_{i}^{\prime} \in M\right\}$ consider the inequality

$$
\begin{aligned}
\delta\left(a^{\prime} / M\right) & =\nu_{1} \cdot \mathrm{MR}_{1}\left(a^{\prime} / M a_{s}^{\prime}\right)+\nu_{2} \mathrm{MR}_{2}\left(a^{\prime} / M a_{s}^{\prime}\right)-N \cdot(n-|s|) \\
& \leq \nu_{1} \cdot k_{1, s}+\nu_{2} k_{2, s}-N \cdot(n-|s|) \\
& =\delta\left(a / M a_{s}\right) \leq \delta(a / M)
\end{aligned}
$$

Our assumption implies $\operatorname{MR}_{i}\left(a^{\prime} / M a_{s}^{\prime}\right)=k_{i, s}$ and $\delta\left(a / M a_{s}\right)=\delta(a / M)$. The latter implies $\delta\left(a_{s} / M\right)=0$, so a_{s} / M is algebraic in the sense of $T^{\mu}(2.12)$, which is only possible if s is empty. So we have $\operatorname{MR}_{i}\left(a^{\prime} / M\right)=\mathrm{MR}_{i}(a / M)$, which implies that a^{\prime} and a are isomorphic over M, and $\delta\left(a^{\prime} / M\right)=d$.

Case 2.1 $M \cup\left\{a^{\prime}\right\}$ is not closed. Then a^{\prime} has an extension $a^{\prime \prime}$ with $\delta\left(a^{\prime \prime} / M\right)<d$. It follows $\operatorname{MR}\left(a^{\prime} / M\right) \leq \operatorname{MR}\left(a^{\prime \prime} / M\right)<d$ by induction.

Case 2.2 $M \cup\left\{a^{\prime}\right\}$ is closed. Then $\operatorname{tp}\left(a^{\prime} / M\right)=\operatorname{tp}(a / M)$.
Now we prove $\mathrm{d}(a / B) \leq \operatorname{MR}(a / B)$ by induction on $d=\mathrm{d}(a / B)$. We may we may assume that B is finite, that B and $B \cup\{a\}$ are closed and (using 2.15) that B has, for each j, parameters for an L_{2}-formula in P^{j} which has rank $N_{2}-1$ in T_{2}. If $d=0$, there is nothing to show. If $d>0$, we decompose A / B into $B \leq B^{\prime} \leq A$, where B^{\prime} is maximal with $\delta\left(B^{\prime} / B\right)=0$.

Now we can use the construction in proof of 2.21 to obtain a sequence of extensions $A \subset C_{i}$ and $A \leq D$, such that $B^{\prime} \leq C_{i}, \delta\left(C_{i} / A\right)=d-1$, all in
\mathcal{K}^{μ}, such that C_{i} is the closure of A and the qf-types of the C_{i} over A converge against the qf-type of D over A. We may assume that D is closed (in the monster model). We also choose a copies C_{i}^{\prime} of C_{i} over B^{\prime} which are closed. Let A_{i}^{\prime} be the corresponding copy of A in C_{i}^{\prime}. Since the types of the $\operatorname{tp}\left(C_{i}^{\prime} / B\right)$ converge against $\operatorname{tp}(D / B)$, the types $\operatorname{tp}\left(A_{i}^{\prime} / B\right)$ converge against $\operatorname{tp}(A / B)$. Now $\mathrm{d}\left(A_{i}^{\prime} / B\right)=\delta\left(C_{i}^{\prime} / B\right)=d-1$, so by induction $d-1 \leq \mathrm{MR}\left(C_{i}^{\prime} / B\right)$, which implies $d \leq \operatorname{MR}(A / B)$.

