Fusion of structures of finite Morleyrank*

Martin Ziegler

May 18, 2007

Abstract

Let T_1 and T_2 be two countable complete theories in disjoint languages, of finite Morley rank, the same Morley degree, with definable Morley rank and degree. Let N be a common multiple of the ranks of T_1 and T_2 . We show that $T_1 \cup T_2$ has a nice complete expansion of Morley rank N.

1 Introduction

We call a countable complete L-theory T good if it has finite definable rank¹ n > 0 and definable degree². A conservative expansion T' of T is a complete expansion of T, whose rank n' is a multiple of n, such that for all L-formulas $\phi(x, b)$.

$$MR_{T'} \phi(x, b) = \frac{n'}{n} MR_T \phi(x, b)$$

$$MD_{T'} \phi(x, b) = MD_T \phi(x, b).$$

We call the quotient $\frac{n'}{n}$ the *index* of the expansion.

In this note we will prove the following theorem.

Theorem 1.1. Let T_1 and T_2 be two good theories in disjoint languages of the same degree e and let N be a common multiple of their ranks. Then T_1 and T_2 have a common good conservative expansion T of rank N.

Furthermore, if in T_i the predicates P_i^1, \ldots, P_i^e define a partition of the universe into sets of degree 1, T can be chosen to imply $P_1^j = P_2^j$ for $j = 1, \ldots, e$.

If both, T_1 and T_2 , have rank and degree 1, this is Hrushovski's fusion [5], except that we allow the language of T to be larger than the union of the languages of T_1 and T_2 . The core of our proof is an adaption of the exposition of Hrushovski's fusion given in [3] and (in Section 2.2) of ideas from Poizat's [6].

As an immediate application we get an explanation of the title of Poizat's [6]:

Corollary 1.2 ([6],[1]). In any characteristic there is an algebraically closed field K with a subset N such that (K, N) has rank 2.

^{*}finiterank.tex,v2.5, May 18, 2007

¹By "rank" we always mean "Morley rank", "degree" is "Morley degree".

 $^{^{2}}$ I.e. the DMP, the definable multiplicity property.

Proof. Apply 1.1 for T_1 the theory of algebraically closed fields of some fixed characteristic and for T_2 any good theory of rank 2 and degree 1, e.g. the "square of the identity".

For another account of 1.2 see [2].

Theorem 1.1 was motivated by the following surprising result of A. Hasson:

Corollary 1.3 ([4]). Every good theory can be interpreted in a good strongly minimal set.

Proof. Let T_1 be a good theory of rank n and degree e. Consider any good theory T_2 of rank n and degree e which can be interpreted in a strongly minimal set X defined in T_2 . Use 1.1 to obtain a good theory T of rank n which conservatively expands T_1 and T_2 . T_2 is then interpreted in X, which is still strongly minimal in T.

The simplest example of a theory T_2 as used in the above proof is the "disjoint union of *e*-copies of the *n*-th power of the identity": Let X be an infinite set, Y_1, \ldots, Y_e be disjoint of copies of X^n and Δ the diagonal of Y_1 . Then consider the structure

$$(M, Y_1, \ldots, Y_e, \Delta, f_1, \ldots, f_e)$$

where M is the disjoint union of the Y_j and f_j is the canonical bijection between Δ^n and Y_j .

The above proof shows that every good theory of rank n and degree e with a partition $P_1 \cup \cdots \cup P_e$ into definable sets of degree 1 has a good conservative expansion of index 1 which contains a strongly minimal set X such that each P_j is in definable bijection with X^n . This yields

Corollary 1.4. Let T be a good theory and X and Y be two sets of maximal rank and the same degree. Then T has a good conservative expansion of index 1 with a definable bijection between X and Y. \Box

Let T be a good theory of rank N with a definable bijection between the universe and the N-th power of a strongly minimal set X. Then the rank of every good expansion of T is a multiple of N. This shows that in Theorem 1.1 one has to assume that N is a common multiple of the ranks of T_1 and T_2 , even if one is not interested in the conservativeness of the expansions. A contrasting example is the case where the languages of the T_i have only unary predicates. Then the rank of a completion of $T_1 \cup T_2$ is bounded by $MR(T_1) + MR(T_2) - 1$. So, in 1.1, one has in general to increase the language to find an expansion whose rank is a common multiple of the ranks of T_1 and T_2 .

I don't know if the last corollary remains true, if one assumes only that X and Y have the same rank (and degree). The following theorem can be used to prove a weaker result.

Theorem 1.5. Let T be a two-sorted theory with sorts Σ_1 and Σ_2 . Let $T_1 = T \upharpoonright \Sigma_1$ be the theory of the full induced structure on Σ_1 and T_1^* a conservative expansion of T_1 of index 1. Assume that T and T_1^* have definable finite rank. Then $T^* = T_1^* \cup T$ is a conservative expansion of T of index 1 which has again definable rank.

There are examples where T and T_1^* have the DMP, but T^* has not.

Corollary 1.6. Let T be a good theory and X and Y be two sets of the same rank and the same degree. Then T has a conservative expansion of T^* of index 1 with a definable bijection between X and Y. T^* has definable rank.

Proof. Let T' be the following (good) theory with sorts Σ_1 and Σ_2 : Σ_2 is a model of T; Σ_1 is a disjoint union of two predicates X' and Y'; there are bijections between X and X' and between Y and Y'. In $T'_1 = T' \upharpoonright \Sigma_1$, X' and Y' have maximal rank and same degree. By 1.4 T'_1 has a good conservative expansion T'_1 of index 1 with a definable bijection between X' and Y'. $T^* = (T' \cup T'_1) \upharpoonright \Sigma_2$ has the required properties.

In [4, Theorem 18] it is proved that for any m and n, any two good strongly minimal sets can be glued together to form a two-sorted structure, where both sets have rank one and there is a definable m-to-n function between them. By Remark 3 of [4] the proof "generalizes to finite-rank". A. Hasson has told me that the generalized proof shows that the union of two good theories of finite rank has a completion of finite rank. Since here the theories may have different degree, the expansions are in general not conservative.

2 Proof of Theorem 1.1

Theorem 1.1 follows from the next theorem, which we will prove in this section.

Theorem 2.1. Let T_1 and T_2 be to good theories in disjoint languages L_1 and L_2 with ranks $N_1 \leq N_2$ and of degree e, and N be the least common multiple of N_1 and N_2 . In T_i let the predicates P_i^1, \ldots, P_i^e define a partition of the universe into sets of degree 1. Assume also that T_1 satisfies

If N_1 divides $N_2 = N$, then each non-algebraic element is interalgebraic (*) with infinitely many other elements. Otherwise, the universe is is a union of infinite \emptyset -definable \mathbb{Q} -vector spaces V_0, \ldots, V_l .

Then $T_1 \cup T_2$ has a completion T of rank N which implies $P_1^j = P_2^j$ and is a good conservative expansion of T_1 and T_2 .

