Divisible Uniserial Modules over Valuation Domains

Martin Ziegler

June 1994

1 Introduction

Let R be a valuation domain with quotient field K. An R-module M is uniserial if for all $x, y \in M$ there is an $r \in R$ such that

$$rx = y$$
 or $ry = x$.

M is divisible if for all $x \in M$ and all non-zero $r \in R$ there is a $y \in M$ such that ry = x.

A non-zero torsionfree divisible uniserial R-module is obviously isomorphic to the quotient field K of R. We call a divisible uniserial R-module proper if it is not torsionfree.

The main theorem 4.3 of this paper classifies proper divisible uniserial R-modules by two invariants:

• an element of the cohomology group

$$\lim_{\leftarrow} {}^{1}_{\alpha\in\Gamma} U/U_{\alpha},$$

where Γ is the value semigroup of R, U is the group of units of R and U_{α} is the group of units, which differ from 1 by an element of larger value than α .

• an element of the ideal class semigroup of R

The first invariant of M is zero iff M is a *standard*, i.e. if M is a quotient of K. In section 2 we give an easy example of a valuation domain R for which $\lim_{\alpha \in \Gamma} U/U_{\alpha}$ does not vanish, which shows that R has a nonstandard divisible uniserial module M. The part of 4.3 needed to obtain M is given an extra proof in section 2, which thereby contains a self-contained new construction of a nonstandard divisible uniserial module over a valuation domain.

Shelah showed in [7, p.135-150] that the existence of nonstandard divisible uniserial modules is consistent with ZFC. This result was then improved by Fuchs and Salce [2] and Franzen and Göbel [1], who showed that the existence of nonstandard divisible uniserial modules follows from \diamond_{ω_1} and even from $2^{\omega_0} < 2^{\omega_1}$.

The existence of nonstandard divisible uniserial modules was finally proved without set– theoretical hypotheses by Fuchs and Shelah [3] using a model theoretic transfer principle and later by B. Osofsky [6] by purely algebraic means.

If M is a nonstandard divisible uniserial module the matrix ring

$$S = \left\{ \begin{array}{cc} r & m \\ 0 & r \end{array} \right) \middle| r \in R, m \in M \right\}$$

is a counter example for an old conjecture of Kaplansky, according to which every valuation ring should be a quotient of a valuation domain.

2 Construction of a nonstandard uniserial module

Let I be a totally ordered set. A projective system is an I-indexed family (A_{α}) of abelian groups together with a commutative system of homomorphisms

$$\pi_{\alpha\beta}: A_{\beta} \to A_{\alpha} , \quad (\alpha < \beta \in I).$$

A 0-cochain is a sequence $(e_{\alpha})_{\alpha \in I}$ of elements e_{α} of A_{α} . A 1-cochain is a family $(c_{\alpha\beta})_{\alpha < \beta \in I}$ of elements $c_{\alpha\beta}$ of A_{α} . The coboundary $\delta(e)$ of a 0-cochain e is the 1-cochain defined by

$$\delta(e)_{\alpha\beta} = \pi_{\alpha\beta}(e_{\beta}) - e_{\alpha}.$$

Coboundaries are *cocycles* in the following sense: A 1-cochain c is called a 1-cocycle if

$$\pi_{\alpha\beta}(c_{\beta\gamma}) - c_{\alpha\gamma} + c_{\alpha\beta} = 0$$

for all $\alpha < \beta < \gamma$. Let us denote the quotient group (1-cocycles)/(coboundaries) by

$$\underset{\leftarrow}{\lim}^{1}_{\alpha\in I}A_{\alpha}.$$

Now let R be valuation domain and $v : R \to \Gamma \cup \{\infty\}$ the valuation of R. For every $\alpha \in \Gamma$ we define

$$U_{\alpha} = \{ u \in R \mid v(1-u) > \alpha \}.$$

 U_{α} is a multiplicative subgroup of U, the group of units of R.

Theorem 2.1 *R* has a nonstandard uniserial divisible module iff $\lim_{\leftarrow \alpha \in \Gamma} U/U_{\alpha}$ is non-trivial.

