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Abstract

In [6] Messmer and Wood proved quantifier elimination for separably
closed fields of finite Ershov invariant e equipped with a (certain) Hasse
derivation. We propose a variant of their theory, using a sequence of e
commuting Hasse derivations. In contrast to [6] our Hasse derivations are
iterative.

1 Introduction

Definition. Let R be a commutative ring. A Hasse derivation is a family
D = (D0, D1, . . .) of additive maps Dn : R → R such that1

D0(x) = x (1.1)

Dn(xy) =
∑

a+b=n

Da(x)Db(y) (1.2)

DaDb =
(

a + b

a

)
Da+b . (1.3)

Two Hasse derivations D and E commute if DmEn = EnDm for all m, n.

We fix for the rest of the paper a natural number e and a prime p.

The following notion was introduced by Okugawa in [7]: A D–field is a pair
(K,D), where K is a field of characteristic p and D = (D1, . . . ,De) is a sequence
of commuting Hasse derivations on K. The field of constants2 C consists of
those elements of K on which all derivations Di,1 (i = 1, . . . , e) vanish. Clearly
C contains Kp. (K,D) is a strict D–field if C = Kp.

Definition. Let Le be the natural language for D–fields, which contains sym-
bols {0, 1, +,−, ·} for the field operations and unary function symbols Di,n (i ∈

1Equation (1.3) means that we consider only iterative Hasse derivations.
2The definition used here differs from the definition given in [7], where the constants are

killed by all Di,j (j > 0)
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{1, . . . , e}, n ∈ N). We denote by SCHp,e the Le–theory of all separably closed,
strict D–fields which have degree of imperfection e.3

The aim of this article is to prove the following theorem:

Theorem 1.1.

1. SCHp,e is complete and has quantifier elimination.

2. Every D–field can be extended to a model of SCHp,e.

3. Every separably closed field of degree of imperfection e can be expanded to
a model of SCHp,e.

Our theory is a variant of the theory given by M. Messmer and C. Wood in
[6], where a single, non–iterative Hasse derivation was used. For e = 1 our two
approaches coincide and Theorem 1.1 was proved (slightly differently) in [6].4

We will prove the theorem in Section 3. The main algebraic ingredient is
the amalgamation property of the class of D–fields, which we prove in Section
2, Proposition 2.6. In Section 4 we give an alternative proof for quantifier
elimination.

I thank Anand Pillay for various helpful discussions.

2 Amalgamation

We will prove in this section that the class of D–fields has the amalgamation
property : Any two extensions of a D–field K can be jointly embedded in a third
extension of K.

Lemma 2.1. For any D–field K the index of its field C of constants is bounded
by pe. Let K ′ be an extension of K with constant field C ′. Then C ′ and K are
linearly disjoint over C.

Proof. We write di for the derivation Di,1 and Ci for its field of constants in K.
By reordering D we may assume that C is the irredundant intersection of the
first f of the Ci. So the Bi = C1 ∩ · · · ∩Ci form a properly descending sequence

K = B0 ⊃ B1 ⊃ · · · ⊃ Bf = C.

The formula (1.3) implies that d p
i = 0 for all i. Since the di commute, each di

maps Bi−1 into itself. By Theorem 27.3 of [3] we find elements xi ∈ Bi−1 with
di(xi) = 1 and for any such choice 1, xi, . . . , x

p−1
i is a basis of Bi−1 over Bi.

3I.e. [K : Kp] = pe

4M. Messmer and C. Wood have asked me to point out, that, for e > 1, there is a gap
in the proof of the main theorem [6], as well as a false claim about the product rule in the
non-iterative case.
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Whence the x = xe1
1 · · ·xef

f , (ei < p) form a basis of K over Bf = C. For the
same reason these elements form a basis of K ′ over B′

f ⊃ C ′. Thus the x are
independent over C ′.

An alternative proof uses the Wronskian matrix: Let θ1, . . . , θpe be an enu-
meration of all operators of the form D1,n1D2,n2 · · ·De,ne

, (ni < p) (or, equiv-
alently, dn1

1 dn2
2 · · · dne

e ). It can easily be proved by a standard argument that a
sequence x1, . . . , xN is linearly independent over C iff the matrix (θα(xβ)) has
rank N (see [7, Proposition 5.1]). The Lemma follows immediately from this.

Corollary 2.2. Let K be a strict D–field and F a D–field which extends K.
Then F is a separable extension of K. If [K : Kp] = pe , F is strict iff K and
F have a common p–basis.

(See [1] for the definition of p–basis and its basic properties.)