Proof of 1.1. Denote the construction in 2.1 by $T_1 + T_2$. Let now T_1 and T_2 be as in 1.1. By adding constants we may assume that the predicates P_i^j are present. Let T_0 be the theory of the disjoint union of e infinite \mathbb{Q} -vector spaces. T_0 has rank 1 and degree e. Let N' be the least common multiple of the ranks of T_1 and T_2 . Then

$$T' = (T_0 + T_1) + T_2$$

is a good conservative expansion of $T_1 \cup T_2$ of rank N'. Finally set $T = T' + T_3$ for any good theory T_3 of rank N and degree e.

Actually we need the proposition only in the case that N_1 divides N_2 . We have stated it in stronger form, since the proof can be given by a direct application of Hrushovski's fusion machinery to T_1 and T_2 .

It is easy to see that, by naming parameters³, we may assume the following.

(**) If $N_1 = N_2$, for each j, the theory T_2 has infinitely many 1-types over \emptyset of rank $N_2 - 1$ which contain $P_2^j(x)$.

2.1 Hrushovki's machinery

In this section we will develop the theory without using the assumptions (*) and (**). This is a straightforward⁴ generalization of sections 2–6 of [3]. We will omit most of the proofs.

2.1.1 Codes (see [3], Section 2)

Let T be a good theory of degree e with predicates P^1, \ldots, P^e which define a partition of the universe in sets of degree 1. We call a formula $\chi(x, b)$ simple, if

- it has degree 1,
- the components of a generic realization are pairwise different and not algebraic over b.

A code c is a parameter-free formula

$$\phi_c(x,y),$$

where $|x| = n_c$ and y lies in some sort of T^{eq} , with the following properties.

- (i) $\phi_c(x,b)$ is either empty⁵ or simple. Furthermore there are indices $e_{c,i}$ such that $\phi_c(x,y)$ implies that the x_i are pairwise different and $P^{e_{c,1}}(x_1) \wedge \cdots \wedge P^{e_{c,n_c}}(x_{n_c})$.
- (ii) All non-empty $\phi_c(x, b)$ have Morley rank k_c and Morley degree 1.
- (iii) For each subset s of $\{1, \ldots, n_c\}$ there exists an integer $k_{c,s}$ such that for every realization a of $\phi_c(x, b)$

$$\mathrm{MR}(a/ba_s) \le k_{c,s},$$

and equality holds for generic $a^{.6}$

(iv) If both $\phi_c(x, b)$ and $\phi_c(x, b')$ are non-empty and $\phi_c(x, b) \sim^{k_c} \phi_c(x, b')^7$, then b = b'.

Lemma 2.2. Let $\chi(x,d)$ be a simple formula. Then there is some code c and some $b_0 \in dcl^{eq}(d)$ such that $\chi(x,d) \sim^{k_c} \phi_c(x,b_0)$.

We say that c encodes $\chi(x, d)$.

 $^{^3\}mathrm{We}$ can forget the new constants after the construction of T. So, the language is not increased.

⁴ For the convenience of the reader many definition and statements are copied verbatim from [3].

⁵We assume that $\phi_c(x, b)$ is non-empty for some b.

 $^{{}^6}_{as} = \{a_i | i \in s\}$

⁷This means that the Morley rank of the symmetric difference of $\phi_c(x, b)$ and $\phi_c(x, b')$ is smaller than k_c .

Proof. As the proof of [3, 2.2]. Note is that, by definability of rank, the rank is *additive*

$$MR(ab/B) = MR(a/Bb) + MR(b/B).$$

(see e.g. [7, 4.4]).

Let c be a code, $\phi_c(x, b)$ non-empty and $p \in S(b)$ the (stationary) type of rank k_c determined by $\phi_c(x, b)$. (iv) implies that b is the canonical base of p. Hence, b lies in the definable closure of a sufficiently large segment of a Morley sequence of p (which we call a *Morley sequence of* $\phi_c(x, b)$.) Let m_c be some upper bound for the length of such a segment. Note that one can always bound m_c by the rank of the sort of y in $\phi_c(x, y)$.

Lemma 2.3. For every code c and every integer $\mu \ge m_c - 1$ there exists some formula $\Psi_c(x_0, \ldots, x_{\mu}, y)$ without parameters satisfying the following:

- (v) Given a Morley sequence e_0, \ldots, e_μ of $\phi_c(x, b)$, then $\models \Psi_c(e_0, \ldots, e_\mu, b)$.
- (vi) For all e_0, \ldots, e_{μ}, b realizing Ψ_c the e_i 's are pairwise disjoint realizations of $\phi_c(x, b)$.
- (vii) Let e_0, \ldots, e_{μ} , b realize Ψ_c . Then b lies in the definable closure of any m_c many of the e_i 's.

We say for $\Psi_c(x_0, \ldots, x_\mu, y)$ that " x_0, \ldots, x_μ is a pseudo Morley sequence of c over y".

Proof. As the proof of [3, 2.3].

We choose for every code (and every μ) a formula Ψ_c as above.

Let c be a code and σ some permutation of $\{1, \ldots, n_c\}$. Then c^{σ} defined by

$$\phi_{c^{\sigma}}(x^{\sigma}, y) = \phi_c(x, y)$$

is also a code. Similarly,

$$\Psi_{c^{\sigma}}(\bar{x}^{\sigma}, y) = \Psi_{c}(\bar{x}, y)$$

defines a pseudo Morley sequence of c^{σ} .

We call two codes c and c' equivalent if $n_c = n_{c'}$, $m_c = m_{c'}$ and

- for every b there is some b' such that $\phi_c(x,b) \equiv \phi_{c'}(x,b')$ and $\Psi_c(\bar{x},b) \equiv \Psi_{c'}(\bar{x},b')$ in T,
- similarly permuting c and c'.

Theorem 2.4. There is a collection of codes C such that:

(viii) Every simple formula can be encoded by exactly one $c \in C$.

(ix) For every $c \in C$ and every permutation σ , c^{σ} is equivalent to a code in C.

Proof. As the proof of [3, 2.4]. Note that we may have to change the Ψ_c . \Box

2.1.2 The δ -function (see [3], Section 3)

Let T_1 and T_2 be two good theories as in Theorem 1.1. We assume that the T_i has quantifier elimination in the relational language L_i . To deal with the predicates P_i^j in an effective way we replace both P_1^j and P_2^j by P^j . Then L_1 and L_2 intersect in $L_0 = \{P_1, \ldots, P_e\}$ and T_1 and T_2 intersect in the theory of a partition of the universe into e infinite sets.

Define \mathcal{K} to be the class of all models of $T_{1,\forall} \cup T_{2,\forall}$. We allow also \emptyset to be in \mathcal{K} .

Let N_i be rank of T_i , $N = \text{lcm}(N_1, N_2)$ and $N = \nu_1 N_1 = \nu_2 N_2$. We define for finite $A \in \mathcal{K}$

(2.1)
$$\delta(A) = \nu_1 \operatorname{MR}_1(A) + \nu_2 \operatorname{MR}_2(A) - N \cdot |A|.$$

By additivity of rank δ has the following properties.

$$\begin{aligned} (2.2)\\ \delta(\emptyset) &= 0 \end{aligned}$$

 $\delta(\{a\}) \leq N$ for single elements a

$$\delta(A \cup B) + \delta(A \cap B) \le \delta(A) + \delta(B)$$

(2.3) is a special case of

(2.5)
$$\delta(a/B) \le \nu_i \operatorname{MR}_i(a/B), \quad (i = 1, 2),$$

which holds for arbitrary tuples a.