Proof:

That a nonstandard uniserial divisible module gives rise to a non-trivial element of $\lim_{\leftarrow \alpha \in \Gamma} U/U_{\alpha}$ is not needed for our construction. We will prove this in Lemma 4.3.

Now assume that the units $(u_{\alpha\beta})$ represent a cocycle of the projective system (U/U_{α}) . We are going to construct a uniserial divisible module M, which can only be standard if the $(u_{\alpha\beta})$ represent a coboundary.

First let us fix some notation. For every $\alpha \in \Gamma$ we choose an element r_{α} with value α . If A is an R-module the multiple $r_{\alpha}A$ does not depend on the choice of r_{α} , so we denote it by αA . If P is the maximal ideal of R we have then $U_{\alpha} = 1 + \alpha P$.

For all $\alpha < \beta$ multiplication by $r_{\alpha}^{-1}r_{\beta}$ defines an embedding from $R/(\alpha P)$ into $R/(\beta P)$. The direct limit of this system is isomorphic to K/P. To obtain a more interesting limit we use the embeddings

$$u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta}: R/(\alpha P) \to R/(\beta P).$$

This is a commutative system since $(u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta})(u_{\beta\gamma}r_{\beta}^{-1}r_{\gamma})$ and $u_{\alpha\gamma}r_{\alpha}^{-1}r_{\gamma}$ differ only by the factor $u_{\beta\gamma}u_{\alpha\gamma}^{-1}u_{\alpha\beta} \in U_{\alpha}$ and define therefore the same map $R/(\alpha P) \to R/(\gamma P)$. Clearly the direct limit M is uniserial. M is divisible since every element of $R/(\alpha P)$ is divisible by $r_{\alpha}^{-1}r_{\beta}$ in $R/(\beta P)$. We will use the notation x_{α} for the coset of 1 in $R/(\alpha P)$.

Now suppose $M \cong K/I$ and let $y_{\alpha} + I$ be the image of x_{α} under this isomorphism. Multiplication by y_0^{-1} shows that we can assume that $y_0 = 1$ and I = P. Then y_{α} has value $-\alpha$ and $e_{\alpha} = r_{\alpha}y_{\alpha}$ is a unit. $x_{\alpha} = u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta}x_{\beta}$ implies $y_{\alpha} \equiv u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta}y_{\beta} \pmod{P}$. If we multiply this equation by r_{α} we obtain $e_{\alpha} \equiv u_{\alpha\beta}e_{\beta} \pmod{\alpha P}$. This shows that u is a coboundary. \Box

To find a valuation domain with the property of 2.1 we make use of the following Lemma.

Lemma 2.2 (Todorcevic) Let $(B_{\xi})_{\xi \in \omega_1}$ be a family of infinite abelian groups. For the projective system $(A_{\xi}) = \bigoplus_{\eta < \xi} B_{\eta}$ $(\xi \in \omega_1)$ with the the obvious projection maps we have

$$\lim_{\leftarrow} {}^{1}_{\xi \in \omega_{1}} A_{\xi} \neq 0.$$

Proof:

The standard construction of an Aronszajn tree ([5, p.70]) yields a sequence $(f_{\xi})_{\xi < \omega_1}$ of injective functions $f_{\xi} : \xi \to \omega$ such that for all $\xi < \zeta$ the two functions f_{ξ} and $f_{\zeta} \upharpoonright \xi$ differ only for finitely many arguments. In each B_{ζ} we choose a copy of ω . Then f_{ξ} defines an element of $A'_{\xi} = \prod_{\eta < \xi} B_{\eta}$. Define

$$c_{\xi\zeta} = f_{\xi} - f_{\zeta} \in A_{\xi}.$$

Then c is a 1-cocycle, which is not a coboundary. Otherwise, there would be a sequence $d_{\xi} \in A_{\xi}$ $(\xi \in \omega_1)$ such that $c_{\xi\zeta} = d_{\xi} - d_{\zeta}$. But then the functions $f_{\xi} - d_{\xi}$ form an ascending sequence. The union f of this sequence is a map defined on ω_1 , which differs from each f_{ξ} only on finitely many values in ξ . Since the f_{ξ} have values in ω , the preimage $f^{-1}(\omega)$ is cofinal in ω_1 . Since the f_{ξ} are injective all $f^{-1}(n)$ are finite. This is impossible.