The referee has pointed out that our proof of $\operatorname{MR}(a / B) \leq \mathrm{d}(a / B)$ can be rephrased as follows: It it easy to see that d-independence defines a notion of independence. The claim in the proof of 2.23 shows that types over ω-saturated models are isolated among the types of at least the same rank. This implies the above inequality.
Lemma 2.24. Let $\phi(x)$ be an L_{i}-formula (with parameters). Then

$$
\operatorname{MR} \phi=\nu_{i} \mathrm{MR}_{i} \phi .
$$

Proof. Consider $i=1$, the case $i=2$ works the same. Let $\phi(x)$ be defined over the closed set B. If a is any realization of ϕ, we have by (2.5)

$$
\operatorname{MR}(a / B) \leq \delta(a / B) \leq \nu_{1} \operatorname{MR}_{1}(a / B) \leq \nu_{1} \operatorname{MR}_{1} \phi
$$

So $\operatorname{MR} \phi \leq \nu_{1} \mathrm{MR}_{1} \phi$. For the converse choose a generic realization $a=$ $\left(a_{1}, \ldots, a_{n}\right)$ of ϕ. Choose $\operatorname{tp}_{2}(a / B)$ of maximal possible rank ${ }^{11]}$. Then clearly $\delta(a / B)=\nu_{1} \operatorname{MR}_{1}(a / B)=\nu_{1} \operatorname{MR}_{1} \phi$. Also, for every $i, B \cup\left\{a_{1}, \ldots, a_{i}\right\}$ is equal to, or a simple extension of, $B \cup\left\{a_{1}, \ldots, a_{i-1}\right\}$. So, by 2.13, $B \cup\{a\}$ belongs to \mathcal{K}^{μ}. We can therefore find $B \cup\{a\}$ as a closed subset of a model of T^{μ}. This implies $\operatorname{MR}(a / B)=\delta(a / B)=\nu_{1} \operatorname{MR}_{1} \phi$.

Lemma 2.25. Let $\phi(x)$ be an L_{i}-formula (with parameters). Then

$$
\operatorname{MD} \phi=\mathrm{MD}_{i} \phi
$$

Proof. Consider $i=1$. Let $\phi(x)$ be defined over the closed set B. We may assume that ϕ is simple in the sense of T_{1}. Let a be a realization of $\phi(x)$ with $\operatorname{MR}(a / B)=\operatorname{MR} \phi$. Then $\operatorname{MR}_{1}(a / B)=\mathrm{MR}_{1} \phi$, which determines $\operatorname{tp}_{1}(a / B)$ uniquely, since $\mathrm{MD}_{1} \phi=1$. In the sense of T_{2} the a_{i} are B-independent generic elements of certain P^{j} 's, so the type $\operatorname{tp}_{2}(a / B)$ is uniquely determined. Finally $B \cup\{a\}$ must be closed. This implies that $\operatorname{tp}(a / B)$ is uniquely determined and $\operatorname{MD} \phi=1$.

2.4 Definable rank and degree

It remains to show that T^{μ} has definable rank and degree. If N_{1} does not divide N_{2} the definability of rank follows from the fact that the universe of T^{μ} is covered by a finite set of definable groups. We give a proof which works also for the case $N_{1} \mid N_{2}$.

We use the following observation, due to M. Hils. Call a formula $\phi(x, b)$ of rank n and degree 1 normal if b satisfies a formula $\theta(y)$ such that $\phi\left(x, b^{\prime}\right)$ has rank n and degree 1 for all realizations b^{\prime} of θ. A type is normal if it contains a normal formula of the same rank. We have then

[^5]Lemma 2.26. Let T be a complete theory of finite rank. Then

1. T has definable rank and degree iff every type over a model M is normal.
2. If $\operatorname{tp}\left(a, a^{\prime} / M\right)$ is normal, and a^{\prime} is algebraic over $M a$, then also $\operatorname{tp}(a / M)$ is normal.

In 1. it suffices to consider ω-saturated models M. Also, if M is ω-saturated and $b \in M$, then $\phi(x, b)$ is normal iff there is a $\theta(y)$ defined over M such that $\phi\left(x, b^{\prime}\right)$ has rank n and degree 1 for all b^{\prime} in $\theta(M)$.

