Divisible Uniserial Modules over Valuation Domains

Martin Ziegler

June 1994

1 Introduction

Let R be a valuation domain with quotient field K. An R-module M is uniserial if for all $x, y \in M$ there is an $r \in R$ such that

$$
r x=y \quad \text { or } \quad r y=x
$$

M is divisible if for all $x \in M$ and all non-zero $r \in R$ there is a $y \in M$ such that $r y=x$.
A non-zero torsionfree divisible uniserial R-module is obviously isomorphic to the quotient field K of R. We call a divisible uniserial R-module proper if it is not torsionfree.

The main theorem 4.3 of this paper classifies proper divisible uniserial R-modules by two invariants:

- an element of the cohomology group

$$
\lim _{\leftarrow}^{1} U \in \Gamma
$$

where Γ is the value semigroup of R, U is the group of units of R and U_{α} is the group of units, which differ from 1 by an element of larger value than α.

- an element of the ideal class semigroup of R

The first invariant of M is zero iff M is a standard, i.e. if M is a quotient of K. In section 2 we give an easy example of a valuation domain R for which $\lim _{\longleftarrow}^{1} U \in \Gamma / U_{\alpha}$ does not vanish, which shows that R has a nonstandard divisible uniserial module M. The part of 4.3 needed to obtain M is given an extra proof in section 2, which thereby contains a self-contained new construction of a nonstandard divisible uniserial module over a valuation domain.

Shelah showed in [7, p.135-150] that the existence of nonstandard divisible uniserial modules is consistent with ZFC. This result was then improved by Fuchs and Salce [2] and Franzen and Göbel [1], who showed that the existence of nonstandard divisible uniserial modules follows from $\diamond_{\omega_{1}}$ and even from $2^{\omega_{0}}<2^{\omega_{1}}$.

The existence of nonstandard divisible uniserial modules was finally proved without settheoretical hypotheses by Fuchs and Shelah [3] using a model theoretic transfer principle and later by B. Osofsky [6] by purely algebraic means.

If M is a nonstandard divisible uniserial module the matrix ring

$$
S=\left\{\left.\left(\begin{array}{cc}
r & m \\
0 & r
\end{array}\right) \right\rvert\, r \in R, m \in M\right\}
$$

is a counter example for an old conjecture of Kaplansky, according to which every valuation ring should be a quotient of a valuation domain.

2 Construction of a nonstandard uniserial module

Let I be a totally ordered set. A projective system is an I-indexed family $\left(A_{\alpha}\right)$ of abelian groups together with a commutative system of homomorphisms

$$
\pi_{\alpha \beta}: A_{\beta} \rightarrow A_{\alpha}, \quad(\alpha<\beta \in I) .
$$

A 0 -cochain is a sequence $\left(e_{\alpha}\right)_{\alpha \in I}$ of elements e_{α} of A_{α}. A 1 -cochain is a family $\left(c_{\alpha \beta}\right)_{\alpha<\beta \in I}$ of elements $c_{\alpha \beta}$ of A_{α}. The coboundary $\delta(e)$ of a 0 -cochain e is the 1 -cochain defined by

$$
\delta(e)_{\alpha \beta}=\pi_{\alpha \beta}\left(e_{\beta}\right)-e_{\alpha} .
$$

Coboundaries are cocycles in the following sense: A 1 -cochain c is called a 1 -cocycle if

$$
\pi_{\alpha \beta}\left(c_{\beta \gamma}\right)-c_{\alpha \gamma}+c_{\alpha \beta}=0
$$

for all $\alpha<\beta<\gamma$. Let us denote the quotient group (1-cocycles)/(coboundaries) by

$$
\lim _{\leftarrow}^{1} A_{\alpha \in I} .
$$

Now let R be valuation domain and $\mathrm{v}: R \rightarrow \Gamma \cup\{\infty\}$ the valuation of R. For every $\alpha \in \Gamma$ we define

$$
U_{\alpha}=\{u \in R \mid v(1-u)>\alpha\} .
$$

U_{α} is a multiplicative subgroup of U, the group of units of R.

Theorem 2.1 R has a nonstandard uniserial divisible module iff $\lim _{\leftarrow}^{1} U \in \Gamma$ U_{α} is nontrivial.

Proof:
That a nonstandard uniserial divisible module gives rise to a non-trivial element of $\lim _{\leftarrow}^{1} U / U_{\alpha}$ is not needed for our construction. We will prove this in Lemma 4.3.