Fix a field F. Choose indeterminates t_{ξ} , $(\xi < \omega_1)$ and let K be the rational function field $F(t_{\xi})_{\xi < \omega_1}$. Order $\Gamma = \bigoplus_{\xi \in \omega_1} \mathbb{Z}$ lexicographically and let

$$\mathbf{v}: K \to \Gamma \cup \{\infty\}$$

be the (uniquely determined) valuation of K which is trivial on F and maps t_{ξ} to 1_{ξ} , the 1 of the ξ -th copy of Z. (Note that the 1_{ξ} form an ascending sequence.)

Theorem 2.3 The valuation ring of (K, v) has a nonstandard uniserial divisible module.

Proof:

We start the computation of the group U of units with the observation that

$$U = F^{\cdot} \times U_0,$$

where F^{\cdot} is the multiplicative group of F. In order to compute U_0 we enlarge the linear order Γ by cuts

$$\alpha_{\xi} = \sup\{n \cdot 1_{\eta} \mid \eta < \xi, \, n \in \mathbb{N}\}$$

to Γ . By the next lemma we have then

$$U_0 = \prod_{\xi < \omega_1} V_{\xi},$$

where $V_{\xi} = \{x \in F(t_{\eta})_{\eta \leq \xi} \mid v(1-x) > \alpha_{\xi}\}$. It results that

$$U/U_{\alpha_{\xi}} = F^{\cdot} \times \left(\prod_{\eta < \xi} V_{\eta}\right).$$

By Lemma 2.2 $\lim_{\xi \to \omega_1} U/U_{\alpha_{\xi}}$ is not trivial. By proposition 3.2 we conclude that

$$\underset{\leftarrow}{\lim}^{1} {}_{\alpha < \Gamma} U / U_{\alpha} \cong \underset{\leftarrow}{\lim}^{1} {}_{\alpha < \tilde{\Gamma}} U / U_{\alpha} \cong \underset{\leftarrow}{\lim}^{1} {}_{\xi < \omega_{1}} U / U_{\alpha_{\xi}}$$

is not trivial. Now apply Theorem 2.1.

Avoiding the use of 3.2 one can construct M directly as follows: Choose a family $(u_{\xi\zeta})_{\xi<\zeta<\omega_1}$ of units which represents a non-trivial element of $\lim_{\xi<\omega_1} U/U_{\alpha_{\xi}}$. Let M be the direct limit of the system $(R/(t_{\xi}P))_{\xi<\omega_1}$ with maps

$$u_{\xi+1,\zeta+1}t_{\xi}^{-1}t_{\zeta}: R/(t_{\xi}P) \to R/(t_{\zeta}P).$$

Lemma 2.4 Let $v: H \to G \cup \{\infty\}$ be a valued field. Order $G \times \mathbb{Z}$ lexicographically and let α be the cut sup G. Extend v to a valuation $v: H(t) \to G \times \mathbb{Z}$ with v(t) = (0,1). Then the group U_0 of 1-units of H(t) is the direct product of the 1-units of H and of U_{α} .

Proof: Easy.

3 The right derived functors of the inverse limit functor

Let I be a totally ordered set. A *projective system* is an I-indexed family (A_{α}) of abelian groups together with a commutative system of homomorphisms

$$\pi_{\alpha\beta}: A_{\beta} \to A_{\alpha} , \quad (\alpha < \beta \in I).$$

Projective systems forms an abelian category in a natural way. \varinjlim is a right exact functor to the category of abelian groups. Since the category of projective systems has enough injectives lim has right derived functors

$$\underbrace{\lim}_{i \to i} = \underbrace{\lim}_{i \to i} {}^{0}, \ \underbrace{\lim}_{i \to i} {}^{1}, \ \underbrace{\lim}_{i \to i} {}^{2} \dots$$