Consider an ω-saturated model M of T^{μ} and a type $p=\operatorname{tp}(a / M)$ of rank $d=\mathrm{d}(a / M)$. We want to show that p is normal. By $2.26 \mid 2$ we may assume that $M \cup\{a\}$ is closed, i.e. $d=\delta(a / M)$. We may also assume that a is disjoint from M and that all components of a are different. Choose for each $i=1,2$ formulas $\phi_{i}(x, m) \in \operatorname{tp}_{i}(a / M)$ with properties (i), (ii), (iii) as in the first part of the proof of proposition 2.23. Choose a formula $\theta(x)$ over M, which is satisfied by m, such that for all $m^{\prime} \in \theta(M)$ the formulas $\phi\left(x, m^{\prime}\right)$ satisfy (i), (ii), and (iii) and $\mathrm{MR}_{i} \phi_{i}\left(x, m^{\prime}\right)=k_{i, \emptyset}$ for $i=1,2$. Let a^{\prime} be a generic realization of $\phi\left(x, m^{\prime}\right)$, which has a unique qf-type over M. Then $\delta\left(a_{s}^{\prime} / M\right)=\delta\left(a_{s} / M\right)$ for all $s \subset\{1, \ldots, n\}$, especially $\delta\left(a^{\prime} / M\right)=d$. This implies that $M_{m^{\prime}}=M \cup\left\{a^{\prime}\right\}$ is a strong extension of M. One sees easily, like in [3, 6.2, that we can strengthen θ to ensure that $M_{m^{\prime}} \in \mathcal{K}^{\mu[12]}$. So we can find a^{\prime} with $M_{m^{\prime}}$ closed in the universe. This implies $\operatorname{MR}\left(a^{\prime} / M\right)=d$.

The proof of 2.23 shows that for all realizations $a^{\prime \prime}$ of $\phi\left(x, m^{\prime}\right)$ either $\operatorname{MR}\left(a^{\prime \prime} / M\right)<d$ or $\operatorname{tp}\left(a^{\prime \prime} / M\right)=\operatorname{tp}\left(a^{\prime} / M\right)$. This shows that $\phi\left(x, m^{\prime}\right)$ has rank d degree 1 and that $\phi(x, m)$ is normal.

This completes the proof of Theorem 2.1.

3 Proof of Theorem 1.5

We start with an easy lemma.
Lemma 3.1. Let T be a complete two-sorted theory with sorts Σ_{1} and Σ_{2}. Then the following are equivalent.
a) Σ_{1} is stably embedded.
b) Let T_{1}^{*} be a one-sorted complete expansion of $T_{1}=T \upharpoonright \Sigma_{1}$. Then $T^{*}=T_{1}^{*} \cup T$ is complete.

Proof. a$) \rightarrow \mathrm{b}):$ Consider $S=\left(S_{1}^{*}, S_{2}\right)$ two saturated models $S^{\prime}=\left(S_{1}^{\prime *}, S_{2}^{\prime}\right)$ of T^{*} of the same cardinality. Since T and T_{1}^{*} are complete, there are isomorphisms $f:\left(S_{1}, S_{2}\right) \rightarrow\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ and $g: S_{1}^{*} \rightarrow S_{1}^{\prime *} . f^{-1} g \upharpoonright S_{1}$ is an automorphism of the structure induced on S_{1}. Since S_{1} is stably embedded, there is an extension of

[^6]$f^{-1} g \upharpoonright S_{1}$ to an automorphism h of $\left(S_{1}, S_{2}\right)$. Then $f h$ is an isomorphism $S \rightarrow S^{\prime}$.
b) \rightarrow a): This is not used in this article and left to the reader.

We fix for the rest of the section T, T_{1}, T_{1}^{*} and T^{*} be as in 1.5, Let L, L_{1}, L_{1}^{*} and $L^{*}=L_{1}^{*} \cup L$ be the respective languages. We may assume that T_{1} has elimination of imaginaries ${ }^{[13}$

The following lemma is due to Anand Pillay. We need only that Σ_{1} is stably embedded.

Corollary 3.2. In T^{*} every L^{*}-formula $\Phi(x)$ is equivalent to a formula of the form

$$
\psi^{*}(t(x)),
$$

where $\psi^{*}(y)$ is an L_{1}^{*}-formula and t is a T-definable function with values in some power of Σ_{1}.

Proof. Let $S=\left(S_{1}, S_{2}\right)$ be a model of T, where S_{1} is a model of T_{1} and S^{*} be an expansion to a model of T^{*}. Let a be a tuple from S. Since S_{1} is stably embedded and has elimination of imaginaries, every a-definable relation on S_{1} has a canonical parameter in $S_{1} . B=\operatorname{dcl}(a) \cap S_{1}$ is the set of these parameters and $\left(S_{1}, b\right)_{b \in B}$ is the structure induced by (S, a) on S_{1}.