Now assume that the units $\left(u_{\alpha \beta}\right)$ represent a cocycle of the projective system $\left(U / U_{\alpha}\right)$. We are going to construct a uniserial divisible module M, which can only be standard if the $\left(u_{\alpha \beta}\right)$ represent a coboundary.

First let us fix some notation. For every $\alpha \in \Gamma$ we choose an element r_{α} with value α. If A is an R-module the multiple $r_{\alpha} A$ does not depend on the choice of r_{α}, so we denote it by αA. If P is the maximal ideal of R we have then $U_{\alpha}=1+\alpha P$.

For all $\alpha<\beta$ multiplication by $r_{\alpha}^{-1} r_{\beta}$ defines an embedding from $R /(\alpha P)$ into $R /(\beta P)$. The direct limit of this system is isomorphic to K / P. To obtain a more interesting limit we use the embeddings

$$
u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta}: R /(\alpha P) \rightarrow R /(\beta P)
$$

This is a commutative system since $\left(u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta}\right)\left(u_{\beta \gamma} r_{\beta}^{-1} r_{\gamma}\right)$ and $u_{\alpha \gamma} r_{\alpha}^{-1} r_{\gamma}$ differ only by the factor $u_{\beta \gamma} u_{\alpha \gamma}^{-1} u_{\alpha \beta} \in U_{\alpha}$ and define therefore the same map $R /(\alpha P) \rightarrow R /(\gamma P)$. Clearly the direct limit M is uniserial. M is divisible since every element of $R /(\alpha P)$ is divisible by $r_{\alpha}^{-1} r_{\beta}$ in $R /(\beta P)$. We will use the notation x_{α} for the coset of 1 in $R /(\alpha P)$.

Now suppose $M \cong K / I$ and let $y_{\alpha}+I$ be the image of x_{α} under this isomorphism. Multiplication by y_{0}^{-1} shows that we can assume that $y_{0}=1$ and $I=P$. Then y_{α} has value $-\alpha$ and $e_{\alpha}=r_{\alpha} y_{\alpha}$ is a unit. $x_{\alpha}=u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta} x_{\beta}$ implies $y_{\alpha} \equiv u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta} y_{\beta} \quad(\bmod P)$. If we multiply this equation by r_{α} we obtain $e_{\alpha} \equiv u_{\alpha \beta} e_{\beta} \quad(\bmod \alpha P)$. This shows that u is a coboundary.

To find a valuation domain with the property of 2.1 we make use of the following Lemma.
Lemma 2.2 (Todorcevic) Let $\left(B_{\xi}\right)_{\xi \in \omega_{1}}$ be a family of infinite abelian groups. For the projective system $\left(A_{\xi}\right)=\bigoplus_{\eta<\xi} B_{\eta} \quad\left(\xi \in \omega_{1}\right)$ with the the obvious projection maps we have

$$
\lim _{\xi \in \omega_{1}}^{1} A_{\xi} \neq 0 .
$$

Proof:

The standard construction of an Aronszajn tree ([5, p.70]) yields a sequence $\left(f_{\xi}\right)_{\xi<\omega_{1}}$ of injective functions $f_{\xi}: \xi \rightarrow \omega$ such that for all $\xi<\zeta$ the two functions f_{ξ} and $f_{\zeta} \upharpoonright \xi$ differ only for finitely many arguments. In each B_{ζ} we choose a copy of ω. Then f_{ξ} defines an element of $A_{\xi}^{\prime}=\prod_{\eta<\xi} B_{\eta}$. Define

$$
c_{\xi \zeta}=f_{\xi}-f_{\zeta} \in A_{\xi} .
$$

Then c is a 1-cocycle, which is not a coboundary. Otherwise, there would be a sequence $d_{\xi} \in A_{\xi} \quad\left(\xi \in \omega_{1}\right)$ such that $c_{\xi \zeta}=d_{\xi}-d_{\zeta}$. But then the functions $f_{\xi}-d_{\xi}$ form an ascending sequence. The union f of this sequence is a map defined on ω_{1}, which differs from each f_{ξ} only on finitely many values in ξ. Since the f_{ξ} have values in ω, the preimage $f^{-1}(\omega)$ is cofinal in ω_{1}. Since the f_{ξ} are injective all $f^{-1}(n)$ are finite. This is impossible.