Proof. By the Lemma K and the field C constants of F are linearly disjoint
over Kp. This implies that K and F p are linearly disjoint over Kp. Thus F is
separable over K. We have [K : Kp] ≤ [F : C] ≤ pe. So, if [K : Kp] = pe, we
have [F : C] = pe. Therefore C = F p iff [F : F p] = pe, which proves the second
part.

Lemma 2.3. Let (K,D) be a D–field and F a field extension of K. Assume
that K and F have a common p–basis. Then D extends uniquely to a sequence E
of commuting Hasse derivations on F . Furthermore, if (F ′,E′) is an extension
of (K,D) which contains F , the functions in E′ map F into itself, so that
E = E′ ¹ F .

In the special case that F is a separably algebraic extension of K the Lemma
is due to F.K. Schmidt ([2]) for e = 1 and to Okugawa ([7, Proposition 2.8]) for
arbitrary e. We will deduce the general case from a theorem of Matsumara.

Proof. For a single Hasse derivation the lemma follows from the fact that field
extensions with a common p–basis are 0–tale , see [3, 26.7 and 27.2]. So, if E
is a sequence of Hasse derivations of F which extends D, it remains to show
that the Ei commute. Let us prove that E1 and E2 commute, i.e. that E1,i and
E2,j commute for all i, j, by induction on i + j. Fix m and n and assume that
E1,i and E2,j commute for all i + j < m + n. It is easy to check (use (1.2))
that then E1,mE2,n−E2,nE1,m is a derivation. Since D1 and D2 commute, this
derivation vanishes on K and therefore also on F .

The uniqueness stated in the Lemma follows also from the following recursive
formula, which shows that D can be computed from its values on a basis5 of

5Even the values on a p–basis would suffice.
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F/F p: Let D be any Hasse derivation. Then (2.2) below implies for r < p that

Dpn+r(xpb) =
∑

m≤n

Dm(x)pDp(n−m)+r(b). (2.1)

Lemma 2.4. Any D–field K has a smallest strict extension Kstrict, which is a
purely inseparable extension of K.

Proof. Consider an arbitrary Hasse derivation D. We note first that (1.2) im-
plies

Dn(xp) =

{
Dn

p
(x)p if p|n

0 otherwise
(2.2)

Also, by (1.3), if D1(x) = 0, we have Dm(x) = 0 for all m which are not divisible
by p. It follows that

D′ = (D0, Dp, D2p, . . . )

is a Hasse derivation on the constant field of D1.6

Let C be the constant field of (K,D). Since the Di commute, all Di,n map
C into itself. By the last remark D′ = (D′

1, . . . ,D
′
e) is a sequence of commuting

Hasse derivations on C. We transport D′ from C to K∗ = C
1
p via the Frobenius

map:

D∗
i,n(x) = Dpn,i(xp)

1
p .

D∗ extends D by (2.2). We repeat this process and get an infinite sequence of
purely inseparable extensions. The union of this sequence is Kstrict.

Note that Kstrict is separably closed if K is separably closed.

Lemma 2.5. Let F and L be D–fields which both extend the D–field K. Assume
that, in a common field extension, F and L are linearly disjoint over K. Then
FL has a unique D–structure which extends the D–structures of F and L.

Proof. A D–module over K is a K–vector space V with a family Di,n (i ∈
{1, . . . , e}, n ∈ N) of commuting additive maps V → V such that for all D = Di,
x ∈ K and v ∈ V .

D0(v) = v (2.3)

Dn(xv) =
∑

a+b=n

Da(x)Db(v) (2.4)

DaDb(v) =
(

a + b

a

)
Da+b(v) . (2.5)

A commutative K–algebra R is a D–algebra if it is a D–module and the Di are
Hasse derivations on R.

The following statements are easy to check (cf. [4]):
6Note that

ąn
i

ć ≡ ąpn
pi

ć
mod p.
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• If V and W are D–modules over K, the tensor product V ⊗K W becomes
a D–module by the definition

Di,n(v ⊗ w) =
∑

a+b=n

Di,a(v)⊗Di,b(w).

• If R and S are D–algebras over K, their tensor product is also a D–algebra.

If R and S have unit–elements, R and S are subrings of R⊗K S. It is clear that
the D–structure of R ⊗K S is the only common extension of the D–structures
of R and S7.

If F and L are linearly disjoint over D, FL is the quotient field of F ⊗K L.
By [2] and [7, Proposition 2.3] a sequence of commuting Hasse derivations on a
domain extends uniquely to the quotient field. This proves the Lemma.

Proposition 2.6. The class of D–fields has the amalgamation property.