By 3.1

$$
\operatorname{Th}\left(S^{*}, a\right)=\operatorname{Th}\left(S_{1}, b\right)_{b \in B} \cup \operatorname{Th}(S, a) .
$$

This means that $\operatorname{tp}^{*}(a)$ is axiomatized by $\operatorname{tp}^{1}(B) \cup \operatorname{tp}(a)$, which implies the lemma.

Corollary 3.3. S_{1}^{*} is the structure induced by S^{*} on S_{1}.

Proof of Theorem 1.5; We prove the following claim by induction on k.

1) For every L-definable X with $\mathrm{MR} X \leq k$ we have $\mathrm{MRD}^{*} X=\operatorname{MRD} X$.
2) For all L^{*}-formulas $\Phi(x, y)$ is " $\mathrm{MR}^{*} \Phi(x, b)=k$ " an L^{*}-elementary property of b.

Case $k=0$: Let $\Phi(x, b)$ be of the form $\psi^{*}(t(x))$, where ψ^{*} and t are defined from b. Consider t as a map $S \rightarrow S_{1}$. Then $\psi^{*}(t(x))$ is finite iff the L_{1}^{*}-formula $\exists x\left(y \doteq t(x) \wedge \psi^{*}(y)\right)$ and all the fibers $t(x)=a$ for $\models \psi^{*}(a)$ are finite. This can be elementarily expressed since finiteness can be expressed in T_{1}^{*} and T. This proves (2). 1) is clear.

Case $k+1$:
1): Assume MR $X \leq k+1$. If all L^{*}-definable subsets of X are L-definable, it is clear that MRD* $X=\operatorname{MRD} X$. So assume that there is an L^{*}-definable $A \subset X$ which is not L-definable. By Corollary 3.2 there is an L-definable surjection $t: X \rightarrow Y \subset S_{1}^{n}$ and an L^{*}-definable $B \subset Y$ such that $A=t^{-1} B$. Since MR is definable in T we can partition Y into finitely many L-definable sets

[^7]on each of which the ranks of the fibers $t^{-1} y$ have constant rank. The inverse image of this partition is an L-definable partition of X. Since it is enough to prove (1) for each of the sets of the partition, we may assume that all fibers of t have the same rank f. Since A is not L-definable, Y must be infinite. So we have $f=\operatorname{MR} X-\operatorname{MR} Y \leq k$. By induction all fibers have $T^{*}-\mathrm{rank}$ f. Since, again by induction, all $T^{*}-$ ranks $\leq k$ are definable, it follows ${ }^{14}$ that $\mathrm{MR}^{*} X=f+\mathrm{MR}^{*}(Y)=f+\operatorname{MR} Y=\operatorname{MR} X$.

To prove that $\mathrm{MD}^{*} X=\mathrm{MD} X$, we may assume that $\operatorname{MD} X=1$. We have to show that $\mathrm{MR}^{*}(X \backslash A)<\operatorname{MR} X$ for every L^{*}-definable $A \subset X$ of T^{*} rank MR X. This is clear if A is L-definable. If not, we choose Y, t and B as above. Again we may assume that all fibers have rank f. We have then $\mathrm{MD}^{*} Y=\operatorname{MD} Y=1$. Since $f \leq k$, we have again by induction that $\mathrm{MR}^{*} B=\mathrm{MR}^{*} A-f=\operatorname{MR} X-f=\operatorname{MR} Y=\operatorname{MR}^{*} Y$. So $\operatorname{MR}^{*}(X \backslash A)=$ $f+\operatorname{MR}^{*}(Y \backslash B)<f+\operatorname{MR}^{*}(Y)=f+\operatorname{MR} Y=\operatorname{MR}(X)$.
(2): Consider L^{*}-definable sets $A \subset S^{m}$. Let N be the T-rank of $S^{m} . \mathrm{MR}^{*} X \geq$ $k+1$ is Λ-definable and \bigvee-definable, since this is equivalent to "for all/some L-definable $t: S^{m} \rightarrow S_{1}^{n}$ with $A=t^{-1} B$ for $B=t(A)$ there is a number $f \leq N$ such that the T^{*}-rank of $C_{f}=\left\{b \in B \mid \operatorname{MR}\left(t^{-1} b\right)=f\right\}$ is $\geq k+1-f "$. In deed, if there is such a t and f, we have

$$
\mathrm{MR}^{*} A \geq f+\mathrm{MR}^{*} C_{f} \geq k+1
$$

If conversely $\mathrm{MR}^{*} A \geq k+1$ and t is such that $A=t^{-1} B$ for $B=t(A)$, there is a C_{f} such that $\mathrm{MR}^{*} t^{-1} C_{f} \geq k+1$. If $\mathrm{MR}^{*} C_{f} \leq k-f$ we would have $f \leq k$ and by definability of $T^{*}-$ ranks $\leq k$ we have $\mathrm{MR}^{*} t^{-1} C_{f}=f+\mathrm{MR}^{*} C_{f} \leq k$. So $\mathrm{MR}^{*} C_{f} \geq k+1-f$.