Fix a projective system $(A_{\alpha}, \pi_{\alpha\beta})_{\alpha < \beta \in I}$ and a number $n \ge 0$. We call a family

$$c = (c_{\alpha_0 \dots \alpha_n}),$$

indexed by ascending sequences $\alpha_0 < \ldots < \alpha_n$ of elements of I, an *n*-cochain if each $c_{\alpha_0...\alpha_n}$ is an element of A_{α_0} . The set of *n*-chains form an abelian group C^n under component-wise addition. The coboundary homomorphisms

$$\delta: C^{n+1} \to C^n,$$

defined by $(\delta c)_{\alpha_0...\alpha_{n+1}} = \pi_{\alpha_0\alpha_1}(c_{\alpha_1...\alpha_n}) + \sum_{i=1}^{n+1} (-1)^i c_{\alpha_0...\widehat{\alpha_i}...\alpha_{n+1}}$, make $C = (C^n)_{n \ge 0}$ into a cochain complex.

Theorem 3.1 ([4, Théorème 4.1])

$$\underset{\leftarrow}{\lim}_{\alpha\in I}^{n} A_{\alpha} = \mathrm{H}^{n}(C)$$

Readers who don't like derived functors can take $\operatorname{H}^n(C)$ as the definition of $\lim_{\leftarrow \alpha \in I} A_{\alpha}$. The content of the last theorem is then that the $\lim_{\leftarrow n} h$ has the characterizing properties of the derived functors: They are trivial on injective projective systems and there is a natural long cohomology sequence.

If J is a subset of I there is an obvious restriction map

$$res: \lim_{\leftarrow \alpha \in I} A_{\alpha} \to \lim_{\leftarrow \alpha \in J} A_{\alpha}$$

Jensen proved in [4, p.12] that *res* is an isomorphism if J is cofinal in I. (As a special case, we have for all I with a last element that $\lim_{\alpha \in I} A_{\alpha} = 0$ for all $n \ge 1$.) The inverse map can be obtained as follows: One chooses a function $\phi : I \to J$ such that always $\alpha \le \phi(\alpha)$. Then to every *n*-cochain *d* over *J* assign the *n*-cochain $\phi^*(d)$ over *I* defined by

$$\phi^*(d)_{\alpha_0\dots\alpha_n} = \pi_{\alpha_0\beta} d_{\phi(\alpha_0)\dots\phi(\alpha_n)},$$

where β is the smallest element of $\phi(\alpha_0) \dots \phi(\alpha_n)$. (We use here the convention that $d_{\beta_0\dots\beta_n}$ is zero if there is an double index, and is changed by the sign of permutation if the β_i are

not in ascending order.) It is easy to see that the maps $\phi^* : C^n \to C^n$ commute with δ and induce a homomorphism

$$\phi^*: \lim_{\alpha \in J} A_{\alpha} \to \lim_{\alpha \in I} A_{\alpha}.$$

The next proposition shows that the composition

$$\lim_{\leftarrow \alpha \in I}^{n} A_{\alpha} \xrightarrow{res} \lim_{\leftarrow \alpha \in I}^{n} A_{\alpha} \xrightarrow{\phi^{*}} \lim_{\leftarrow \alpha \in J}^{n} A_{\alpha}$$

is the identity, giving another proof of Jensen's result.

Proposition 3.2 Let $(A_{\alpha})_{\alpha \in I}$ be a projective system and $\phi : I \to I$ a function with $\alpha \leq \phi(\alpha)$. Let d be an n-cocycle and let c be the n-cochain defined by $c_{\alpha_0...\alpha_n} = \pi_{\alpha\beta}d_{\phi(\alpha_0)...\phi(\alpha_n)}$, where β is the smallest element of $\phi(\alpha_0)...\phi(\alpha_n)$. Then d and c differ by a coboundary.

Proof:

Let C be the functor which assigns to every projective system (A_{α}) the corresponding cochain complex (C^n) . ϕ^* defines a natural transformation $C \to C$ and therefore a family of natural transformations $\phi^* : \lim_{\leftarrow} n \to \lim_{\leftarrow} n$ which for every short exact sequence $0 \to (A_{\alpha}) \to (B_{\alpha}) \to$ $(C_{\alpha}) \to 0$ commute with the connecting homomorphisms $\delta : \lim_{\leftarrow} n(C_{\alpha}) \to \lim_{\leftarrow} n^{n+1}(A_{\alpha})$. By the general theory of derived functors ϕ^* is therefore determined by what it does on $\lim_{\leftarrow} 0^n$. Since ϕ^* is the identity on $\lim_{\leftarrow} 0^n$, as one can easily check, it is the identity on all $\lim_{\leftarrow} n$.

