A Remark on Morley Rank

M. Ziegler^{*}

March 1997[¶]

1 Introduction

Let $f:D\to E$ be a definable map between definable classes. The following theorem is well known:

Theorem 1 ([1], [2, V 6.8]) If E has Morley rank β and the Morley rank of all fibers $f^{-1}(e)$ is bounded by α . Then

- 1. If $\alpha = 0$ D has Morley rank at most β .
- 2. If $\alpha > 0$ the Morley rank of D is bounded by $\alpha(\beta + 1)$.

It seems to be less well known that this theorem gives the optimal bound. We will prove:

Lemma 2 For all $\alpha > 0$ and all β there is a theory T and (in the monster model of T) a definable map $f: D \to E$ such that

- a) E has Morley rank β
- b) the Morley rank of all fibers of f is α
- c) D has Morley rank $\alpha \cdot (\beta + 1)$.

In section 4 we discuss a bound for the Morley rank of D if the Morley rank of all fibers of f is smaller than a limit ordinal α .

In the sequel let R(F) denote the (Morley) rank of the definable set F.

^{*}Revision: 1.9

[†]March 2011: Section 5 added.

[‡]May 2013: Correction of the first part of the proof of Theorem 1

[§]April 2014: Further simplification of the first part of the proof of Theorem 1. Typo in the formulation of the problem after Theorem 5.

[¶]March 2015: Remark 6 added.

2 Proof of Theorem 1

We include a proof of Theorem 1 for the convenience of the reader.

Let E have rank α and A be a set of parameters. We call an element e of E generic over A if it is not contained in any A-definable set of smaller rank than α . E has always generic elements (in the monster model). Note that all generics of E have the same type over A if E has degree one.

First we handle case 1, where $\alpha = 0$. Let $f : D \to E$ have finite fibers. We prove

$$\mathcal{R}(D) \le \mathcal{R}(E)$$

by induction on $\beta = \mathbf{R}(E)$.

We may assume that E has degree 1. Let D_i be an infinite family of disjoint definable subsets of D. We have to show that almost all of them have smaller rank than β . Let $e \in E$ be generic over the parameters over which f, D, E and the D_i are defined. Almost all of the D_i do not intersect $f^{-1}(e)$. So these $f(D_i)$ do not contain e and have therefore smaller rank than β . So by induction almost all D_i have smaller rank than β .

For the case 2 we need a lemma. If E has Morley degree one and $e \in E$ is generic over the relevant parameters we call the (possibly empty) set $f^{-1}(e)$ a generic fiber of f.

Lemma 3 Let E have Morley degree one and α be the rank of the generic fiber of f. If

$$\gamma + \alpha < \mathcal{R}(D),$$

D has a definable subset D' such that $f \models D' \rightarrow E$ has finite generic fiber and

$$\gamma < \mathcal{R}(D').$$

PROOF: We may assume $\alpha > 0$. D contains then an infinite family D_i of definable disjoint sets having at least rank $\gamma + \alpha$. Let $e \in E$ be generic. Then for one index i the rank of $D_i \cap f^{-1}(e)$ is smaller than α . By induction on αD_i contains a D' as required. QED.

We prove case 2 of the theorem by induction on β . We may assume that *E* has degree one. If

$$\alpha \cdot \beta + \alpha < \mathcal{R}(D),$$

by the last lemma, D contains a definable D' of rank bigger than $\alpha \cdot \beta$ such that the generic fiber of $f \upharpoonright D'$ has finitely many, say k many, elements. For

$$E^* = \left\{ e \in E \mid D' \cap f^{-1}(e) \text{ has cardinality } k \right\},\$$

the complement $E \setminus E^*$ has a rank $\beta' < \beta$. Since (by case 1) $D' \cap f^{-1}(E^*)$ has at most rank β , the rank of $D'' = D' \cap f^{-1}(E \setminus E^*)$ is bigger than $\alpha \cdot \beta \ge \alpha(\beta'+1)$. This contradicts the induction hypothesis applied to $f \upharpoonright D'' : D'' \to E \setminus E^*$.

3 Proof of Lemma 2

We deal only with countable α and β . (The proof in the uncountable case is essentially the same.) So in the sequel *infinite* means *countably infinite*.

For a fixed $\alpha > 0$ and for all β we will construct models

$$\mathfrak{M}_{\beta} = (D_{\beta}, E_{\beta}, f_{\beta}),$$

which consist of a two sorts D_{β} and E_{β} , a map $f_{\beta} : D_{\beta} \to E_{\beta}$ and unary predicates on D_{β} and E_{β} such that

- a) E_{β} has Morley rank β
- b) the Morley rank of all fibers of f_{β} is α
- c) D_{β} has Morley rank $\alpha \cdot (\beta + 1)$.
- d) \mathfrak{M}_{β} is saturated and has quantifier elimination.