Finally let us state an open problem: Let T be a good theory with two sorts Σ_{1} and Σ_{2} and T^{\prime} be a conservative expansion of $T \upharpoonright \Sigma_{1}$. Does $T^{\prime} \cup T$ have finite Morley rank?

References

[1] J. Baldwin and K. Holland. Constructing ω-stable structures: rank 2 fields. J. Symbolic Logic, 65(1):371-391, 2000.
[2] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. On fields and colors. Algebra i Logika, 45(2), 2006. (http://arxiv.org/math.LO/0605412).
[3] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Hrushovski's Fusion. In F. Haug, B. Löwe, and T. Schatz, editors, Festschrift für Ulrich Felgner zum 65. Geburtstag, volume 4 of Studies in Logic, pages 15-31. College Publications, London, 2007.
[4] Assaf Hasson. Interpreting structures of finite morley rank in strongly minimal sets. Ann. Pure Appl. Logic, 145:96-114, 2007.
[5] Ehud Hrushovski. Strongly minimal expansions of algebraically closed fields. Israel J. Math., 79:129-151, 1992.

[^8][6] Bruno Poizat. Le carré de l'egalité. J. Symbolic Logic, 64(3):1338-1355, 1999.
[7] Martin Ziegler. Stabile Gruppen. http://home.mathematik. uni-freiburg.de/ziegler/Skripte.html, 1991.

[^0]: *finiterank.tex, v 2.5, May 18, 2007
 ${ }^{1}$ By "rank" we always mean "Morley rank", "degree" is "Morley degree".
 ${ }^{2}$ I.e. the DMP, the definable multiplicity property.

[^1]: ${ }^{3}$ We can forget the new constants after the construction of T. So, the language is not increased.
 ${ }^{4}$ For the convenience of the reader many definition and statements are copied verbatim from 3.
 ${ }^{5} \mathrm{We}$ assume that $\phi_{c}(x, b)$ is non-empty for some b.
 ${ }^{6} a_{s}=\left\{a_{i} \mid i \in s\right\}$
 ${ }^{7}$ This means that the Morley rank of the symmetric difference of $\phi_{c}(x, b)$ and $\phi_{c}\left(x, b^{\prime}\right)$ is smaller than k_{c}.

[^2]: ${ }^{8} \mathrm{~A}$ transcendental simple extension is a transcendental extension by a single element. Note that simple extensions are not related to simple formulas.

[^3]: ${ }^{9}$ It is conceivable that T^{μ} might be incomplete. We even do not know wether T^{μ} has an ω-stable completion. (This question was raised by the referee.)

[^4]: ${ }^{10}$ It suffices that d_{i} is not in $\operatorname{acl}_{1}\left(A d_{0} \ldots d_{i-1}\right)$.

[^5]: ${ }^{11}$ This is N_{2} times the number of different a_{i} 's

[^6]: ${ }^{12}$ The argument is as follows. Decompose the extension $M \leq M \cup\{a\}$ into a sequence of minimal extensions, where the prealgebraic extensions are given by codes c_{1}, \ldots, c_{k}. Strengthen θ so that the extensions $M \leq M \cup\left\{a^{\prime}\right\}$ are also composed of prealgebraic extension coming from c_{1}, \cdots, c_{k}. The argument of [3, 6.2] shows now that " $M \cup\left\{a^{\prime}\right\} \in \mathcal{K}^{\mu}$ " is an elementary property of m^{\prime}.

[^7]: ${ }^{13}$ For this we replace T_{1} by T_{1}^{eq}. Actually the sort Σ_{1} may be itself a many-sorted structure.

[^8]: ${ }^{14}$ The reader may consult Lemma 3.11 and (the proof of) Folgerung 4.4 in 7 .