If $A \setminus B$ is finite, we set

$$\delta(A/B) = \nu_1 \operatorname{MR}_1(A/B) + \nu_2 \operatorname{MR}_2(A/B) - N|A \setminus B|.$$

For finite B, it follows that $\delta(A/B) = \delta(A \cup B) - \delta(B)$.

B is strong in A if $B \subset A$ and $\delta(A'/B) \ge 0$ for all finite $A' \subset A$. We denote this by

$$B \leq A$$
.

 $B \lneq A$ is minimal if $B \leq A' \leq A$ for no A' properly contained between B and A. a is algebraic over B, if a/B is algebraic in the sense of T_1 or T_2 . A/B is non-algebraic if no $a \in A \setminus B$ is algebraic over B.

Lemma 2.5. $B \leq A$ is minimal iff $\delta(A/A') < 0$ for all A' which lie properly between B and A.

Proof. As the proof of [3, 3.1].

Lemma [3, 3.2] is not longer true, instead we have

Lemma 2.6. Let $B \leq A$ be a minimal extension. There are three cases

(I) $\delta(A/B) = 0$, $A = B \cup \{a\}$ for an element $a \in A \setminus B$, which is algebraic over B. (algebraic simple extension)

- (II) $\delta(A/B) = 0$, A/B is non-algebraic. (prealgebraic extension)
- (III) A/B is non-algebraic and $1 \le \delta(A/B) \le N$, (transcendental extension). If $\delta(A/B) = N$, we have $A = B \cup \{a\}$ for an element a with $MR_i(a/B) = N_i$ for i = 1, 2. (transcendental simple extension⁸)

Proof. Assume first that A/B is algebraic. That means that some element $a \in A \setminus B$ is algebraic over B. This implies $\delta(a/B) = 0$ and $B \cup \{a\} \leq A$. So we are in case (I).

Now assume that A/B is transcendental and $\delta(A/B) \ge N$. Since $\delta(a/B) \le N$ for all elements $a \in A \setminus B$, Lemma 2.5 implies $B \cup \{a\} = A$.

Note that, unlike the situation in [3], there may be prealgebraic extensions A/B by single elements if N_1 and N_2 are not relatively prime. We do not call these extensions "simple".

Remark. If N_1 and N_2 are relatively prime, each strong extension by a single element is simple.

Proof. Let $A = B \cup \{a\}$ be a strong extension of B. If $\delta(A/B) > 0$, the extension is transcendental simple. Otherwise

$$\nu_1 \operatorname{MR}_1(a/A) + \nu_2 \operatorname{MR}_2(a/A) = N_2 \operatorname{MR}_1(a/A) + N_1 \operatorname{MR}_2(a/A) = N.$$

It follows that $MR_1(a/A)$ is divisible by N_1 and $MR_2(a/A)$ is divisible by N_2 . Whence either $MR_1(a/A)$ or $MR_2(a/A)$ must be zero. So A/B is algebraic simple.

We will work in the class

$$\mathcal{K}^0 = \{ M \in \mathcal{K} | \emptyset \le M \}.$$

Fix an element M of \mathcal{K}^0 . We define for finite subsets of M.

$$d(A) = \min_{A \subset A' \subset M} \delta(A').$$

d satisfies (2.2), (2.3), (2.4) and

(2.6)

$$d(A) \ge 0$$
(2.7)

$$A \subset B \Rightarrow d(A) \le d(B)$$

We define

$$d(A/B) = d(AB) - d(B) = \delta(cl(AB)/cl(B)),$$

where cl(A), the *closure* of A, is the smallest strong subset of M which extends A. Note that the closure of a finite set is again finite (cf. [3, 3.4]).

 $^{^{8}}$ A transcendental simple extension is a transcendental extension by a single element. Note that simple extensions are *not* related to simple formulas.

2.1.3 Prealgebraic codes (see [3], Section 4)

For each T_i fix a set C_i of codes as in 2.4. We may assume that all ϕ_c and Ψ_c are quantifier free.

A prealgebraic code is a pair $c \in C_1 \times C_2$ such that

- $n_c = n_{c_1} = n_{c_2}$
- $e_{c_1,j} = e_{c_2,j}$ for all $j \in \{1, \dots, n_c\}$.
- $\nu_1 k_{c_1} + \nu_2 k_{c_2} N \cdot n_c = 0$
- $\nu_1 k_{c_1,s} + \nu_2 k_{c_2,s} N(n_c |s|) < 0$ for all non-empty proper subsets s of $\{1, \ldots, n_c\}$.

Set $m_c = \max(m_{c_1}, m_{c_2})$ and for each permutation $\sigma c^{\sigma} = (c_1^{\sigma}, c_2^{\sigma})$. c^{σ} is again prealgebraic.

Some explanatory remarks: T_1^{eq} and T_2^{eq} share only their home sort. An element $b \in \text{dcl}^{\text{eq}}(B)$ is a pair $b = (b_1, b_2)$ with $b_i \in \text{dcl}^{\text{eq}}_i(B)$ for i = 1, 2. Likewise for $\text{acl}^{\text{eq}}(B)$. A generic realization of $\phi_c(x, b)$ (over B) is a generic realization of $\phi_{c_i}(x, b_i)$ (over B) in T_i for i = 1, 2. A Morley sequence of $\phi_c(x, b)$ is a Morley sequence both of $\phi_{c_1}(x, b_1)$ and $\phi_{c_2}(x, b_2)$. A pseudo Morley sequence of c over b is a realization of both $\Psi_{c_1}(\bar{x}, b_1)$ and $\Psi_{c_2}(\bar{x}, b_2)$. We say that M is independent from A over B if M is independent from A over B both in T_1 and T_2 .

The following three lemmas are proved as Lemmas 4.1, 4.2 and 4.3 in [3].

Lemma 2.7. Let $B \leq B \cup \{a_1, \ldots, a_n\}$ be a prealgebraic minimal extension and $a = (a_1, \ldots, a_n)$. Then there is some prealgebraic code c and $b \in \operatorname{acl}^{\operatorname{eq}}(B)$ such that a is a generic realization of $\phi_c(a, b)$.

Lemma 2.8. Let $B \in \mathcal{K}$, c a prealgebraic code and $b \in \operatorname{acl}^{\operatorname{eq}}(B)$. Take a generic realization $a = (a_1, \ldots, a_{n_c})$ of $\phi_c(x, b)$ over B. Then $B \cup \{a_1, \ldots, a_{n_c}\}$ is a prealgebraic minimal extension of B.

Note that the isomorphism type of a over B is uniquely determined.

Lemma 2.9. Let $B \subset A$ in \mathcal{K} , c a prealgebraic code, b in $\operatorname{acl}^{\operatorname{eq}}(B)$ and $a \in A$ a realization of $\phi_c(x, b)$ which does not lie completely in B. Then

- 1. $\delta(a/B) \le 0$.
- 2. If $\delta(a/B) = 0$, then a is a generic realization of $\phi_c(x, b)$ over B.

The next Lemma is the analogue of [3, 4.4].

