Analysis (Definitionen und Sätze)*

$$\rm M.\ Ziegler^{\dagger}$$ Freiburg WS 2002/2003 und SS 2003

Inhaltsverzeichnis

3	Folgen und Reihen		
	3.1	Folgen und Grenzwerte	3
	3.2	Die Vollständigkeit der reellen Zahlen	4
	3.3	Vergleich von $\mathbb Q$ und $\mathbb R$	5
	3.4	Die Zahl π	5
	3.5	Unendliche Reihen	6
	3.6	Die Exponentialfunktion	7
4	Ste	tigkeit	8
	4.1	Stetige Funktionen und der Zwischenwertsatz	8
	4.2	Umkehrfunktionen	9
	4.3	Wurzeln, Potenz und Logarithmus	10
	4.4	Folgenstetigkeit	11
	4.5	Stetige Funktionen auf kompakten Mengen	11
5	Inte	egration und Differentiation	11
	5.1	Integration	11
	5.2	Differentiation	13
	5.3	Monotone und konvexe Funktionen	15
	5.4	Die Regeln von l'Hospital	16
	5.5	Hauptsatz der Differential- und Integralrechnung	17
	5.6	Integrationsregeln	18
6	Pot	enzreihen	18

^{*}Version 1b, 18.3.2004

[†]Die Vorlesung orientiert sich an einem Skript von Wolfgang Soergel.

	6.1	Funktionenfolgen	18
	6.2	Potenzreihen	18
	6.3	$\label{eq:taylorreihen} Taylorreihen$	19
	6.4	Der Grenzwertsatz von Abel	20
	6.5	Analytische Funktionen	20
7	Trig	onometrische Funktionen	21
	7.1	Sinus und Cosinus	21
	7.2	Weitere trigonometrische Funktionen	22
	$Begin{array}{c} Begin{array}{c} Begin{array}$	nn des Sommersemesters	
	7.3	Hyperbolische trigonometrische Funktionen $\ \ldots \ \ldots \ \ldots$	23
	7.4	Fourierreihen	24
8	Met	rische Räume und Topologie	25
	8.1	Metrische Räume	25
	8.2	Folgen in metrischen Räumen	26
	8.3	Kompakte metrische Räume	26
	8.4	Topologische Räume	27
	8.5	Normierte Vektorräume	28
	8.6	Der Satz von Stone–Weierstraß	29
9	Diffe	erenzierbare Kurven im \mathbb{R}^n	30
	9.1	Bogenlänge	30
	9.2	Kurvenintegrale	31
	9.3	Partielle Ableitungen	32
	9.4	Geschlossene und exakte 1–Formen	33
10	Diff	erenzierbare Abbildungen in mehreren Variablen	34
	10.1	Das Differential	34
	10.2	Taylorentwicklung	36
	10.3	Maxima und Minima	36
	10.4	Implizit definierte Funktionen	37

3 Folgen und Reihen

3.1 Folgen und Grenzwerte

Definition

Sei X eine Menge. Eine Folge in X ist eine Funktion $f: \mathbb{N} \to X$.

Wenn $x_i = f(i)$, schreibt man die Folge auch in einer der folgenden Weisen:

- x_0, x_1, \ldots
- $(x_i)_{i=0,1,...}$
- \bullet (x_i)

Definition

Eine Folge x_0, x_1, \ldots von reellen Zahlen konvergiert gegen x, wenn es für alle $\epsilon > 0$ eine natürliche Zahl N gibt, sodaß $|x_n - x| \le \epsilon$ für alle $n \ge N$.

In logischer Schreibweise:

$$\forall \epsilon > 0 \ \exists N \ \forall n \ge N \ |x_n - x| \le \epsilon$$

Wenn (x_i) gegen x konvergiert, heißt x Grenzwert oder Limes von (x_i) . Wir notieren das auch als

- $\lim_{n\to\infty} x_n = x$
- $(x_i) \to x$

Folgen, die einen Grenzwert haben, heißen konvergent, sonst divergent.

Intervalle sind folgendermaßen definiert:

$$[a,b] = \{x | a \le x \le b\}$$
 abgeschlossenes Intervall

$$(a,b) = \{x | a < x < b\}$$
 offenes Intervall

$$[a,b) = \{x | a \le x < b\}$$

$$(a,b] = \{x | a < x \le b\}$$

Lemma 3.1.1 Eine Folge kann nur einen Grenzwert haben.

Lemma 3.1.2

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Definition

Eine Folge, die gegen Null konvergiert heißt Nullfolge.

Lemma 3.1.3 (x_i) konvergiert genau dann gegen x, wenn $(x_i - x)$ eine Nullfolge ist.