Fix a field F. Choose indeterminates $t_{\xi},\left(\xi<\omega_{1}\right)$ and let K be the rational function field $F\left(t_{\xi}\right)_{\xi<\omega_{1}}$. Order $\Gamma=\bigoplus_{\xi \in \omega_{1}} \mathbb{Z}$ lexicographically and let

$$
\mathrm{v}: K \rightarrow \Gamma \cup\{\infty\}
$$

be the (uniquely determined) valuation of K which is trivial on F and maps t_{ξ} to 1_{ξ}, the 1 of the ξ-th copy of \mathbb{Z}. (Note that the 1_{ξ} form an ascending sequence.)

Theorem 2.3 The valuation ring of (K, v) has a nonstandard uniserial divisible module.
Proof:
We start the computation of the group U of units with the observation that

$$
U=F \times U_{0},
$$

where F^{*} is the multiplicative group of F. In order to compute U_{0} we enlarge the linear order Γ by cuts

$$
\alpha_{\xi}=\sup \left\{n \cdot 1_{\eta} \mid \eta<\xi, n \in \mathbb{N}\right\}
$$

to $\tilde{\Gamma}$. By the next lemma we have then

$$
U_{0}=\prod_{\xi<\omega_{1}} V_{\xi},
$$

where $V_{\xi}=\left\{x \in F\left(t_{\eta}\right)_{\eta \leq \xi} \mid \mathrm{v}(1-x)>\alpha_{\xi}\right\}$. It results that

$$
U / U_{\alpha_{\xi}}=F^{\cdot} \times\left(\prod_{\eta<\xi} V_{\eta}\right)
$$

By Lemma $2.2 \underset{\xi<\omega_{1}}{\lim _{\longleftarrow}^{1}} U / U_{\alpha_{\xi}}$ is not trivial. By proposition 3.2 we conclude that

$$
\lim _{\leftarrow \alpha<\Gamma}^{1} U / U_{\alpha} \cong \lim _{\longleftarrow \alpha<\tilde{\Gamma}}^{1} U / U_{\alpha} \cong \lim _{\xi<\omega_{1}}^{1} U / U_{\alpha_{\xi}}
$$

is not trivial. Now apply Theorem 2.1.

Avoiding the use of 3.2 one can construct M directly as follows: Choose a family $\left(u_{\xi \zeta}\right)_{\xi<\zeta<\omega_{1}}$ of units which represents a non-trivial element of $\lim _{\xi<\omega_{1}}^{1} U / U_{\alpha_{\xi}}$. Let M be the direct limit of the system $\left(R /\left(t_{\xi} P\right)\right)_{\xi<\omega_{1}}$ with maps

$$
u_{\xi+1, \zeta+1} t_{\xi}^{-1} t_{\zeta}: R /\left(t_{\xi} P\right) \rightarrow R /\left(t_{\zeta} P\right)
$$

Lemma 2.4 Let $\mathrm{v}: H \rightarrow G \cup\{\infty\}$ be a valued field. Order $G \times \mathbb{Z}$ lexicographically and let α be the cut $\sup G$. Extend v to a valuation $\mathrm{v}: H(t) \rightarrow G \times \mathbb{Z}$ with $\mathrm{v}(t)=(0,1)$. Then the group U_{0} of 1-units of $H(t)$ is the direct product of the 1-units of H and of U_{α}.

Proof: Easy.

3 The right derived functors of the inverse limit functor

Let I be a totally ordered set. A projective system is an I-indexed family $\left(A_{\alpha}\right)$ of abelian groups together with a commutative system of homomorphisms

$$
\pi_{\alpha \beta}: A_{\beta} \rightarrow A_{\alpha}, \quad(\alpha<\beta \in I)
$$

Projective systems forms an abelian category in a natural way. $\lim _{\longleftarrow}$ is a right exact functor to the category of abelian groups. Since the category of projective systems has enough injectives $\lim _{\longleftarrow}$ has right derived functors

$$
\underset{\longleftarrow}{\lim }=\underset{\longleftarrow}{\lim }{ }^{0}, \underset{\longleftarrow}{\lim ^{1}},{\underset{\longleftarrow}{\lim }}^{2} \cdots
$$

Fix a projective system $\left(A_{\alpha}, \pi_{\alpha \beta}\right)_{\alpha<\beta \in I}$ and a number $n \geq 0$. We call a family

$$
c=\left(c_{\alpha_{0} \ldots \alpha_{n}}\right)
$$

indexed by ascending sequences $\alpha_{0}<\ldots<\alpha_{n}$ of elements of I, an n-cochain if each $c_{\alpha_{0} \ldots \alpha_{n}}$ is an element of $A_{\alpha_{0}}$. The set of n-chains form an abelian group C^{n} under component-wise addition. The coboundary homomorphisms

$$
\delta: C^{n+1} \rightarrow C^{n}
$$

defined by $(\delta c)_{\alpha_{0} \ldots \alpha_{n+1}}=\pi_{\alpha_{0} \alpha_{1}}\left(c_{\alpha_{1} \ldots \alpha_{n}}\right)+\sum_{i=1}^{n+1}(-1)^{i} c_{\alpha_{0} \ldots \widehat{\alpha_{i} \ldots \alpha_{n+1}}}$, make $C=\left(C^{n}\right)_{n \geq 0}$ into a cochain complex.