Lemma 2.10. Let $M \leq N$ an extension in \mathcal{K} and $e_0, \ldots, e_{\mu} \in N$ a pseudo Morley sequence of c over b. Then one of the following holds:

- $b \in \operatorname{dcl}^{\operatorname{eq}}(M)$
- more than $\mu m_c \cdot (N(n_c 1) + 1)$ many of the e_i lie in $N \setminus M$.

Proof. If b is not in dcl^{eq}(M), less than m_c many of the e_i lie in M. Let r be the number of elements not in $N \setminus M$. We change the indexing so that $e_i \in N \setminus M$ implies $i \geq r$ and $e_i \in M$ implies $i < (m_c - 1)$. By Lemma 2.9 we have $\delta(e_i/Me_0, \ldots, e_{i-1}) < 0$ for all $i \in [m_c, r)$. This implies, for $m = \min(m_c, r)$,

$$0 \le \delta(e_0, \dots, e_{r-1}/M) \le \delta(e_0, \dots, e_{m-1}/M) - (r - m_c).$$

On the other hand we have $\delta(e_0, \ldots, e_{m-1}/M) \leq N \cdot m \cdot (n_c - 1)$, which implies

$$r \le N \cdot m \cdot (n_c - 1) + m_c \le N \cdot m_c \cdot (n_c - 1) + m_c.$$

2.1.4 The class \mathcal{K}^{μ} (see [3], Section 5)

Choose a function μ^* from prealgebraic codes to natural numbers similar to section 5 of [3]. μ^* must satisfy $\mu^*(c) \ge m_c - 1$ and be finite-to-one for every fixed n_c . Also we must have $\mu^*(c) = \mu^*(d)$, if c is equivalent to a permutation of d. Then set

$$\mu(c) = m_c \cdot (N(n_c - 1) + 1) + \mu^*(c).$$

From now on, a *pseudo Morley sequence* denotes a pseudo Morley sequence of length $\mu(c) + 1$ for a prealgebraic code c.

The class \mathcal{K}^{μ} consists of the all structures in \mathcal{K}^{0} which do not contain any pseudo Morley sequence.

The following lemma and its corollary have the same proofs as their analogues [3, 5.1] and [3, 5.2].

Lemma 2.11. Let B be a finite strong subset of $M \in \mathcal{K}^{\mu}$ and A/B a prealgebraic minimal extension. Then there are only finitely many B-isomorphic copies of A in M.

Corollary 2.12. Let $B \leq M \in \mathcal{K}^{\mu}$, $B \subset A$ finite with $\delta(A/B) = 0$. Then there are only finitely many A' such that: $B \leq A' \subset M$ and A' is B-isomorphic to A.

Lemma [3, 5.4] may be wrong here. We have instead:

Lemma 2.13. Let $M \in \mathcal{K}^{\mu}$ and N a simple extension of M. Then $N \in \mathcal{K}^{\mu}$.

Proof. Let $(e_i) \in N$ a pseudo Morley sequence of c over b. At least $\mu(c)$ of the e_i lie in M. Since $\mu(c) \geq m_c$, we have $b \in \operatorname{dcl}^{\operatorname{eq}}(M)$. Since M belongs to \mathcal{K}^{μ} , one e_i does not lie in M. By 2.9 we conclude that e_i is disjoint from M and a generic realization of $\phi_c(x, b)$. So $n_c = 1$ and N/M is prealgebraic, i.e. not simple.

Proposition 2.14. \mathcal{K}^{μ} has the amalgamation property with respect to strong embeddings.

Proof. The proof is the same as the proof of [3, 5.5], the main ingredient being Lemma 2.10. Only one point has to be checked: If A/B is strong and $a \in A$ is algebraic over b, say in the sense of T_1 , then $\operatorname{tp}_2(a/B)$ is uniquely determined. This is the case, since $0 \leq \delta(a/B) = \nu_2 \operatorname{MR}_2(a/B) - N \leq \nu_2 N_2 - N = 0$ implies that $\operatorname{MR}_2(a/B) = N_2$. On the other hand, $tp_1(a/B)$ implies $a \in P^j$ for some j. So the T_2 -type of a/B is uniquely determined since P^j has degree 1 in T_2 . \Box The proof has the following corollary.

Corollary 2.15. Two strong extensions $B \leq M$ and $B \leq A$ in \mathcal{K}^{μ} can be amalgamated in $M, A \leq M' \in \mathcal{K}^{\mu}$ such that $\delta(M'/M) = \delta(A/B)$ and $\delta(M'/A) = \delta(M/B)$.

A structure $M \in \mathcal{K}^{\mu}$ is *rich* if for every finite $B \leq M$ and every finite $B \leq A \in \mathcal{K}^{\mu}$ there is some *B*-isomorphic copy of *A* in *M*. We will show in the next section that rich structures are models of $T_1 \cup T_2$.

Corollary 2.16. There is a unique (up to isomorphism) countable rich structure K^{μ} . Any two rich structures are $(L_1 \cup L_2)_{\infty,\omega}$ -equivalent.

2.1.5 The theory T^{μ} (see [3], Section 6)

Lemma 2.17. Let $M \in \mathcal{K}^{\mu}$, $b \in \operatorname{acl}^{\operatorname{eq}}(M)$, $a \models \phi_c(x, b)$ generic over M and M' the prealgebraic minimal extension $M \cup \{a_1, \dots, a_{n_c}\}$. If M' is not in \mathcal{K}^{μ} , then one of the following hold.

- (a) M' contains a pseudo Morley sequence of c over b, all whose elements but possibly one are contained in M.
- (b) M' contains a pseudo Morley sequence for some code c' with more than $\mu^*(c')$ many elements in $M' \setminus M$.

Proof. As in the proof of [3, 6.1], this follows from 2.9 and 2.10.

As in [3], Lemmas 2.7, 2.8 and 2.17 imply that we can describe all M with the following properties by an elementary theory T^{μ} .

Axioms of T^{μ} .

- (a) $M \in \mathcal{K}^{\mu}$
- (b) $T_1 \cup T_2$
- (c) M has no prealgebraic minimal extension in \mathcal{K}^{μ} .

To prove the analogue of Theorem [3, 6.3], which says that the rich structures are the ω -saturated models of T^{μ} we need the assumptions (*) and (**). Whithout this we can only show⁹

Lemma 2.18. Rich structures are models of T^{μ} .

Proof. Let K be rich. Consider an quantifier free L_1 -formula $\chi(x)$ with parameters in K which is T_1 -consistent. Let B be a finite strong subset of K which contains the parameters. If $\chi(x)$ is not realized in B, realize $\chi(x)$ by a new element a and define the structure $A = B \cup \{a\}$ in such a way that $\operatorname{MR}_2(a/B) = N_2$. Then $\delta(a/B) = \nu_1 \operatorname{MR}_1(a/B)$, so $B \leq A$ and A/B is simple. So by 2.13 B belong to \mathcal{K}^{μ} . Since K is rich, it contains a copy of A/B. This proves that $\chi(x)$ is realized in K. This shows that K is model of T_1 . The same proof shows that K is also a model of T_2 .

Axiom (c) is proved like in the proof of [3, 6.3].

⁹ It is conceivable that T^{μ} might be incomplete. We even do not know wether T^{μ} has an ω -stable completion. (This question was raised by the referee.)