Proof. Let F and L be D–fields which both extend the D–field K. If we apply
Lemma 2.3 and Lemma 2.4 to the separable algebraic closures of F and L, we
see that we may assume that F and L are separably closed and strict. Then
(Ksep)strict is a D–subfield of F and L (again by Lemmas 2.3 and 2.4), so we may
assume that K is separably closed and strict. We may also assume that F and L
are situated in a common extension field and are algebraically independent over
K. By Corollary 2.2 F is a separable extension of K and therefore a regular
extension, since K is separably closed. This implies that F and L are linearly
independent over K and that we can extend the D–structure of F and L to
FL.

3 Proof of the Theorem

1. Quantifier elimination and completeness

To prove that SCHp,e has quantifier elimination, we have to show that the
following is true: If F and L are models of SCHp,e with a common substructure
R, we can embed F over R in an elementary extension of L. Let K be the
quotient field of R in F and K ′ the copy of K in L.

For all Hasse derivations D we have the recursion formula

Dn

(r

s

)
=

Dn(r)−∑
a<n Da( r

s )Dn−a(s)
s

This shows that K and K ′ are D–subfields of F and L and are, over R, isomor-
phic as D–fields. So we can assume that R = K.

7Note that Dn(1) = 0 for any Hasse derivation D and n > 0.
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By amalgamation we find a D–field F ′ which extends F and L. We may
assume that F ′ is strict. By Corollary 2.2 F ′ is a separable extension of L.
Since L is separably closed, we can embed F ′ over L in an elementary extension
L′ of L (see [1, Claim 2.2]). Let F ′′ be the copy of F ′ in L′.

L′

F ′ F ′′

F L

K

R

-
HHHHH

@
@

¡
¡

It remains to show, that F ′′ is a D–subfield of L′ which, over L, is isomorphic
to F ′. But this follows immediately from Lemma 2.3, since F ′ and L have a
common p–basis by Corollary 2.2. Note that the assumption that F is a model
of SCHp,e was not used.

SCHp,e is complete since it is consistent by part 3 below and since all models
contain the trivial D–field Fp.

2. Every D–field is contained in a model

Let F be a D–field and L be any model of SCHp,e. (We will see below that
SCHp,e is consistent.). By the proof of quantifier elimination we can embed F
(over Fp) in an elementary extension of L.

3. Every separably closed field with degree of imperfection e can be
expanded to model

Let F be a separably closed field of imperfection degree e. Let b1, . . . , be be
a p–basis of F . Then the bi are algebraically independent over Fp and form a p–
basis of K = Fp(b1, . . . , be). Define a sequence of commuting Hasse derivations
on K by

f(b1, . . . , bi + t, . . . , be) =
∞∑

n=0

Di,n(f(b1, . . . , be)) tn. (3.1)

or, equivalently, by

Di,n(bk1
1 · · · bke

e ) =
(

ki

n

)
bk1
1 · · · bki−n

i · · · bke
e (3.2)

It is easy to check, and well–known, that this definition turns K into a strict
D–field (see [7, Section I.1]). By Lemma 2.3 we can extend D to F . F is strict
since [F : F p] = pe (Corollary 2.2). So (F,D) is a model of SCHp,e.

6



4 Remarks

Stability and elimination of imaginaries

Using the methods of [1] and [6] it is easy to prove that SCHp,e is stable and
has elimination of imaginaries. The stability of SCHp,e can also be derived
directly from the stability of separably closed fields ([8]) as follows: Let F be
a separably closed field with p–basis b1, . . . , be and D a Hasse derivation of
F . The formula (2.1) shows that all Dn are definable in the field F using the
parameters Dn(bk1

1 · · · bke
e ).8 This implies that F together with any sequence of

Hasse derivations is stable.

Let me also indicate why SCHp,e has elimination of imaginaries, following
[5]. One notes first, that, working in fields, it suffices to show that SCHp,e has
weak elimination of imaginaries (see [5, Fact 5.5]). By a theorem of Evans,
Pillay and Poizat (see [5, Proposition 5.8]) it is enough to show that every type
q(x1, . . . , xm) over a model (F,D) has a canonical base. Let θ1, θ2, . . . be an
enumeration of all operators of the form D1,n1D2,n2 · · ·De,ne

, (ni = 0, 1, . . . )
and let Iq be the ideal of all polynomials f ∈ F [Xα,j ]α=1,2,... ; j=1,...,m such
that the formula f(θα(xj))

.= 0 belongs to q. By quantifier elimination q is
determined by Iq. Thus the field of definition of Iq serves as a canonical base of
q.

Canonical p-bases

Let (F,D) be a D–field with degree of imperfection e. A p–basis b1, . . . , be is
canonical if for all n > 0

Di,n(bj) =

{
1 if n = 1 and i = j

0 otherwise
. (4.1)

Lemma 4.1. Let F be a field with with degree of imperfection e. Every p–basis
of F is a canonical p–basis of a uniquely determined sequence of commuting
Hasse derivations.