Theorem 3.1 ([4, Théorème 4.1])

$$
\lim _{\leftrightarrows \alpha \in I}^{n} A_{\alpha}=\mathrm{H}^{n}(C)
$$

Readers who don't like derived functors can take $\mathrm{H}^{n}(C)$ as the definition of $\underset{\leftarrow}{\lim }{ }_{\alpha \in I} A_{\alpha}$. The content of the last theorem is then that the $\lim ^{n}$ has the characterizing properties of the derived functors: They are trivial on injective projective systems and there is a natural long cohomology sequence.

If J is a subset of I there is an obvious restriction map

$$
\text { res }: \lim _{\longleftarrow \alpha \in I}^{n} A_{\alpha} \rightarrow \lim _{\leftarrow \alpha \in J}^{n} A_{\alpha}
$$

Jensen proved in [4, p.12] that res is an isomorphism if J is cofinal in I. (As a special case, we have for all I with a last element that $\lim _{\longleftarrow}^{n} A_{\alpha}=0$ for all $n \geq 1$.) The inverse map can be obtained as follows: One chooses a function $\phi: I \rightarrow J$ such that always $\alpha \leq \phi(\alpha)$. Then to every n-cochain d over J assign the n-cochain $\phi^{*}(d)$ over I defined by

$$
\phi^{*}(d)_{\alpha_{0} \ldots \alpha_{n}}=\pi_{\alpha_{0} \beta} d_{\phi\left(\alpha_{0}\right) \ldots \phi\left(\alpha_{n}\right)},
$$

where β is the smallest element of $\phi\left(\alpha_{0}\right) \ldots \phi\left(\alpha_{n}\right)$. (We use here the convention that $d_{\beta_{0} \ldots \beta_{n}}$ is zero if there is an double index, and is changed by the sign of permutation if the β_{i} are
not in ascending order.) It is easy to see that the maps $\phi^{*}: C^{n} \rightarrow C^{n}$ commute with δ and induce a homomorphism

$$
\phi^{*}: \lim _{\longleftarrow}^{n} A_{\alpha \in J} \rightarrow \underset{\alpha \in I}{\lim _{\alpha}^{n}} A_{\alpha}
$$

The next proposition shows that the composition

$$
\lim _{\longleftarrow}^{n} A_{\alpha} \xrightarrow{\text { res }} \lim _{\longleftrightarrow \alpha \in I}^{n} A_{\alpha} \xrightarrow{\phi^{*}} \lim _{\longleftarrow}^{n} A_{\alpha \in J}
$$

is the identity, giving another proof of Jensen's result.

Proposition 3.2 Let $\left(A_{\alpha}\right)_{\alpha \in I}$ be a projective system and $\phi: I \rightarrow I$ a function with $\alpha \leq \phi(\alpha)$. Let d be an n-cocycle and let c be the n-cochain defined by $c_{\alpha_{0} \ldots \alpha_{n}}=\pi_{\alpha \beta} d_{\phi\left(\alpha_{0}\right) \ldots \phi\left(\alpha_{n}\right)}$, where β is the smallest element of $\phi\left(\alpha_{0}\right) \ldots \phi\left(\alpha_{n}\right)$. Then d and c differ by a coboundary.

Proof:

Let C be the functor which assigns to every projective system $\left(A_{\alpha}\right)$ the corresponding cochain complex $\left(C^{n}\right)$. ϕ^{*} defines a natural transformation $C \rightarrow C$ and therefore a family of natural transformations $\phi^{*}: \lim ^{n} \rightarrow \underset{\longleftarrow}{\lim ^{n}}$ which for every short exact sequence $0 \rightarrow\left(A_{\alpha}\right) \rightarrow\left(B_{\alpha}\right) \rightarrow$ $\left(C_{\alpha}\right) \rightarrow 0$ commute with the connecting homomorphisms $\delta: \lim ^{n}\left(C_{\alpha}\right) \rightarrow \lim _{\longleftarrow}^{n+1}\left(A_{\alpha}\right)$. By the general theory of derived functors ϕ^{*} is therefore determined by what it does on $\lim ^{0}$. Since ϕ^{*} is the identity on $\lim ^{0}$, as one can easily check, it is the identity on all $\lim ^{n}$.