We start with a structure $\mathfrak{A} = (A, P_i)_{i \in I}$, where A is an infinite set and the P_i are unary predicates which ensure that \mathfrak{A} has rank α (and is saturated). For the model \mathfrak{M}_0 we take $(A, E_0, f_0, P_i)_{i \in I}$, where E_0 consists of one point and f_0 is the constant map.

We give the following case a special treatment: Assume that α is finite and β is a limit cardinal. We take for E_{β} any set with unary predicates giving it rank β . Choose a surjection $f_{\beta} : D_{\beta} \to E_{\beta}$ with infinite fibers and sets $X^a \subset D_{\beta}$, $(a \in A)$, which intersect each fiber of f_{β} in exactly one point. From the predicates P_i we define the predicates $Q_i = \bigcup_{a \in P_i} X^a$. This is our \mathfrak{M}_{β} . The sets X^a inherit rank β from E_{β} . Whence D_{β} has rank $\beta + \alpha$, which in our case equals $\alpha(\beta + 1)$.

Now assume that α is infinite or β is a successor ordinal. Also assume that for all $\beta' < \beta$ the structures $\mathfrak{M}_{\beta'}$ are constructed. Let α' be such that $1 + \alpha' = \alpha$ and $\mathfrak{A}' = (A', P'_i)_{i \in I'}$ be the α' -version of \mathfrak{A}^1 . To construct \mathfrak{M}_{β} we take infinite sets D_{β} and and E_{β} and a surjective map $f_{\beta} : D_{\beta} \to E_{\beta}$ with infinite fibers.

On D_{β} and E_{β} we choose two families $(X^a)_{a \in A'}$ and $(E^{a,i})_{a \in A', i \in \omega}$ of disjoint subsets (and introduce predicates for them) such that

- 1. All intersections $X^a \cap f_{\beta}^{-1}(e)$ and the differences $f_{\beta}^{-1}(e) \setminus \bigcup_{a \in A'} X^a$ are infinite.
- 2. The difference $E_{\beta} \setminus \bigcup_{a \in A', i \in \omega} E^{a,i}$ is infinite. The cardinality of the $E^{a,i}$ will be specified later.

¹If $\alpha' = 0 A'$ is just any finite set

From the predicates P'_i we define also the predicates

$$Q_i = \bigcup_{a \in P'_i} X^a.$$

Let $(\beta_i)_{i \in \omega}$ be an enumeration of the ordinals $\beta' < \beta$ where all β' occur infinitely often. In our last step, for each $a \in A'$ and $i \in \omega$ we introduce new predicates for subsets of $E^{a,i}$ and for subsets of

$$D^{a,i} = f_{\beta}^{-1}(E^{a,i}) \cap X^a$$

such that with the new predicates the structure

$$f_{\beta} \upharpoonright D^{a,i} : D^{a,i} \to E^{a,i}$$

looks like \mathfrak{M}_{β_i} . This also tells us the right cardinality of the $E^{\alpha,i}$. This completes the construction of \mathfrak{M}_{β} .

It is easy to check that \mathfrak{M}_{β} has quantifier elimination and is saturated. Since the $E_{a,i}$ have rank $\beta_i E_{\beta}$ has rank β .

Without the structure imprinted on the $D_{a,i}$ the fibers look like \mathfrak{A}' with each point blown up to an infinite set and have therefore rank $1 + \alpha' = \alpha$. The structure on $D_{a,i}$ adds one set of rank α on the fiber. Whence the fibers have rank α .

Each $D^{a,i}$ has rank $\alpha \cdot (\beta_i + 1)$. We have to distinguish two cases:

- 1. β is a successor ordinal: Then X^a has at least rank $\alpha \cdot \beta + 1$ and D_β has at least rank $\alpha \cdot \beta + 1 + \alpha' = \alpha(\beta + 1)$.
- 2. β is a limit ordinal and α is infinite: Then X^{α} has at least rank $\alpha \cdot \beta$ and D_{β} the rank $\alpha \cdot \beta + \alpha' = \alpha \cdot \beta + \alpha = \alpha \cdot (\beta + 1)$.

4 Fiber rank smaller than a limit ordinal

The following problem is left open by Theorem 1: Let α be a limit ordinal. If E has rank β and the ranks of all fibers of $f: D \to E$ are smaller than α can we say more about R(D) than just $R(D) \leq \alpha(\beta + 1)$? The answer is *yes*:

Theorem 4 Let α be a limit ordinal and β be arbitrary

- 1. Let $f: D \to E$ be a definable map between definable classes: Assume E has Morley rank β and that the Morley rank of all fibers $f^{-1}(e)$ is smaller than α . Then the Morley rank of D is smaller than $\alpha(\beta + 1)$.
- 2. For all $\gamma < \alpha$ and all β there is a theory T and (in the monster model of T) a definable map $f: D \to E$ such that

- a) E has Morley rank β
- b) the Morley rank of all fibers of f is smaller than α
- c) D has Morley rank $\alpha \cdot \beta + \gamma$.