2.2 Poizat's argument

We assume now conditions (*) and (**) of Theorem 2.1. We want to show that ω -saturated models of T^{μ} are rich. We start with two lemmas.

Lemma 2.19. T_1 has the following property. Let $M_1 > 0$ and M_2 be two natural numbers, a an element of an \emptyset -definable \mathbb{Q} -vector space V_{α} . Let B be a set of parameters such that V_{α} contains elements which are of rank 1 over B. Then there are elements c_1, \ldots, c_{M_2} of V_{α} such that for all $s \subset \{1, \ldots, M_2\}$

(2.8)

$$\min(M_1, |s|) \le \mathrm{MR}_1(c_s/Ba) \le M_1$$

and, if $|s| > M_1$

(2.9)

 $\mathrm{MR}_1(c_s/B) = \mathrm{MR}_1(c_s/Ba) + \mathrm{MR}_1(a/B).$

Proof. We start with a sequence v_1, \ldots, v_{M_2} of elements of \mathbb{Q}^{M_1} such that

- any M_1 elements of the sequence are \mathbb{Q} -linearly independent,
- any $M_1 + 1$ elements of the sequence are linearly dependent, but affinely independent.

Then we choose any *B*-independent sequence $\bar{e} = (e_1, \ldots, e_{M_1})$ of elements of V_{α} which have rank 1 over *B*, such that \bar{e} is independent from *a* over *B* We consider \bar{e} as a column vector and the v_i as a row vectors and define

$$c_i = v_i \cdot \bar{e} + a.$$

Since all c_i are algebraic over $Ba\bar{e}$, it is clear that

$$\mathrm{MR}_1(c_s/Ba) \le \mathrm{MR}_1(\bar{e}/Ba) = M_1.$$

To show $\min(M_1, |s|) \leq \operatorname{MR}_1(c_s/Ba)$, we may assume that $|s| \leq M_1$. Since the $v_i, i \in s$ are linearly independent there is a subsequence \overline{e}' of \overline{e} of length $M_1 - |s|$ such that the elements of \overline{e}' and $v_s \cdot \overline{e}$ span the same \mathbb{Q} -vector space as the elements of \overline{e} . So we have

$$M_1 = \mathrm{MR}_1(\bar{e}/Ba) = \mathrm{MR}_1(\bar{e}', v_s \cdot \bar{e}/Ba) \le (M_1 - |s|) + \mathrm{MR}_1(v_s \cdot \bar{e}/Ba)$$

and hence

$$|s| \le \mathrm{MR}_1(v_s \cdot \bar{e}/Ba) = \mathrm{MR}_1(c_s/Ba).$$

The last equation follows from the fact that each $M_1 + 1$ many of the e_i span an affine subspace which contains a. The reason for this is that the according v_i are linearly dependent, but affinely independent, and therefore span an affine space which contains 0.

Lemma 2.20. If $N_1 = N_2$, T_2 has the following property. Let B be any set of parameters, and p be the type over B of an M_2 -tuple of independent elements of rank N_2 over B. Then p is the limit of types of tuples of independent elements of rank $N_2 - 1$ over B.

Proof. We indicate the proof for $M_2 = 2$. Let $p = \operatorname{tp}(a_1a_2/B)$ and $\phi(x_1, x_2) \in p$. The formula $\phi_1(x_1) = \operatorname{"MR}_{x_2} \phi(x_1, x_2) \geq N_2''$ has rank N_2 . Therefore, by (**), there is a type q_1 over B which has rank $N_2 - 1$ and contains $\phi_1(x_1)$. Let b_1 be a realization of q_1 . By the open mapping theorem, and (**) again, $\phi(b_1, x_2)$ contains a type q_2 over Bb_1 , of rank $N_2 - 1$ which does not fork over B. Realize q_2 by b_2 . The type of b_1b_2 over B contains ϕ , b_1 and b_2 are independent and of rank $N_2 - 1$ over B.

Proposition 2.21. The rich structures are exactly the ω -saturated models of T^{μ} .

Proof. That rich structure are models of T^{μ} was proved in 2.18. As in the proof of [3, 6.3] one sees that it suffices to prove that ω -saturated models of T^{μ} are rich. So let K be an ω -saturated model, $B \leq K$ finite and $B \leq A$ a minimal extension which belongs to \mathcal{K}^{μ} . We show that A/B can be strongly embedded in K by induction over $d = \delta(A/B)$.

If d = 0 the extension is algebraic or prealgebraic and the claim follows from 2.14, since K has no algebraic or prealgebraic extensions. So we assume d > 0. All we use from the minimality of A/B in this case is that $A \neq B$ and $\delta(X/B) > 0$ for all subsets of A, which are not contained in B.

We may assume that B is large enough to have, for each j, parameters for an L_2 -formula in P^j which has rank $N_2 - 1$ in T_2 . Choose two numbers M_1 and M_2 such that

$$\nu_1 M_1 - \nu_2 M_2 = -1.$$

The M_i are uniquely determined if we impose the condition $0 \le M_1 < \nu_2$. We have then

$$M_1 = \frac{\nu_2 M_2 - 1}{\nu_1} < M_2,$$

since $\nu_2 \leq \nu_1$.

Let a be an arbitrary element of $A \setminus B$. Since $\delta(a/B) > 0$, a is not algebraic over B.

If N_1 divides N_2 , i.e. if $\nu_2 = M_2 = 1$ and $M_1 = 0$, we choose an element $c_1 \notin A$, which is in the sense of T_1 interalgebraic with a and has rank N_2 over A in the sense of T_2 . We set $C = A \cup \{c_1\}$. If N_1 does not divide N_2 , we have $M_1 > 0$. We define then $C = A \cup \{c_1, \ldots, c_{M_2}\}$ where the c_i are given by Lemma 2.19 and are – in the sense of T_1 – independent from A over Ba. In the sense of T_2 they are chosen to be A-independent and of rank $N_2 - 1$ over A.

We compute

$$\delta(C/A) = \nu_1 M_1 + \nu_2 M_2 (N_2 - 1) - NM_2 = \nu_1 M_1 - \nu_2 M_2 = -1$$

CLAIM 1: $B \leq C$. Proof: Let X be a set between B and A and Y be a subset of $\{c_1, \ldots, c_{M_2}\}$ of size y. Note that $\delta(XY/B) \geq \delta(Y/A) + \delta(X/B)$ and by equation (2.8) we have

 $\delta(Y/A) \ge \nu_1 \min(M_1, y) + \nu_2 y(N_2 - 1) - Ny = \nu_1 \min(M_1, y) - \nu_2 y.$

Case 1: $y \leq M_1$. Then $\delta(XY/B) \geq \delta(Y/A) \geq (\nu_1 - \nu_2)y \geq 0$.

Case 2: $M_1 < y$. Then we have $\delta(Y/A) = \nu_1 M_1 - \nu_2 y \ge \nu_1 M_1 - \nu_2 M_2 = -1$ and distinguish two cases: If X = B, then, by (2.9), $MR_1(Y/B) > MR_1(Y/A)$ and therefore $\delta(XY/B) = \delta(Y/B) > \delta(Y/A) \ge -1$. If X is different from B we have $\delta(XY/B) \ge -1 + \delta(X/B) \ge 0$. This proves the claim.