Jensen proved in [4, Corollaire 3.2] that for all I of cofinality ω_{k}

$$
{\underset{\alpha i m}{ }}_{\lim _{\alpha \in I}} A_{\alpha}=0 \quad(\text { for all } n \geq k+2)
$$

Furthermore he proved that the result is optimal: For every $n \geq 2$ there is a projective system $\left(A_{\alpha}\right)_{\alpha \in \omega_{n-1}}$ such that $\underset{\leftarrow}{\lim _{\alpha \in \omega_{n-1}}^{n}} A_{\alpha} \neq 0([4$, Proposition 6.2]).

If we look at epimorphic systems $\left(A_{\alpha}, \pi_{\alpha \beta}\right)_{\alpha<\beta \in I}$, where all the $\pi_{\alpha \beta}$ are surjective, we have a better result:

Theorem 3.3 For epimorphic systems of cofinality ω_{k} we have

$$
\lim _{\longleftarrow \alpha \in I}^{n} A_{\alpha}=0 \quad(\text { for all } n \geq k+1)
$$

Proof:
We use induction on n and begin with the case $n=1$, where we can assume that $I=\mathbb{N}$. Let a 1 -cocycle c be given. We choose recursively elements $d_{i} \in A_{i}$ such that $\pi_{i, i+1}\left(d_{i+1}\right)=$ $d_{i}-c_{i, i+1}$. The relation $\delta c=0$ entails now $\delta d=c$.

Now assume $n>1$. We begin with a general observation. Fix an element $\lambda \in I$ and denote by C_{λ}^{n} the set of n-cochains over $I_{\lambda}=\{\alpha \in I \mid \alpha<\lambda\}$. Define two homomorphisms, the restriction

$$
\mathrm{t}: C^{n} \rightarrow C_{\lambda}^{n}
$$

and

$$
\mathrm{h}: C^{n} \rightarrow C_{\lambda}^{n-1}
$$

by $\mathrm{h}(c)_{\alpha_{0}<\ldots<\alpha_{n-1}}=c_{\alpha_{0}<\ldots<\alpha_{n-1} \lambda}$. h does not commute with δ, but we have for $c \in C^{n}$

$$
\mathrm{h} \delta(c)=(-1)^{n+1} \mathrm{t}(c)+\delta \mathrm{h}(c)
$$

We may assume that I is isomorphic to ω_{k}. Let c be an n-cocycle. We want to write c as the coboundary of an $(n-1)$-cochain d. We construct the components $d_{\alpha_{0}<\ldots<\alpha_{n-1}}$ by recursion on α_{n-1}.

Fix $\lambda \in I$ and assume that d is already constructed up to λ. This means that a $d^{\prime} \in C_{\lambda}^{n-1}$ is given such that $\delta\left(d^{\prime}\right)=\mathrm{t}(c)$. To extend d^{\prime} to a suitable $(n-1)$-cochain d defined on $\{\alpha \in I \mid \alpha \leq \lambda\}$ means that $\mathrm{t}(d)=d^{\prime}$ and that $\mathrm{t} \delta(d)=\mathrm{t}(c)$ and $\mathrm{h} \delta(d)=\mathrm{h}(c)$. But I_{λ} either has a last element or has a cofinality smaller that ω_{k}, which gives us $\lim _{\leftarrow}^{\lim _{\alpha \in I_{\lambda}}} A_{\alpha}=0$. On the other hand $\delta(c)=0$ implies $(-1)^{n+1} \mathrm{t}(c)+\delta \mathrm{h}(c)=0$. Therefore $(-1)^{n+1} d^{\prime}+\mathrm{h}(c)$ is a cocycle, which we may write as δe for some $(n-2)$-chain e on I_{λ}. Now extend d^{\prime} to d such that $\mathrm{t}(d)=d^{\prime}$ and $\mathrm{h}(d)=e$. Then $\mathrm{t} \delta(d)=\delta \mathrm{t}(d)=\delta\left(d^{\prime}\right)=\mathrm{t}(c)$ and

$$
\begin{aligned}
\mathrm{h} \delta(d) & =(-1)^{n} \mathrm{t}(d)+\delta \mathrm{h}(d) \\
& =(-1)^{n} d^{\prime}+\delta e \\
& =(-1)^{n} d^{\prime}+(-1)^{n+1} d^{\prime}+\mathrm{h}(c) \\
& =\mathrm{h}(c)
\end{aligned}
$$

4 The classification

Let R be a valuation domain. We use the notations of section 2 .