Jensen proved in [4, Corollaire 3.2] that for all I of cofinality ω_k

$$\lim_{\alpha \in I} A_{\alpha} = 0 \quad \text{(for all } n \ge k+2\text{)}.$$

Furthermore he proved that the result is optimal: For every $n \ge 2$ there is a projective system $(A_{\alpha})_{\alpha\in\omega_{n-1}}$ such that $\lim_{\alpha\in\omega_{n-1}} A_{\alpha} \ne 0$ ([4, Proposition 6.2]).

If we look at *epimorphic* systems $(A_{\alpha}, \pi_{\alpha\beta})_{\alpha < \beta \in I}$, where all the $\pi_{\alpha\beta}$ are surjective, we have a better result:

Theorem 3.3 For epimorphic systems of cofinality ω_k we have

$$\lim_{\alpha \in I} A_{\alpha} = 0 \quad (for \ all \ n \ge k+1).$$

Proof:

We use induction on n and begin with the case n = 1, where we can assume that $I = \mathbb{N}$. Let a 1-cocycle c be given. We choose recursively elements $d_i \in A_i$ such that $\pi_{i,i+1}(d_{i+1}) = d_i - c_{i,i+1}$. The relation $\delta c = 0$ entails now $\delta d = c$.

Now assume n > 1. We begin with a general observation. Fix an element $\lambda \in I$ and denote by C_{λ}^{n} the set of *n*-cochains over $I_{\lambda} = \{\alpha \in I \mid \alpha < \lambda\}$. Define two homomorphisms, the restriction

$$t: C^n \to C^n_\lambda$$

and

$$h: C^n \to C^{n-1}_{\lambda}$$

by $h(c)_{\alpha_0 < \ldots < \alpha_{n-1}} = c_{\alpha_0 < \ldots < \alpha_{n-1}\lambda}$. It does not commute with δ , but we have for $c \in C^n$

$$h\delta(c) = (-1)^{n+1} t(c) + \delta h(c)$$

We may assume that I is isomorphic to ω_k . Let c be an n-cocycle. We want to write c as the coboundary of an (n-1)-cochain d. We construct the components $d_{\alpha_0 < ... < \alpha_{n-1}}$ by recursion on α_{n-1} .

Fix $\lambda \in I$ and assume that d is already constructed up to λ . This means that a $d' \in C_{\lambda}^{n-1}$ is given such that $\delta(d') = t(c)$. To extend d' to a suitable (n-1)-cochain d defined on $\{\alpha \in I \mid \alpha \leq \lambda\}$ means that t(d) = d' and that $t\delta(d) = t(c)$ and $h\delta(d) = h(c)$. But I_{λ} either has a last element or has a cofinality smaller that ω_k , which gives us $\lim_{\alpha \in I_{\lambda}} A_{\alpha} = 0$. On the other hand $\delta(c) = 0$ implies $(-1)^{n+1}t(c) + \delta h(c) = 0$. Therefore $(-1)^{n+1}d' + h(c)$ is a cocycle, which we may write as δe for some (n-2)-chain e on I_{λ} . Now extend d' to d such that t(d) = d' and h(d) = e. Then $t\delta(d) = \delta(d') = t(c)$ and

$$\begin{aligned} \mathrm{h}\delta(d) &= (-1)^{n}\mathrm{t}(d) + \delta\mathrm{h}(d) \\ &= (-1)^{n}d' + \delta e \\ &= (-1)^{n}d' + (-1)^{n+1}d' + \mathrm{h}(c) \\ &= \mathrm{h}(c). \end{aligned}$$

4 The classification

Let R be a valuation domain. We use the notations of section 2.

Lemma 4.1 Let A be a cyclic non-zero R-module and α a positive element of the valuation semigroup Γ . Then αA is a proper submodule of A.