CLAIM 2: The closure of A in C equals C. Proof: Let Y be a proper subset of $\{c_1, \ldots, c_{M_2}\}$ of size y. We have to show that $\delta(Y|A) > -1$. By the above this is clear if $y \leq M_1$. Otherwise we have

$$\delta(Y/A) = \nu_1 M_1 - \nu_2 y > \nu_1 M_1 - \nu_2 M_2 = -1.$$

This proves the claim.

It follows (if N_1 does not divide N_2 , from the proof of Lemma 2.19) that one can produce a sequence of extensions $A \subset C_i$ like above such that the types $\operatorname{tp}_1(C_i/A)$ converge against a type $\operatorname{tp}_1(D/A)$ where the elements d_0, \ldots, d_{M_2} are of rank ≥ 1 and algebraically independent¹⁰ over A in the sense of T_1 . If $N_1 < N_2$ we simply choose the types $\operatorname{tp}_2(C_i/A)$ and $\operatorname{tp}_2(D/A)$ to be all the same and with components of rank $N_2 - 1$ independent over A in the sense of T_2 . If $N_1 = N_2$, it follows from Lemma 2.20 that we may assume that the types $\operatorname{tp}_2(C_i/A)$ converge to $\operatorname{tp}_2(D/A)$ and that the d_i have rank N_2 over A and are independent over A in the sense of T_2 .

If $N_1 < N_2$, we have

$$\delta(d_i/Ad_0\dots d_{i-1}) \ge \nu_1 \cdot 1 + \nu_2(N_2 - 1) - N = \nu_1 - \nu_2 > 0.$$

If $N_1 = N_2$ we have for every i

$$\delta(d_i/Ad_0\dots d_{i-1}) \ge \nu_1 \cdot 1 + \nu_2 N_2 - N = \nu_1 > 0.$$

So D is a strong extension of A which splits into a sequence of transcendental simple extensions. So, by Lemma 2.13, D belongs to \mathcal{K}^{μ} .

Claim: For large enough i we have $C_i \in \mathcal{K}^{\mu}$. Proof: Since the C_i have all the same size, if C_i does not belong to \mathcal{K}^{μ} and μ is finite-to-1 for fixed n_c , there is a certain finite set of prealgebraic codes which can be responsible for this. Since $D \in \mathcal{K}^{\mu}$, almost all C_i belong to \mathcal{K}^{μ} .

Now by induction for large enough i, C_i can be strongly embedded over B into K. Since K is ω -saturated this implies that D can be strongly embedded into K. Such an embedding also strongly embeds A, since $A \leq D$.

Corollary 2.22. T^{μ} is complete. In models of T^{μ} two tuples have the same type iff they have isomorphic closures.

Proof. Same as the proof of [3, 7.1].

2.3 Rank computation

Proposition 2.23. In T^{μ} we have for tuples a

$$\mathrm{MR}(a/B) = \mathrm{d}(a/B).$$

¹⁰It suffices that d_i is not in $\operatorname{acl}_1(Ad_0 \dots d_{i-1})$.

Proof. We prove first $MR(a/B) \leq d(a/B)$. Since the closure is algebraic we may assume that B and $A = B \cup \{a\}$ are closed. Then $d(a/B) = \delta(a/B)$, so it suffices to show that $MR(a/B) \leq \delta(a/B)$ for all closed B and arbitrary a. We do this by induction on $d = \delta(a/B)$.

Let M be an ω -saturated model, which contains B such that the (a priori infinite) rank of a over M is the same as the rank of a over B. Then $\delta(a/M) \leq \delta(a/B)$ and by induction we may assume that $\delta(a/M) = d$. Also we may assume that a is disjoint from M. Write $a = (a_1, \ldots, a_n)$.

Choose for i = 1, 2 an $L_i(M)$ -formula $\phi_i(x) \in \text{tp}_i(a/M)$ with the following properties.

(i) ϕ_i has degree 1

If a' is any realization of $\phi(x)$, then

- (ii) the components of a' are pairwise different
- (iii) $\operatorname{MR}_i(a'/Ma'_s) \leq k_{i,s}$, where s is any subset of $\{1, \ldots, n\}$ and $k_{i,s} = \operatorname{MR}_i(a/Ma_s)$.

It follows that $MR_i \phi_i = k_{i,\emptyset} = MR_i(a/M)$.

Let a' be any realization of $\phi(x,b) = \phi_1(x,b) \wedge \phi_2(x,b)$. The inequality $MR(a/M) \leq d$ follows the from ω -saturation of M and the next claim.

CLAIM: Either MR(a'/M) < d or $\operatorname{tp}(a'/M) = \operatorname{tp}(a/M)$.

Proof:

Case 1. $\delta(a'/M) < d$. Then MR(a'/M) < d by induction.

Case 2. $\delta(a'/M) \ge d$. Set $s = \{i \mid a'_i \in M\}$ consider the inequality

$$\delta(a'/M) = \nu_1 \cdot \operatorname{MR}_1(a'/Ma'_s) + \nu_2 \operatorname{MR}_2(a'/Ma'_s) - N \cdot (n - |s|)$$

$$\leq \nu_1 \cdot k_{1,s} + \nu_2 k_{2,s} - N \cdot (n - |s|)$$

$$= \delta(a/Ma_s) \leq \delta(a/M).$$

Our assumption implies $MR_i(a'/Ma'_s) = k_{i,s}$ and $\delta(a/Ma_s) = \delta(a/M)$. The latter implies $\delta(a_s/M) = 0$, so a_s/M is algebraic in the sense of T^{μ} (2.12), which is only possible if s is empty. So we have $MR_i(a'/M) = MR_i(a/M)$, which implies that a' and a are isomorphic over M, and $\delta(a'/M) = d$.

Case 2.1 $M \cup \{a'\}$ is not closed. Then a' has an extension a'' with $\delta(a''/M) < d$. It follows $MR(a'/M) \le MR(a''/M) < d$ by induction.

Case 2.2 $M \cup \{a'\}$ is closed. Then $\operatorname{tp}(a'/M) = \operatorname{tp}(a/M)$.

Now we prove $d(a/B) \leq MR(a/B)$ by induction on d = d(a/B). We may we may assume that B is finite, that B and $B \cup \{a\}$ are closed and (using 2.15) that B has, for each j, parameters for an L_2 -formula in P^j which has rank $N_2 - 1$ in T_2 . If d = 0, there is nothing to show. If d > 0, we decompose A/Binto $B \leq B' \leq A$, where B' is maximal with $\delta(B'/B) = 0$.

Now we can use the construction in proof of 2.21 to obtain a sequence of extensions $A \subset C_i$ and $A \leq D$, such that $B' \leq C_i$, $\delta(C_i/A) = d - 1$, all in

 \mathcal{K}^{μ} , such that C_i is the closure of A and the qf-types of the C_i over A converge against the qf-type of D over A. We may assume that D is closed (in the monster model). We also choose a copies C'_i of C_i over B' which are closed. Let A'_i be the corresponding copy of A in C'_i . Since the types of the $\operatorname{tp}(C'_i/B)$ converge against $\operatorname{tp}(D/B)$, the types $\operatorname{tp}(A'_i/B)$ converge against $\operatorname{tp}(A/B)$. Now $\operatorname{d}(A'_i/B) = \delta(C'_i/B) = d - 1$, so by induction $d - 1 \leq \operatorname{MR}(C'_i/B)$, which implies $d \leq \operatorname{MR}(A/B)$.