Part 1 has the same proof as Theorem 1. But part 2 needs a modification of the construction in Lemma 2.

Again we deal only with countable α and $\beta.$ By recursion on β we construct models

$$\mathfrak{M}^{\gamma}_{\beta} = (D^{\gamma}_{\beta}, E^{\gamma}_{\beta}, f^{\gamma}_{\beta})$$

such that

- a) E^{γ}_{β} has Morley rank β
- b) the Morley rank of all fibers of f^{γ}_{β} is smaller that α
- c) D^{γ}_{β} has Morley rank $\alpha \cdot \beta + \gamma$.
- d) $\mathfrak{M}^{\gamma}_{\beta}$ is saturated and has quantifier elimination.

We construct \mathfrak{M}_0^{γ} as in the proof of Lemma 2 from a structure $\mathfrak{A} = (A, P_i)_{i \in I}$ of rank γ . If $\beta > 0$ assume that for all $\beta' < \beta$ (and all $\gamma < \alpha$) the structures $\mathfrak{M}_{\beta'}^{\gamma}$ are constructed. Take infinite sets D_{β}^{γ} and and E_{β}^{γ} and a surjective map $f_{\beta}^{\gamma}: D_{\beta}^{\gamma} \to E_{\beta}^{\gamma}$ with infinite fibers. Then choose two families $(X^a)_{a \in A}$ and $(E^{a,i})_{a \in A, i \in \omega}$ of disjoint subsets (and introduce predicates for them) such that

- 1. All intersections $X^a \cap (f_{\beta}^{\gamma})^{-1}(e)$ and the differences $(f_{\beta}^{\gamma})^{-1}(e) \setminus \bigcup_{a \in A} X^a$ are infinite.
- 2. The difference $E^{\gamma}_{\beta} \setminus \bigcup_{a \in A, i \in \omega} E^{a,i}$ is infinite.

Define again the predicates $Q_i = \bigcup_{a \in P_i} X^a$.

Finally we introduce new unary predicates on $E^{a,i}$ and

$$D^{a,i} = (f^{\gamma}_{\beta})^{-1}(E^{a,i}) \cap X^a$$

such that with the new predicates the structure

$$\mathfrak{N}^{a,i} = \left(D^{a,i}, E^{a,i}, f^{\gamma}_{\beta} \upharpoonright D^{a,i} \right)$$

looks as follows:

Case 1: $\beta = \beta' + 1$ is a successor.

Then choose an enumeration $(\gamma_i)_{i \in \omega}$ of the ordinals below α and let $\mathfrak{N}^{a,i}$ look like $\mathfrak{M}^{\gamma_i}_{\beta'}$.

Case 2: β is a limit ordinal.

Let $(\gamma_i)_{i \in \omega}$ enumerate the ordinals below β and let $\mathfrak{N}^{a,i}$ look like $\mathfrak{M}^0_{\beta_i}$.

In the successor case $D^{a,i}$ has rank $\alpha \cdot \beta' + \gamma_i$, X^a has rank $\alpha \cdot \beta' + \alpha = \alpha \cdot \beta$. In the limit case $D^{a,i}$ has rank $\alpha \cdot \beta_i$ and it follows again that X^a has rank $\alpha \cdot \beta$. This implies that D^{α}_{β} has rank $\alpha \cdot \beta + \gamma$.

5 A better bound

The following theorem implies both Theorem 1(2) and Theorem 4(1):

Theorem 5 ([3, Exercise 6.4.4]) If *E* has Morley rank β , Morley rank of all fibers $f^{-1}(e)$ is bounded by $\alpha > 0$ and the Morley rank of the generic fibers is bounded by α^{gen} , then the Morley rank of *D* is bounded by

 $\alpha\beta + \alpha^{\text{gen}}.$

The proof is a slight variation of the proof of Theorem 1. One proves similarly:

Remark 6 If β is a limit ordinal, $\beta < \alpha\beta$, and α^{gen} is finite, then the Morley rank of D is smaller than $\alpha\beta + \alpha^{\text{gen}}$.

Slight modifications of the constructions above show that this bounds are optimal: If β and $0 \le \alpha^{\text{gen}} \le \alpha$ are given, there are two cases:

- 1. If the conditions of Remark 6 are not satisfied, there is an example D which Morley rank $\alpha\beta + \alpha^{\text{gen}}$.
- 2. If the conditions of Remark 6 are satisfied, for every γ smaller than $\alpha\beta + \alpha^{\text{gen}}$ there is an example whith at least Morley rank γ .

References

- M. M. Erimbetov. Complete theories with 1-cardinal formulas. Algebra i Logika, 14:245–257, 1975.
- [2] Saharon Shelah. Classification Theory. North Holland, Amsterdam, 1978.
- [3] K. Tent and M. Ziegler. A Course in Model Theory. ASL Lecture Note Series. Cambridge University Press, 2012.