Lemma 4.1 Let A be a cyclic non-zero R-module and α a positive element of the valuation semigroup Γ. Then αA is a proper submodule of A.

Proof:
This is Nakayama's Lemma. For a short proof assume that A is generated by a and that $\mathrm{v}(r)=\alpha . A=r A$ would imply that $a=s r a$ for some $s \in R$. Then $(1-s r) a=0$, which implies $a=0$ since $1-s r$ is a unit.

Let M be a proper divisible uniserial R-module. We want to associate to it an element $\mu(M)$ of $\lim _{\longleftarrow}^{1} U \in \Gamma$ $U \alpha$.

Fix a non-zero cyclic submodule Z_{0}. Then for every $\alpha \in \Gamma$ there is a unique cyclic submodule Z_{α} with $\alpha Z_{\alpha}=Z_{0}$. This defines a bijection between Γ and the set of all cyclic submodules which contain Z_{0}. Note that $(\beta-\alpha) Z_{\beta}=Z_{\alpha}$ for $\alpha \leq \beta$. If Z_{0} is isomorphic to $R / I, Z_{\alpha}$ is isomorphic to $R /(\alpha I)$.

Now fix isomorphisms $f_{\alpha}: R /(\alpha I) \rightarrow Z_{\alpha}$. If $\alpha<\beta$ the induced embedding $R /(\alpha I) \rightarrow$ $R /(\beta I)$

is given by multiplication with an element $r_{\alpha \beta}$ of value $\beta-\alpha$.
We define $\mu(M)$ from the $r_{\alpha \beta}$ as follows: Choose elements r_{α} of value α and write $r_{\alpha \beta}=$ $u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta}$ for units $u_{\alpha \beta}$. Since $\left(u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta}\right)\left(u_{\beta \gamma} r_{\beta}^{-1} r_{\gamma}\right)$ and $u_{\alpha \gamma} r_{\alpha}^{-1} r_{\gamma}$ define the same map $R /(\alpha I) \rightarrow R /(\beta I)$ they differ by a factor from $1+\alpha I \subset U_{\alpha}$. This shows that $\left(u_{\alpha \beta}\right)$ is a 1 -cocycle. We let $\mu(M)$ be the class determined by this cocycle.

Lemma 4.2 $\mu(M)$ does not depend on the choice of Z_{0}, of the isomorphisms f_{α} and the choice of the $r_{\alpha \beta}$ and r_{α}.

Proof:
We treat first the case where Z_{0} (and therefore all Z_{α}) remains the same but we have new $f_{\alpha}^{\prime}, r_{\alpha \beta}^{\prime}$ and r_{α}^{\prime}. Then there are units v_{α} and w_{α} such that $f_{\alpha}=f_{\alpha}^{\prime} v_{\alpha}$ and $r_{\alpha}=r_{\alpha}^{\prime} w_{\alpha}$.

Since $r_{\alpha \beta}^{\prime} v_{\alpha}$ and $v_{\beta} r_{\alpha \beta}$ define the same map $R /(\alpha I) \rightarrow R /(\beta I)$ we have $v_{\alpha} v_{\beta}^{-1} r_{\alpha \beta}^{\prime} r_{\alpha \beta}^{-1} \in$ $1+\alpha I \subset U_{\alpha}$. Therefore

$$
u_{\alpha \beta}^{\prime} u_{\alpha \beta}^{-1}=r_{\alpha}^{\prime} r_{\beta}^{\prime-1} r_{\alpha \beta}^{\prime} r_{\alpha}^{-1} r_{\beta} r_{\alpha \beta}^{-1}=w_{\alpha}^{-1} w_{\beta} r_{\alpha \beta}^{\prime} r_{\alpha \beta}^{-1}=\left(w_{\alpha} v_{\alpha}\right)^{-1}\left(w_{\beta} v_{\beta}\right)\left(v_{\alpha} v_{\beta}^{-1} r_{\alpha \beta}^{\prime} r_{\alpha \beta}^{-1}\right)
$$