The referee has pointed out that our proof of $MR(a/B) \leq d(a/B)$ can be rephrased as follows: It it easy to see that d-independence defines a notion of independence. The claim in the proof of 2.23 shows that types over ω -saturated models are isolated among the types of at least the same rank. This implies the above inequality.

Lemma 2.24. Let $\phi(x)$ be an L_i -formula (with parameters). Then

$$\mathrm{MR}\,\phi = \nu_i\,\mathrm{MR}_i\,\phi.$$

Proof. Consider i = 1, the case i = 2 works the same. Let $\phi(x)$ be defined over the closed set B. If a is any realization of ϕ , we have by (2.5)

$$\operatorname{MR}(a/B) \le \delta(a/B) \le \nu_1 \operatorname{MR}_1(a/B) \le \nu_1 \operatorname{MR}_1 \phi.$$

So MR $\phi \leq \nu_1 \operatorname{MR}_1 \phi$. For the converse choose a generic realization $a = (a_1, \ldots, a_n)$ of ϕ . Choose $\operatorname{tp}_2(a/B)$ of maximal possible rank¹¹. Then clearly $\delta(a/B) = \nu_1 \operatorname{MR}_1(a/B) = \nu_1 \operatorname{MR}_1 \phi$. Also, for every $i, B \cup \{a_1, \ldots, a_i\}$ is equal to, or a simple extension of, $B \cup \{a_1, \ldots, a_{i-1}\}$. So, by 2.13, $B \cup \{a\}$ belongs to \mathcal{K}^{μ} . We can therefore find $B \cup \{a\}$ as a closed subset of a model of T^{μ} . This implies $\operatorname{MR}(a/B) = \delta(a/B) = \nu_1 \operatorname{MR}_1 \phi$.

Lemma 2.25. Let $\phi(x)$ be an L_i -formula (with parameters). Then

$$MD \phi = MD_i \phi.$$

Proof. Consider i = 1. Let $\phi(x)$ be defined over the closed set B. We may assume that ϕ is simple in the sense of T_1 . Let a be a realization of $\phi(x)$ with $MR(a/B) = MR\phi$. Then $MR_1(a/B) = MR_1\phi$, which determines $tp_1(a/B)$ uniquely, since $MD_1\phi = 1$. In the sense of T_2 the a_i are B-independent generic elements of certain P^j 's, so the type $tp_2(a/B)$ is uniquely determined. Finally $B \cup \{a\}$ must be closed. This implies that tp(a/B) is uniquely determined and $MD\phi = 1$.

2.4 Definable rank and degree

It remains to show that T^{μ} has definable rank and degree. If N_1 does not divide N_2 the definability of rank follows from the fact that the universe of T^{μ} is covered by a finite set of definable groups. We give a proof which works also for the case $N_1|N_2$.

We use the following observation, due to M. Hils. Call a formula $\phi(x, b)$ of rank *n* and degree 1 *normal* if *b* satisfies a formula $\theta(y)$ such that $\phi(x, b')$ has rank *n* and degree 1 for all realizations *b'* of θ . A type is *normal* if it contains a normal formula of the same rank. We have then

¹¹This is N_2 times the number of different a_i 's

Lemma 2.26. Let T be a complete theory of finite rank. Then

- 1. T has definable rank and degree iff every type over a model M is normal.
- 2. If tp(a, a'/M) is normal, and a' is algebraic over Ma, then also tp(a/M) is normal.

In 1. it suffices to consider ω -saturated models M. Also, if M is ω -saturated and $b \in M$, then $\phi(x, b)$ is normal iff there is a $\theta(y)$ defined over M such that $\phi(x, b')$ has rank n and degree 1 for all b' in $\theta(M)$.

Consider an ω -saturated model M of T^{μ} and a type $p = \operatorname{tp}(a/M)$ of rank $d = \operatorname{d}(a/M)$. We want to show that p is normal. By 2.26.2 we may assume that $M \cup \{a\}$ is closed, i.e. $d = \delta(a/M)$. We may also assume that a is disjoint from M and that all components of a are different. Choose for each i = 1, 2 formulas $\phi_i(x,m) \in \operatorname{tp}_i(a/M)$ with properties (i), (ii), (iii) as in the first part of the proof of proposition 2.23. Choose a formula $\theta(x)$ over M, which is satisfied by m, such that for all $m' \in \theta(M)$ the formulas $\phi(x,m')$ satisfy (i), (ii), and (iii) and $\operatorname{MR}_i \phi_i(x,m') = k_{i,\emptyset}$ for i = 1, 2. Let a' be a generic realization of $\phi(x,m')$, which has a unique qf-type over M. Then $\delta(a'_s/M) = \delta(a_s/M)$ for all $s \subset \{1,\ldots,n\}$, especially $\delta(a'/M) = d$. This implies that $M_{m'} = M \cup \{a'\}$ is a strong extension of M. One sees easily, like in [3, 6.2], that we can strengthen θ to ensure that $M_{m'} \in \mathcal{K}^{\mu 12}$. So we can find a' with $M_{m'}$ closed in the universe. This implies $\operatorname{MR}(a'/M) = d$.

The proof of 2.23 shows that for all realizations a'' of $\phi(x,m')$ either MR(a''/M) < d or tp(a''/M) = tp(a'/M). This shows that $\phi(x,m')$ has rank d degree 1 and that $\phi(x,m)$ is normal.

This completes the proof of Theorem 2.1.

3 Proof of Theorem 1.5

We start with an easy lemma.

Lemma 3.1. Let T be a complete two-sorted theory with sorts Σ_1 and Σ_2 . Then the following are equivalent.

- a) Σ_1 is stably embedded.
- b) Let T_1^* be a one-sorted complete expansion of $T_1 = T \upharpoonright \Sigma_1$. Then $T^* = T_1^* \cup T$ is complete.

Proof. a) \rightarrow b): Consider $S = (S_1^*, S_2)$ two saturated models $S' = (S_1'^*, S_2')$ of T^* of the same cardinality. Since T and T_1^* are complete, there are isomorphisms $f : (S_1, S_2) \rightarrow (S_1', S_2')$ and $g : S_1^* \rightarrow S_1'^*$. $f^{-1}g \upharpoonright S_1$ is an automorphism of the structure induced on S_1 . Since S_1 is stably embedded, there is an extension of

¹²The argument is as follows. Decompose the extension $M \leq M \cup \{a\}$ into a sequence of minimal extensions, where the prealgebraic extensions are given by codes c_1, \ldots, c_k . Strengthen θ so that the extensions $M \leq M \cup \{a'\}$ are also composed of prealgebraic extension coming from c_1, \cdots, c_k . The argument of [3, 6.2] shows now that " $M \cup \{a'\} \in \mathcal{K}^{\mu}$ " is an elementary property of m'.