Lemma 3.1.4 Wenn (b_i) eine Nullfolge ist und $|a_i| \le b_i$ für alle i, so ist auch (a_i) eine Nullfolge.

Definition

Eine Folge (x_i) divergiert gegen ∞ (oder $-\infty$), wenn es für alle ganzen Zahlen K ein N gibt, sodaß $K \leq x_n$ (beziehungsweise $x_n \leq K$) für alle $n \geq N$.

Wir schreiben dafür $\lim_{n\to\infty} x_n = \infty$ und $\lim_{n\to\infty} x_n = -\infty$.

Folgen, die gegen ∞ oder $-\infty$ divergieren, heißen bestimmt divergent, sonst unbestimmt divergent.

Proposition 3.1.5 Sei x eine reelle Zahl. Wenn x < -1, ist die Folge (x^i) unbestimmt konvergent. Sonst ist

$$\lim_{n \to \infty} x^n = \begin{cases} 0, & wenn \quad -1 < x < 1 \\ 1, & wenn \quad x = 1 \\ \infty, & wenn \quad 1 < x. \end{cases}$$

Satz 3.1.6 Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$. Dann ist

- 1. $\lim_{n\to\infty} (a_n + b_n) = a + b$ und $\lim_{n\to\infty} (a_n b_n) = ab$.
- 2. Wenn $a_n \leq b_n$ für unendlich viele n, ist $a \leq b$.
- 3. Wenn alle a_n und a ungleich Null sind, ist $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{a}$.

Bemerkung 3.1.7

- 1. Jede konvergente Folge (a_n) ist beschränkt. Das heißt, daß $|a_n| \leq K$ für ein K und alle n.
- 2. Wenn die a_n ungleich Null sind und gegen einen von Null verschiedenen Grenzwert konvergieren, gibt es ein k > 0 sodaß $k \le |a_n|$ für alle n.

Lemma 3.1.8 Wenn (a_n) beschränkt ist und (b_n) eine Nullfolge, so ist auch (a_nb_n) eine Nullfolge.

3.2 Die Vollständigkeit der reellen Zahlen

Definition

Eine Teilfolge von a_0,a_1,\ldots ist gegeben durch eine aufsteigende Folge von Indizes $i_0 < i_1 < \ldots$ als

$$a_{i_0}, a_{i_1}, \ldots$$

Satz 3.2.1 (Bolzano-Weierstraß)¹ Jede beschränkte Folge hat eine konvergente Teilfolge.

Definition

a ist Häufungspunkt der Folge (a_n) , wenn für alle $\epsilon > 0$ unendlich viele Folgenglieder in $[a - \epsilon, a + \epsilon]$ liegen.

 $^{^{1}\}mathrm{Bernhard}$ Bolzano (1771-1848), Carl Weierstraß (1815-1897)

Bemerkung 3.2.2 a ist genau dann Häufungspunkt der Folge (a_n) , wenn a Limes einer Teilfolge von (a_n) ist.

Jede Folge (a_n) hat einen kleinsten und einen größten Häufungspunkt², den Limes superior $\limsup_{n\to\infty} a_n$ und den Limes inferior $\liminf_{n\to\infty} a_n$.

Folgerung 3.2.3 Jede monoton wachsende beschränkte Folge konvergiert.

Definition

Eine Folge (a_n) heißt Cauchyfolge³, wenn es für alle $\epsilon > 0$ ein N gibt, sodaß $|a_n - a_m| \le \epsilon$ für alle $n, m \ge N$.

Satz 3.2.4 (Cauchyvollständigkeit von \mathbb{R}) Eine Folge ist genau dann konvergent, wenn sie ein Cauchyfolge ist.

3.3 Vergleich von \mathbb{Q} und \mathbb{R}

Lemma 3.3.1 In \mathbb{R} läßt sich (im Gegensatz zu \mathbb{Q}) aus jeder positiven Zahl die Quadratwurzel ziehen.

Definition

Eine Menge X heißt abzählbar, wenn es eine Bijektion $\mathbb{N} \to X$ gibt. Eine unendliche Menge, die nicht abzählbar ist, heißt überabzählbar.

Satz 3.3.2 (Cantor) 4

- 1. \mathbb{Q} ist abzählbar
- 2. R ist überabzählbar.

Definition

Eine reelle Zahl α heißt algebraisch, wenn sie Nullstelle eines Polynoms ($\neq 0$) mit rationalen Koeffizienten ist.

Bemerkung 3.3.3 Die Menge der algebraischen Zahlen ist abzählbar.

3.4 Die Zahl π

Die Zahl π , die später eingeführt wird (7.1, Seite 22), ist nicht algebraisch (Lindemann⁵ 1882).

 $^{^2\}pm\infty$ ist zugelassen.

