# A Remark on Sums of Units 

Bernhard Herwig and Martin Ziegler

August 11, 2001

Dedicated to Rüdiger Göbel on the occasion of his 60th birthday.


#### Abstract

For every $n \geq 2$ we construct a factorial domain $R$ for which $n$ is minimal with the property that every element can be written as the sum of at most $n$ units.


For any ring $R$ let $\mathrm{u}(R)$ be the smallest number $n$ such that every element can be written as the sum of at most $n$ units. If no such $n$ exists, set $\mathrm{u}(R)=\infty$.

Peter Vamos computed in [Va] $\mathrm{u}(R)$ for various rings and found examples with values $1,2,3, \infty$. We will show that all finite values occur for factorial domains. For a slightly different definition of unit sum number see [GPS].

Everything will follow from the following proposition.
Proposition 1 Let $R$ be an integral domain, a a non-zero element of $R$ and $n$ a natural number $\geq 2$. Then $R$ is contained in a domain $R^{\prime}$ with the following properties

1. $a$ is the sum of $n$ units in $R^{\prime}$.
2. If an element of $R$ is the sum of $k<n$ units in $R^{\prime}$, it is the sum of $k$ units in $R$.

We call a domain with property 2. an $n$-extension of $R$.
Proof: Consider the polynomial ring $P=R\left[x_{1}, \ldots, x_{n-1}\right]$. Let $S$ be the multiplicative monoid generated by $x_{1}, \ldots, x_{n-1}$ and $w=-x_{1}-\cdots-x_{n-1}+a$. $R^{\prime}$ will be the quotient ring $P_{S}$. Clearly, $a$ is a sum of $n$ units in $R^{\prime}$ :

$$
a=x_{1}+\cdots+x_{n-1}+w
$$

Now assume that $r \in R$ is a sum of $k<n$ units in $R^{\prime}$. The units in $R^{\prime}$ have the form $u s t^{-1}$ for an $R$-unit $u$ and elements $s, t$ of $S$ (because of the special form

[^0]of the generators of $S$ ). Hence for $R$-units $u_{1}, \ldots, u_{k}$ and elements $s_{0}, \ldots, s_{k}$ of $S$ we have
$$
r s_{0}-u_{1} s_{1}-\cdots-u_{k} s_{k}=0
$$

We write $s_{i}=\mu_{i} w^{m_{i}}$ for monomials $\mu_{i}$. If we denote by $f$ the polynomial

$$
f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=r \mu_{0} x_{n}^{m_{0}}-u_{1} \mu_{1} x_{n}^{m_{1}}-\cdots-u_{k} \mu_{k} x_{n}^{m_{k}}
$$

from $R\left[x_{0}, \ldots, x_{n-1}, x_{n}\right]$, we have $f\left(x_{1}, \ldots, x_{n-1}, w\right)=0$ and it follows that $f$ is a multiple of $x_{n}-w=x_{1}+\ldots+x_{n}-a$. On the other hand, $f$ contains at most $n$ monomials. Hence, by the next lemma, $f=0$ and we have

$$
f(1, \ldots, 1)=r-u_{1}-\cdots-u_{k}=0 .
$$

Thus $r$ is the sum of $k$ units in $R$.
Lemma 2 Let $R$ be an integral domain and a a non-zero element of $R$. If the polynomial $f \in R\left[x_{1}, \ldots, x_{n}\right]$ is non-zero and divisible by $x_{1}+\cdots+x_{n}-a$, it contains more than $n$ monomials.

Proof: Write $f=g \cdot\left(x_{1}+\cdots+x_{n}-a\right)$. Let $m$ be the total degree of $g$. For each $i$ let $\mu_{i}$ a monomial from $g$ which has total degree $m$ and maximal degree in $x_{i}$. Then the monomials $\mu_{1} x_{1}, \ldots, \mu_{n} x_{m}$ all occur in $f$. On the other hand all monomials of $g$ which have minimal total degree survive (multiplied by $a$ ) in $f$. If follows that $f$ contains at least $n+1$ monomials.

Theorem 3 Each integral domain $R$ has an n-extension $R^{\prime}$ with $\mathrm{u}\left(R^{\prime}\right) \leq n$.
Proof: Choose a well ordering $\left(a_{\alpha}\right)$ of the elements of $R$. We construct an ascending chain of domains $R_{\alpha}$ starting with $R_{0}=R$. We choose $R_{\alpha+1}$ by the proposition as an $n$-extension of $R_{\alpha}$ where $a_{\alpha}$ becomes a sum of $n$ units. For limit ordinals we take $R_{\lambda}$ to be the union of the earlier $R_{\alpha}$. The union of this chain is an $n$-extension of $R$ in which every element of $R$ is a sum of $n$ units. If we iterate this process countably many times and take the union of the resulting chain of extensions we find the desired $R^{\prime}$.

Corollary 4 For each $n \geq 2$ there is a factorial domain $R$ with $\mathrm{u}(R)=n$
Proof: If we apply the theorem to the ring of integers to obtain an $n$-extension $R$ with $\mathrm{u}(R) \leq n$. Since the integer $n$ is not the sum of fewer than $n$ units, we have $\mathrm{u}(R)=n$. If we rewind the proof, we see that $R$ is a quotient ring of the polynomial ring over the integers with infinitely many variables, hence factorial.

## References

[Va] P.Vamos, 2-good rings, talk at the Festkolloquium and Conference on Algebra, Model Theory and Theoretical Physics celebrating Rüdiger Göbel's 60th Birthday in Essen, February 2001.
[GPS] B.Goldsmith, S.Pabst, A.Scott: Unit Sum Numbers of Rings and Modules, in: Quart. Journ. Math. Oxford (2), 49 (1998), 331-344.


[^0]:    Mathematics Subject Classification(2000) 13B30, 16U60