Proof:

This is Nakayama's Lemma. For a short proof assume that A is generated by a and that $v(r) = \alpha$. A = rA would imply that a = sra for some $s \in R$. Then (1 - sr)a = 0, which implies a = 0 since 1 - sr is a unit.

Let M be a proper divisible uniserial R-module. We want to associate to it an element $\mu(M)$ of $\lim_{\alpha \in \Gamma} U/U_{\alpha}$.

Fix a non-zero cyclic submodule Z_0 . Then for every $\alpha \in \Gamma$ there is a unique cyclic submodule Z_{α} with $\alpha Z_{\alpha} = Z_0$. This defines a bijection between Γ and the set of all cyclic submodules which contain Z_0 . Note that $(\beta - \alpha)Z_{\beta} = Z_{\alpha}$ for $\alpha \leq \beta$. If Z_0 is isomorphic to R/I, Z_{α} is isomorphic to $R/(\alpha I)$.

Now fix isomorphisms $f_{\alpha} : R/(\alpha I) \to Z_{\alpha}$. If $\alpha < \beta$ the induced embedding $R/(\alpha I) \to R/(\beta I)$

$$\begin{array}{c|c} R/(\beta I) & \underline{f_{\beta}} & Z_{\beta} \\ \hline r_{\alpha\beta} & & \uparrow \\ R/(\alpha I) & \underline{f_{\alpha}} & Z_{\alpha} \end{array}$$

is given by multiplication with an element $r_{\alpha\beta}$ of value $\beta - \alpha$.

We define $\mu(M)$ from the $r_{\alpha\beta}$ as follows: Choose elements r_{α} of value α and write $r_{\alpha\beta} = u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta}$ for units $u_{\alpha\beta}$. Since $(u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta})(u_{\beta\gamma}r_{\beta}^{-1}r_{\gamma})$ and $u_{\alpha\gamma}r_{\alpha}^{-1}r_{\gamma}$ define the same map $R/(\alpha I) \to R/(\beta I)$ they differ by a factor from $1 + \alpha I \subset U_{\alpha}$. This shows that $(u_{\alpha\beta})$ is a 1-cocycle. We let $\mu(M)$ be the class determined by this cocycle.

Lemma 4.2 $\mu(M)$ does not depend on the choice of Z_0 , of the isomorphisms f_{α} and the choice of the $r_{\alpha\beta}$ and r_{α} .

Proof:

We treat first the case where Z_0 (and therefore all Z_{α}) remains the same but we have new f'_{α} , $r'_{\alpha\beta}$ and r'_{α} . Then there are units v_{α} and w_{α} such that $f_{\alpha} = f'_{\alpha}v_{\alpha}$ and $r_{\alpha} = r'_{\alpha}w_{\alpha}$.

$$\begin{array}{c|c} R/(\beta I) & \underbrace{v_{\beta}} & R/(\beta I) \\ \hline r_{\alpha\beta} & & r_{\alpha\beta}' \\ \hline r_{\alpha\beta}' & & r_{\alpha\beta}' \\ \hline R/(\alpha I) & \underbrace{v_{\alpha}} & R/(\alpha I) \end{array}$$

Since $r'_{\alpha\beta}v_{\alpha}$ and $v_{\beta}r_{\alpha\beta}$ define the same map $R/(\alpha I) \to R/(\beta I)$ we have $v_{\alpha}v_{\beta}^{-1}r'_{\alpha\beta}r_{\alpha\beta}^{-1} \in 1 + \alpha I \subset U_{\alpha}$. Therefore

$$u_{\alpha\beta}'u_{\alpha\beta}^{-1} = r_{\alpha}'r_{\beta}'^{-1}r_{\alpha\beta}'r_{\alpha}^{-1}r_{\beta}r_{\alpha\beta}^{-1} = w_{\alpha}^{-1}w_{\beta}r_{\alpha\beta}'r_{\alpha\beta}^{-1} = (w_{\alpha}v_{\alpha})^{-1}(w_{\beta}v_{\beta})(v_{\alpha}v_{\beta}^{-1}r_{\alpha\beta}'r_{\alpha\beta}^{-1})$$

If we define $e_{\alpha} = w_{\alpha}v_{\alpha}$ we have

$$u'u^{-1}(\delta(e))^{-1} \in U_{\alpha},$$

which shows that $\mu = \mu'$.