If we define $e_{\alpha}=w_{\alpha} v_{\alpha}$ we have

$$
u^{\prime} u^{-1}(\delta(e))^{-1} \in U_{\alpha},
$$

which shows that $\mu=\mu^{\prime}$.
Now assume that we have chosen Z_{0}^{\prime} to be $Z_{\alpha_{0}}$. For the computation of $u_{\alpha \beta}^{\prime}$ we can use $f_{\alpha}^{\prime}=f_{\alpha_{0}+\alpha}, r_{\alpha \beta}^{\prime}=r_{\alpha_{0}+\alpha, \alpha_{0}+\beta}$ and $r_{\alpha}^{\prime}=r_{\alpha}$. It results that $u_{\alpha \beta}^{\prime}=u_{\alpha_{0}+\alpha, \alpha_{0}+\beta}$. By Proposition 3.2 we have again $\mu=\mu^{\prime}$.

The next theorem will describe a proper uniserial divisible module M by two invariants: $\mu(M)$ and its ideal class $\mathrm{C}(M)$, which is defined as the class of any annihilator of a non-zero element of M in the ideal class semigroup, the multiplicative semigroup of all non-zero ideals of R modulo the principal ideals. Observe that the annihilators of all non-zero elements of M are in the same class.

If R is a field there are no proper divisible uniserial modules. We assume from now on that R is not a field.

Theorem 4.3 $M \mapsto(\mu(M), \mathrm{C}(M))$ defines a bijection between proper divisible uniserial modules up to isomorphy and pairs of elements of $\underset{\longleftrightarrow}{\lim _{\alpha \in \gamma}} U / U_{\alpha}$ and ideal classes of R. M is standard iff $\mu(M)=1$.

Proof:
Let us first assume that M and M^{\prime} have the same invariants. M and M^{\prime} are (isomorphic to) the direct limits of two systems $\left(R /(\alpha I), r_{\alpha \beta}\right)$ and $\left(R /\left(\alpha I^{\prime}\right), r_{\alpha \beta}^{\prime}\right)$. Since $\mathrm{C}(M)=\mathrm{C}\left(M^{\prime}\right)$ we can assume that $I=I^{\prime}$. Choose ring elements r_{α} with value α. That $\mu(M)=\mu\left(M^{\prime}\right)$ means that $\left(r_{\alpha} r_{\beta}^{-1} r_{\alpha \beta}\right)$ and $\left(r_{\alpha} r_{\beta}^{-1} r_{\alpha \beta}^{\prime}\right)$ differ by a coboundary i.e. there is a family $\left(v_{\alpha}\right)$ of units such that $r_{\alpha \beta}^{\prime} r_{\alpha \beta}^{-1}$ differ from $v_{\alpha}^{-1} v_{\beta}$ by a factor from U_{α}. Since the $\left(r_{\alpha \beta}\right)$ and $\left(r_{\alpha \beta}^{\prime}\right)$ form commuting systems and are therefore cocycles $\bmod I$ in the sense of the next lemma by part 2 of this lemma this factor belongs to $1+\alpha I$. Then the last diagram is commutative for all $\alpha<\beta$ and the family of maps $v_{\alpha}: R /(\alpha I) \rightarrow R /(\alpha I)$ defines an isomorphism between M and M^{\prime}.

Now assume that an element μ of $\underset{\leftarrow}{\lim _{\alpha \in \Gamma}^{1} U / U \alpha}$ and an ideal class C is given. Let μ be represented by $\left(u_{\alpha \beta}\right)$. Since R is not a field C can be represented by a proper ideal I. By part 1 of the next lemma we can assume that u is a cocycle $\bmod I$. The direct limit of the commutative system

$$
\left(R /(\alpha I), u_{\alpha \beta} r_{\alpha}^{-1} r_{\beta}\right),
$$

(r_{α} elements with value α) is then a proper uniserial divisible module with the desired invariants.

The ideal class of the standard module K / I is the class of $I . \mu(K / I)=1$ since it is the direct limit of the system $\left(R /(\alpha I), r_{\alpha}^{-1} r_{\beta}\right)$. This proves the last part of the theorem.

Lemma 4.4 Let the family of units $u=\left(u_{\alpha \beta}\right)$ represent a 1 -cocycle for the projective system $\left(U / U_{\alpha}\right)$ and I be a non-zero proper ideal. We call u a cocycle $\bmod I$ if $u_{\beta \gamma} u_{\alpha \gamma}^{-1} u_{\alpha \beta} \in 1+\alpha I$ for all $\alpha<\beta<\gamma$ and a coboundary modI if there is a family (v_{α}) of units such that $v_{\alpha} v_{\beta}^{-1} u_{\alpha \beta} \in 1+\alpha I$ for all $\alpha<\beta$.