 $f^{-1}g \upharpoonright S_1$ to an automorphism h of (S_1, S_2) . Then fh is an isomorphism $S \to S'$.

b) \rightarrow a): This is not used in this article and left to the reader.

We fix for the rest of the section T, T_1 , T_1^* and T^* be as in 1.5. Let L, L_1 , L_1^* and $L^* = L_1^* \cup L$ be the respective languages. We may assume that T_1 has elimination of imaginaries.¹³

The following lemma is due to An and Pillay. We need only that Σ_1 is stably embedded.

Corollary 3.2. In T^* every L^* -formula $\Phi(x)$ is equivalent to a formula of the form

$$\psi^*(t(x)),$$

where $\psi^*(y)$ is an L_1^* -formula and t is a T-definable function with values in some power of Σ_1 .

Proof. Let $S = (S_1, S_2)$ be a model of T, where S_1 is a model of T_1 and S^* be an expansion to a model of T^* . Let a be a tuple from S. Since S_1 is stably embedded and has elimination of imaginaries, every a-definable relation on S_1 has a canonical parameter in S_1 . $B = dcl(a) \cap S_1$ is the set of these parameters and $(S_1, b)_{b \in B}$ is the structure induced by (S, a) on S_1 .

By 3.1

$$\operatorname{Th}(S^*, a) = \operatorname{Th}(S_1, b)_{b \in B} \cup \operatorname{Th}(S, a).$$

This means that $tp^*(a)$ is axiomatized by $tp^1(B) \cup tp(a)$, which implies the lemma.

Corollary 3.3. S_1^* is the structure induced by S^* on S_1 .

Proof of Theorem 1.5: We prove the following claim by induction on k.

- 1) For every L-definable X with $MR X \leq k$ we have $MRD^* X = MRD X$.
- 2) For all L^* -formulas $\Phi(x, y)$ is "MR* $\Phi(x, b) = k$ " an L^* -elementary property of b.

Case k = 0: Let $\Phi(x, b)$ be of the form $\psi^*(t(x))$, where ψ^* and t are defined from b. Consider t as a map $S \to S_1$. Then $\psi^*(t(x))$ is finite iff the L_1^* -formula $\exists x (y \doteq t(x) \land \psi^*(y))$ and all the fibers t(x) = a for $\models \psi^*(a)$ are finite. This can be elementarily expressed since finiteness can be expressed in T_1^* and T. This proves 2). 1) is clear.

Case k + 1:

1): Assume MR $X \leq k+1$. If all L^* -definable subsets of X are L-definable, it is clear that MRD^{*} X = MRD X. So assume that there is an L^* -definable $A \subset X$ which is not L-definable. By Corollary 3.2 there is an L-definable surjection $t : X \to Y \subset S_1^n$ and an L^* -definable $B \subset Y$ such that $A = t^{-1}B$. Since MR is definable in T we can partition Y into finitely many L-definable sets

¹³For this we replace T_1 by T_1^{eq} . Actually the sort Σ_1 may be itself a many-sorted structure.

on each of which the ranks of the fibers $t^{-1}y$ have constant rank. The inverse image of this partition is an *L*-definable partition of *X*. Since it is enough to prove 1) for each of the sets of the partition, we may assume that all fibers of *t* have the same rank *f*. Since *A* is not *L*-definable, *Y* must be infinite. So we have $f = \text{MR} X - \text{MR} Y \leq k$. By induction all fibers have T^* -rank *f*. Since, again by induction, all T^* -ranks $\leq k$ are definable, it follows¹⁴ that MR^{*} $X = f + \text{MR}^*(Y) = f + \text{MR} Y = \text{MR} X$.

To prove that $\mathrm{MD}^* X = \mathrm{MD} X$, we may assume that $\mathrm{MD} X = 1$. We have to show that $\mathrm{MR}^*(X \setminus A) < \mathrm{MR} X$ for every L^* -definable $A \subset X$ of T^* rank $\mathrm{MR} X$. This is clear if A is L-definable. If not, we choose Y, t and B as above. Again we may assume that all fibers have rank f. We have then $\mathrm{MD}^* Y = \mathrm{MD} Y = 1$. Since $f \leq k$, we have again by induction that $\mathrm{MR}^* B = \mathrm{MR}^* A - f = \mathrm{MR} X - f = \mathrm{MR} Y = \mathrm{MR}^* Y$. So $\mathrm{MR}^*(X \setminus A) =$ $f + \mathrm{MR}^*(Y \setminus B) < f + \mathrm{MR}^*(Y) = f + \mathrm{MR} Y = \mathrm{MR}(X)$.

2): Consider L^* -definable sets $A \subset S^m$. Let N be the T-rank of S^m . MR^{*} $X \ge k + 1$ is \bigwedge -definable and \bigvee -definable, since this is equivalent to "for all/some L-definable $t: S^m \to S_1^n$ with $A = t^{-1}B$ for B = t(A) there is a number $f \le N$ such that the T^* -rank of $C_f = \{b \in B \mid \operatorname{MR}(t^{-1}b) = f\}$ is $\ge k + 1 - f$ ". In deed, if there is such a t and f, we have

$$\mathrm{MR}^* A \ge f + \mathrm{MR}^* C_f \ge k + 1.$$

If conversely $\operatorname{MR}^* A \ge k+1$ and t is such that $A = t^{-1}B$ for B = t(A), there is a C_f such that $\operatorname{MR}^* t^{-1}C_f \ge k+1$. If $\operatorname{MR}^* C_f \le k-f$ we would have $f \le k$ and by definability of T^* -ranks $\le k$ we have $\operatorname{MR}^* t^{-1}C_f = f + \operatorname{MR}^* C_f \le k$. So $\operatorname{MR}^* C_f \ge k+1-f$.

Finally let us state an open problem: Let T be a good theory with two sorts Σ_1 and Σ_2 and T' be a conservative expansion of $T \upharpoonright \Sigma_1$. Does $T' \cup T$ have finite Morley rank?

References

- J. Baldwin and K. Holland. Constructing ω-stable structures: rank 2 fields. J. Symbolic Logic, 65(1):371–391, 2000.
- [2] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. On fields and colors. Algebra i Logika, 45(2), 2006. (http://arxiv.org/math.L0/0605412).
- [3] A. Baudisch, A. Martin-Pizarro, and M. Ziegler. Hrushovski's Fusion. In F. Haug, B. Löwe, and T. Schatz, editors, *Festschrift für Ulrich Felgner* zum 65. Geburtstag, volume 4 of Studies in Logic, pages 15–31. College Publications, London, 2007.
- [4] Assaf Hasson. Interpreting structures of finite morley rank in strongly minimal sets. Ann. Pure Appl. Logic, 145:96–114, 2007.
- [5] Ehud Hrushovski. Strongly minimal expansions of algebraically closed fields. *Israel J. Math.*, 79:129–151, 1992.

¹⁴The reader may consult Lemma 3.11 and (the proof of) Folgerung 4.4 in [7].

- [6] Bruno Poizat. Le carré de l'egalité. J. Symbolic Logic, 64(3):1338–1355, 1999.
- [7] Martin Ziegler. Stabile Gruppen. http://home.mathematik. uni-freiburg.de/ziegler/Skripte.html, 1991.