Chernikov and Simon's proof of Shelah's theorem^{*}

M. Ziegler

October 17, 2010

Let T be a complete theory with monster model \mathbb{C} and $M \prec \mathbb{C}$ a model of T. A relation $X \subset M$ is externally definable if for some formula $\phi(x, y)$ and parameter $c \in \mathbb{C}$ we have $X = \phi(M, c)$. Shelah has shown in [3] for dependent (i.e. NIP) T that the structure M together with all externally definable relation has quantifier elimination. Pillay gave a better proof in [2]. Recently a new proof was given by Chernikov and Simon in [1]. The purpose of this note is to present a variant of their proof which avoids adding new predicates to the language.

We will need the following notation: $a \bigcup_{M}^{*} c$ means that tp(a/Mc) is a coheir of tp(a/M). The following is easy to see:

Lemma 1. (1) $B \downarrow_M^* c$, $a \downarrow_M^* Bc \Rightarrow aB \downarrow_M^* c$

(2) If $A \downarrow_{M}^{*} c$, then every type over AM is realised by some b with $bA \downarrow_{M}^{*} c$.

The next proposition is a version of Proposition 1.1 of [1].

Proposition 2. Let M be a model. $\phi(x, y)$ a formula without the independence property and $c \in \mathbb{C}$. Then there is a set A and an L(A)-formula $\theta(x)$ such that

- a) $A \downarrow_M^* c$
- b) $\theta(M) = \phi(M, c)$
- c) For all b with $bA \downarrow^*_M c$, we have $\models \theta(b) \rightarrow \phi(b,c)$.

Proof. Consider the set Q of all global types q which are coheirs of their restriction to M and contain $\phi(x, c)$. Clearly Q is a closed subset of $S(\mathbb{C})$. Let q_{α} , $(\alpha < \lambda)$ be an enumeration of Q. We construct recursively an ascending sequence of sets A_{α} and of $L(A_{\alpha})$ formulas $\theta_{\alpha}(x)$ as follows: Set $A' = \bigcup_{\beta < \alpha} A_{\beta}$. By assumption we have $A' \, {\downarrow^*}_M c$. Then try to choose an infinite sequence a_0, b_0, a_1, \ldots such that

- a') $\{a_0, b_0, a_1, \ldots\} A' \, {}^*_M c$
- b') $a_i \models q_\alpha \upharpoonright a_0 b_0 \dots b_{i-1} M A' c$
- c') $b_i \models q_\alpha \upharpoonright a_0 b_0 \dots a_i M A' \cup \{\neg \phi(x, c)\}$

^{*}I thank Enrique Casanovas for pointing out an inaccuracy in an earlier version.

Since q_{α} is a coheir of $q_{\alpha} \upharpoonright M$, the sequence a_0, b_0, \ldots is indiscernible over M. $\phi(x, y)$ is NIP and $\models \phi(a_i, c) \land \neg \phi(b_i, c)$, so the construction must fail. For b_i we can always choose an arbitrary realization of $q_{\alpha} \upharpoonright a_0 b_0 \ldots b_{i-1} M A' c$ and have then $\{a_0, b_0, \ldots, b_i\}A' \, {\perp}^*_M c$ by Lemma 1 (1).

So the construction must fail at some stage where we cannot find b_i which satisfies a') and c'). Set $A_{\alpha} = \{a_0, b_0, \dots, a_i\} \cup A'$ and choose a formula $\theta_{\alpha} \in q_{\alpha} \upharpoonright MA_{\alpha}$ such that for all b with $bA_{\alpha} \perp^*_M c$ we have $\models \theta(b) \rightarrow \phi(b, c)$. We take for A the union of all the A_{α} . The formulas θ_{α} cover the space Q.

We take for A the union of all the A_{α} . The formulas θ_{α} cover the space Q. So there are finitely many $\alpha_1, \ldots, \alpha_{n-1}$ such that $\theta = \bigvee_{i < n} \theta_{\alpha_i}$ is contained in all $q \in Q$. It is clear that the properties a) and c) are true. Since $mA \, {\downarrow^*}_M c$ for all $m \in M$, this implies also $\theta(M) \subset \phi(M, c)$. If m belongs to $\phi(M, c)$, we have $q = \operatorname{tp}(m/\mathbb{C}) \in Q$. So $\theta \in q$ and we have $m \in \theta(M)$.

Let $R = \theta(M)$ be an externally defined relation on M. $\theta(x)$ is an *honest* definition of R if for all L(M)-formulas $\psi(x)$

$$\theta(M) \subset \psi(M) \Rightarrow \theta(\mathbb{C}) \subset \psi(\mathbb{C}).$$

Corollary 3 ([1]). In a dependent theory every externally definable relation on M has an honest definition.

Proof. If $R = \phi(M, c)$, choose A and θ as in the proposition. Then $R = \theta(M)$. We claim that $\theta(x)$ is an honest definition of R: Assume $\theta(M) \subset \psi(M)$. Then all $m \in M$ satisfy $\phi(m, c) \to \psi(m)$, which implies that $\models \phi(b, c) \to \psi(b)$ for all b with $b \, {\downarrow^*}_M c$. So by the proposition we have $\models \theta(b) \to \psi(b)$ for all b with $bA \, {\downarrow^*}_M c$. With Lemma 1 (2) this implies $\theta(\mathbb{C}) \subset \psi(\mathbb{C})$.

Shelah's theorem follows from this like in [1]: Let $R \subset M^2$ be a relation with an honest definition $\theta(x, y)$. Then $\exists y \theta(x, y)$ is an external definition of $\pi(R) = \{m \in M \mid (m, n) \in R \text{ for some } n \in M\}$. To see this consider $m_0 \in M$ and the formula $\psi(x, y) = \neg x \doteq m_0$. Then $m_0 \in \pi(R)$ iff $\theta(M) \not\subset \psi(M)$ iff $\theta(\mathbb{C}) \not\subset \psi(\mathbb{C})$ iff $\models \exists y \theta(m_0, y)$.

References

- Artem Chernikov and Pierre Simon. Externally definable sets and dependent pairs. arXiv:math.LO71007.4468, 2010.
- [2] Anand Pillay. On externally definable sets and a theorem of shelah. In *Felgner Festchrift*, Studies in Logic. College Publications, 2007.
- [3] Saharon Shelah. Strongly dependent theories. Israel Journal of Mathematics, accepted. math.LO/0504197.