1. The class of u in $\lim _{\leftarrow} \in \in \Gamma$ U / U_{α} can be represented by a cocycle $\bmod I$.
2. If u is a cocycle $\bmod I$ and represents a coboundary it is a coboundary $\bmod I$.

Proof:

Let α_{0} be the value of a non-zero element of I. We will use Proposition 3.2 with the map $\phi(\alpha)=\alpha_{0}+\alpha$.
Proof: of (1)
Define u^{\prime} by $u_{\alpha \beta}^{\prime}=u_{\alpha_{0}+\alpha, \alpha_{0}+\beta}$. u^{\prime} is a cocycle $\bmod I$ and in the same class as u by Proposition 3.2.

Proof: of (2)
By 1 we can assume that $\left(u_{\alpha \beta}\right)$ is a cocycle $\bmod \alpha_{0} P$, which implies that u^{\prime} defined by $u_{\alpha \beta}^{\prime}=u_{-\alpha_{0}+\alpha,-\alpha_{0}+\beta}$ is a cocycle of the projective system $\left(U / U_{\alpha}\right)_{\alpha_{0} \leq \alpha}$. By Proposition 3.2 the class of u^{\prime} corresponds to the class of u in the isomorphism between $\lim _{\hookleftarrow}^{1}{ }_{\alpha \in \Gamma} U / U_{\alpha}$ and $\lim _{\alpha_{0} \leq \alpha}^{1} U / U_{\alpha}$. Since u is a coboundary u^{\prime} is also a coboundary. So we have a family v_{α}^{\prime} of units, such that $v_{\alpha}^{\prime} v_{\beta}^{\prime-1} u_{\alpha \beta}^{\prime} \in U_{\alpha}$ for all $\alpha_{0} \leq \alpha<\beta$. If we set $v_{\alpha}=v_{\alpha_{0}+\alpha}^{\prime}$ we have $v_{\alpha} v_{\beta}^{-1} u_{\alpha \beta} \in 1+\alpha I$ for all $\alpha<\beta$.

Finally we show that in Theorem 4.3 we can replace $\underset{\leftarrow \in \Gamma}{\lim ^{1}} U / U_{\alpha}$ by $\underset{\leftarrow}{\lim ^{1} \in \Gamma} U_{0} / U_{\alpha}$
Proposition 4.5 The natural map

$$
\underset{\lim _{\alpha \in \Gamma}^{1}}{\rightleftarrows_{0}} U_{0} / U_{\alpha} \rightarrow \underset{\alpha \in \Gamma}{\lim ^{1}} U / U_{\alpha}
$$

is an isomorphism
Proof:
One checks easily that $\underset{\sim}{\lim }{ }_{\alpha \in I} A_{\alpha}=0$ if $A_{\alpha}=A$ is a constant sequence. (In fact $\underset{\sim}{\lim }{ }_{\alpha \in I}^{n} A_{\alpha}=0$ for all $n \geq 1$). Look at the following part of the long exact cohomology sequence:

Since the first arrow is surjective the third arrow is an isomorphism.

References

[1] B. Franzen and R. Göbel. Nonstandard uniserial modules over valuation domains. Results in Math., 12:86-94, 1987.
[2] L. Fuchs and L. Salce. Modules over valuation domains, volume 97 of Lecture Notes in Pure and Applied Math. Marcel Decker, New, 1985.
[3] L. Fuchs and S. Shelah. Kaplansky's problem on valuation rings. Proc. Amer. Math. Soc., 105:25-30, 1989.
[4] C. U. Jensen. Les Foncteurs Dérivés de $\lim _{\longleftarrow}$ et leurs Applications en Théorie des Modules. Number 254 in Lecture Notes in Mathematics. Springer Verlag; Berlin, Göttingen, Heidelberg, 1970.
[5] Kenneth Kunen. Set Theory. An Introduction to Independence Proofs. North Holland Publishing Company, 1980.
[6] B. Osofsky. Constructing nonstandard uniserial modules over valuation rings. In Azumaya algebras, actions and modules. Amer. Math. Soc., 1992.
[7] Saharon Shelah. Around Classification Theory of Models. Number 1182 in Lecture Notes in Mathematics. Springer Verlag; Berlin, Göttingen, Heidelberg, 1986.