Proof. A canonical p–basis b1, . . . , be determines D uniquely: Di,n(bk1
1 · · · bke

e )
is given by (3.2). To compute Di,n(x) for arbitrary x, write

x =
∑

0≤k1,...,ke<pm

xpm

k1...ke
bk1
1 · · · bke

e

for some m with n < pm. Then

Di,n(x) =
∑

0≤k1,...,ke<pm

xpm

k1...ke
Di,n(bk1

1 · · · bke
e ). (4.2)

Now let b1, . . . , be be any p–basis. The construction at the end of the last section
shows that (3.2) and (4.2) define a sequence D of commuting Hasse derivations
with canonical p–basis b1, . . . , be.

8Actually the parameters bi and Dpm (bi) suffice.
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The D constructed in in the last part of the proof is strict. So we conclude, that
only a strict sequence D can have a canonical p–basis. The converse is true if
(F,D) is ω-saturated:

Remark. Every ω–saturated strict D–field has a canonical p–basis.

I will give the proof only in the following special case, which will be used
later.

Corollary 4.2. Every ω–saturated model of SCHp,e has a canonical p–basis.

Proof. To have a canonical p–basis means that a certain countable set
Σ(x1, . . . , xe) of formulas is realized. Since SCHp,e is complete, it is enough
to show that some model of SCHp,e has a canonical p–basis. For this take a
separably closed field F of imperfection degree e and fix a p–basis b̄. Let D be
the unique sequence which has b̄ as a canonical p–basis. (F,D) is a model of
SCHp,e.

Lemma 4.1 and the last remark allow us to determine all strict sequences of
commuting Hasse derivations of an ω–saturated field F . We note first that, if
b1, . . . , be is a canonical p–basis for D, then b′1, . . . , b

′
e is a canonical p–basis for

D iff the differences bi − b′i belong to

F p∞ =
∞⋂

k=1

F pk

=
{
a ∈ F | Di,n(x) = 0 (i = 1, . . . , e ; n = 1, 2, . . .)

}
.

This gives

Remark. Let F be an ω–saturated field with degree of imperfection e. There is a
natural 1–1–correspondence between the set of all strict sequences of commuting
Hasse derivations and the set of all p–bases modulo F p∞ .

Lambda functions

Let b1, . . . , be be a p–basis of F . The functions λm
k1...ke

are defined by

x =
∑

0≤k1,...,ke<pm

λm
k1...ke

(x)pm

bk1
1 · · · bke

e

Fix a natural number m. For a multi-index κ = (k1, . . . , ke) ∈ {0, . . . , pm − 1}e

and a sequence D of Hasse derivations let us use the notations

bκ = bk1
1 · · · bke

e and Dκ = D1,k1D2,k2 · · ·De,ke .

If we apply Dκ to the equation

x =
∑

µ

λm
µ (x)pm

bµ,
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we obtain
Dκ(x) =

∑
µ

λm
µ (x)pm

Dκ(bµ).

If D is strict, the Wronski matrix
(
Dκ(bµ)

)
is always regular. If b1, . . . , be is

canonical for D, its entries are, up to factors from Fp, monomials in the bi. It
is also easy to see that the determinant is 1. This yields

Lemma 4.3. Let (F,D) be a D–field with canonical p–basis b1, . . . , be. Then
the functions (λm

µ (x))pm

are polynomials in b1, . . . , be and the Dκ(x).

Quantifier elimination

Let Tp,e denote the theory of separably closed fields F of characteristic p with
a named p–basis b1, . . . , be. It is shown in [1] that Tp,e is complete and has
quantifier elimination if one adds function symbols for the λm

µ to the language.9

This fact can be used to give an alternative proof for the quantifier elimi-
nation of SCHp,e: Let φ(x̄) be an Le–formula and (F,D) a saturated model of
SCHp,e. By Corollary 4.2 we can find a canonical p–basis b1, . . . , be. Since we
can define the Di,n in (F, b1, . . . , be), φ(x̄) is equivalent to a Boolean combina-
tion of polynomial equations between b1, . . . , be and terms of the form λm

µ (xi),
for sufficiently large m. By taking pm-th powers we can replace the λm

µ (xi) by
λm

µ (xi)pm

. By the last lemma we obtain an equivalent Boolean combination of
equations of the form ∑

κ

qκ(x̄) bκ .= 0 (4.3)

where the qκ(x̄) are terms in the Dκ(xi). The equivalence holds for any choice of
the canonical p–basis b1, . . . , be. Since F p∞ is infinite, we can find the b1, . . . , be

algebraically independent over any given tuple x̄. This shows that we can replace
each equation (4.3) by

∧
κ qκ(x̄) .= 0. We observe finally that the resulting

quantifier free Le–formula does not depend on the choice of F .
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