Now assume that we have chosen Z'_0 to be Z_{α_0} . For the computation of $u'_{\alpha\beta}$ we can use $f'_{\alpha} = f_{\alpha_0+\alpha}, r'_{\alpha\beta} = r_{\alpha_0+\alpha,\alpha_0+\beta}$ and $r'_{\alpha} = r_{\alpha}$. It results that $u'_{\alpha\beta} = u_{\alpha_0+\alpha,\alpha_0+\beta}$. By Proposition 3.2 we have again $\mu = \mu'$.

The next theorem will describe a proper uniserial divisible module M by two invariants: $\mu(M)$ and its ideal class C(M), which is defined as the class of any annihilator of a non-zero element of M in the ideal class semigroup, the multiplicative semigroup of all non-zero ideals of R modulo the principal ideals. Observe that the annihilators of all non-zero elements of M are in the same class.

If R is a field there are no proper divisible uniserial modules. We assume from now on that R is not a field.

Theorem 4.3 $M \mapsto (\mu(M), C(M))$ defines a bijection between proper divisible uniserial modules up to isomorphy and pairs of elements of $\lim_{\alpha \in \gamma} U/U_{\alpha}$ and ideal classes of R. M is standard iff $\mu(M) = 1$.

Proof:

Let us first assume that M and M' have the same invariants. M and M' are (isomorphic to) the direct limits of two systems $(R/(\alpha I), r_{\alpha\beta})$ and $(R/(\alpha I'), r'_{\alpha\beta})$. Since C(M) = C(M')we can assume that I = I'. Choose ring elements r_{α} with value α . That $\mu(M) = \mu(M')$ means that $(r_{\alpha}r_{\beta}^{-1}r_{\alpha\beta})$ and $(r_{\alpha}r_{\beta}^{-1}r'_{\alpha\beta})$ differ by a coboundary i.e. there is a family (v_{α}) of units such that $r'_{\alpha\beta}r_{\alpha\beta}^{-1}$ differ from $v_{\alpha}^{-1}v_{\beta}$ by a factor from U_{α} . Since the $(r_{\alpha\beta})$ and $(r'_{\alpha\beta})$ form commuting systems and are therefore cocycles mod I in the sense of the next lemma by part 2 of this lemma this factor belongs to $1 + \alpha I$. Then the last diagram is commutative for all $\alpha < \beta$ and the family of maps $v_{\alpha} : R/(\alpha I) \to R/(\alpha I)$ defines an isomorphism between Mand M'.

Now assume that an element μ of $\lim_{\alpha \in \Gamma} U/U_{\alpha}$ and an ideal class C is given. Let μ be represented by $(u_{\alpha\beta})$. Since R is not a field C can be represented by a proper ideal I. By part 1 of the next lemma we can assume that u is a cocycle mod I. The direct limit of the commutative system

$$(R/(\alpha I), u_{\alpha\beta}r_{\alpha}^{-1}r_{\beta}),$$

 $(r_{\alpha} \text{ elements with value } \alpha)$ is then a proper uniserial divisible module with the desired invariants.

The ideal class of the standard module K/I is the class of I. $\mu(K/I) = 1$ since it is the direct limit of the system $(R/(\alpha I), r_{\alpha}^{-1}r_{\beta})$. This proves the last part of the theorem. \Box

Lemma 4.4 Let the family of units $u = (u_{\alpha\beta})$ represent a 1-cocycle for the projective system (U/U_{α}) and I be a non-zero proper ideal. We call u a cocycle mod I if $u_{\beta\gamma}u_{\alpha\gamma}^{-1}u_{\alpha\beta} \in 1 + \alpha I$ for all $\alpha < \beta < \gamma$ and a coboundary mod I if there is a family (v_{α}) of units such that $v_{\alpha}v_{\beta}^{-1}u_{\alpha\beta} \in 1 + \alpha I$ for all $\alpha < \beta$.

- 1. The class of u in $\lim_{\leftarrow \alpha \in \Gamma} U/U_{\alpha}$ can be represented by a cocycle mod I.
- 2. If u is a cocycle modI and represents a coboundary it is a coboundary modI.

Proof:

Let α_0 be the value of a non-zero element of *I*. We will use Proposition 3.2 with the map $\phi(\alpha) = \alpha_0 + \alpha$.

Proof: of (1)

Define u' by $u'_{\alpha\beta} = u_{\alpha_0+\alpha, \alpha_0+\beta}$. u' is a cocycle mod I and in the same class as u by Proposition 3.2.

Proof: of (2)

By 1 we can assume that $(u_{\alpha\beta})$ is a cocycle $\operatorname{mod} \alpha_0 P$, which implies that u' defined by $u'_{\alpha\beta} = u_{-\alpha_0+\alpha, -\alpha_0+\beta}$ is a cocycle of the projective system $(U/U_{\alpha})_{\alpha_0\leq\alpha}$. By Proposition 3.2 the class of u' corresponds to the class of u in the isomorphism between $\lim_{\leftarrow \alpha\in\Gamma} U/U_{\alpha}$ and $\lim_{\leftarrow \alpha_0\leq\alpha} U/U_{\alpha}$. Since u is a coboundary u' is also a coboundary. So we have a family v'_{α} of units, such that $v'_{\alpha}v'_{\beta}^{-1}u'_{\alpha\beta}\in U_{\alpha}$ for all $\alpha_0\leq\alpha<\beta$. If we set $v_{\alpha}=v'_{\alpha_0+\alpha}$ we have $v_{\alpha}v_{\beta}^{-1}u_{\alpha\beta}\in 1+\alpha I$ for all $\alpha<\beta$.

Finally we show that in Theorem 4.3 we can replace $\lim_{\alpha \in \Gamma} U/U_{\alpha}$ by $\lim_{\alpha \in \Gamma} U_0/U_{\alpha}$

Proposition 4.5 The natural map

$$\lim_{\leftarrow \alpha \in \Gamma} U_0 / U_\alpha \to \lim_{\leftarrow \alpha \in \Gamma} U / U_\alpha$$

is an isomorphism

Proof:

One checks easily that $\lim_{\alpha \in I} A_{\alpha} = 0$ if $A_{\alpha} = A$ is a constant sequence. (In fact $\lim_{\alpha \in I} A_{\alpha} = 0$ for all $n \ge 1$). Look at the following part of the long exact cohomology sequence:

$$\lim_{\leftarrow \alpha \in \Gamma} U/U_{\alpha} \to \lim_{\leftarrow \alpha \in \Gamma} U/U_{0} \to \lim_{\leftarrow \alpha \in \Gamma} U_{0}/U_{\alpha} \to \lim_{\leftarrow \alpha \in \Gamma} U/U_{\alpha} \to \lim_{\leftarrow \alpha \in \Gamma} U/U_{0} = 0.$$

Since the first arrow is surjective the third arrow is an isomorphism.

References

- B. Franzen and R. Göbel. Nonstandard uniserial modules over valuation domains. *Results in Math.*, 12:86–94, 1987.
- [2] L. Fuchs and L. Salce. Modules over valuation domains, volume 97 of Lecture Notes in Pure and Applied Math. Marcel Decker, New, 1985.
- [3] L. Fuchs and S. Shelah. Kaplansky's problem on valuation rings. Proc. Amer. Math. Soc., 105:25–30, 1989.
- [4] C. U. Jensen. Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules. Number 254 in Lecture Notes in Mathematics. Springer Verlag; Berlin, Göttingen, Heidelberg, 1970.
- [5] Kenneth Kunen. Set Theory. An Introduction to Independence Proofs. North Holland Publishing Company, 1980.
- [6] B. Osofsky. Constructing nonstandard uniserial modules over valuation rings. In Azumaya algebras, actions and modules. Amer. Math. Soc., 1992.
- [7] Saharon Shelah. Around Classification Theory of Models. Number 1182 in Lecture Notes in Mathematics. Springer Verlag; Berlin, Göttingen, Heidelberg, 1986.