³Augustin Louis Baron Cauchy (1789-1857)

⁴Georg Cantor (1845-1872)

⁵Carl Louis Ferdinand Lindemann (1852-1939)

3.5 Unendliche Reihen

Definition

Sei (a_k) eine Zahlenfolge. Unter der Reihe

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + \cdots$$

verstehen wir die Folge der Partialsummen

$$s_n = \sum_{k=0}^n a_k.$$

 $\sum_{n=0}^{\infty}a_n$ konvergiert gegen a, wenn (s_n) gegen a konvergiert. Man schreibt

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + \dots = a.$$

Lemma 3.5.1 Sei $\sum_{n=0}^{\infty} a_n = a$ und $\sum_{n=0}^{\infty} b_n = b$. Dann ist

- 1. $\sum_{n=0}^{\infty} (a_n + b_n) = a + b$
- 2. $\sum_{n=0}^{\infty} \lambda a_n = \lambda a \text{ für alle } \lambda$.
- 3. Wenn $a_n \leq b_n$ für alle n, ist $a \leq b$.

Lemma 3.5.2 Wenn $a_n \geq 0$ für alle n, und die Folge der Partialsummen beschränkt ist, ist $\sum_{n=0}^{\infty} a_n$ konvergent.

Satz 3.5.3 (Geometrische Reihe) Wenn |x| < 1, ist

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

Lemma 3.5.4 Wenn $\sum_{n=0}^{\infty} a_n$ konvergent ist, ist (a_n) eine Nullfolge.

Lemma 3.5.5 (Harmonische Reihe)

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Lemma 3.5.6 (Leibnizkriterium)⁶ (a_n) sei eine monoton abnehmende Nullfolge. Dann ist $\sum_{n=0}^{\infty} (-1)^n a_n$ konvergent.

Definition

Eine Reihe (a_n) heißt absolut konvergent, wenn $\sum_{n=0}^{\infty} |a_n|$ konvergiert.

Lemma 3.5.7 Absolut konvergente Reihen sind konvergent.

⁶Gottfried Wilhelm Leibniz (1646-1716)

Satz 3.5.8 (Umordnungssatz) Eine Reihe $\sum_{n=0}^{\infty} a_n$ ist genau dann absolut konvergent, wenn für jede Bijektion $u : \mathbb{N} \to \mathbb{N}$ die Reihe $\sum_{n=0}^{\infty} a_{u(n)}$ konvergiert und

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_{u(n)}.$$

Definition

X sei eine abzählbare Menge. Eine "Reihe" $\sum_{x \in X} a_x$ konvergiert absolut gegen a, wenn für eine Bijektion $u: \mathbb{N} \to X$ die Reihe $\sum_{n=0}^{\infty} a_{u(n)}$ absolut gegen a konvergiert.

Satz 3.5.9 (Majorantenkriterium) Wenn $\sum_{n=0}^{\infty} b_n$ konvergiert und $\sum_{n=0}^{\infty} a_n$ majorisiert, daß heißt $|a_n| \leq b_n$, dann ist $\sum_{n=0}^{\infty} a_n$ absolut konvergent.

Folgerung 3.5.10 (Quotientenkriterium) Wenn für ein $\theta < 1$ und für fast alle n

$$\left| \frac{a_{n+1}}{a_n} \right| < \theta,$$

dann ist $\sum_{n=0}^{\infty} a_n$ absolut konvergent.

Bemerkung 3.5.11 Wenn für fast alle n

$$\left| \frac{a_{n+1}}{a_n} \right| \ge 1,$$

so ist $\sum_{n=0}^{\infty} a_n$ divergent.

3.6 Die Exponentialfunktion

Definition

Die Exponentialfunktion ist gegeben durch

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Die Eulersche⁷ Zahl durch

$$e = \exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!}.$$

Lemma 3.6.1

$$\exp(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

Satz 3.6.2 (Multiplikation absolut konvergenter Reihen) Wenn $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut gegen a und b konvergieren, konvergiert $\sum_{i,j=0}^{\infty} a_i b_j$ absolut gegen ab.

⁷Leonhard Euler (1707-1783)

Bemerkung Sei X abzählbar und $\sum_{x \in X} a_x = a$ absolut konvergent. Sei X disjunkte Vereinigung von X_0, X_1, \ldots Dann ist

$$\sum_{n=0}^{\infty} (\sum_{x \in X_n} a_x) = a$$

absolut konvergent.

Satz 3.6.3

$$\exp(x+y) = \exp(x)\exp(y)$$

Folgerung 3.6.4 Für alle $m \in \mathbb{Z}$ ist

$$\exp(m \cdot y) = \exp(x)^m$$

und daher

$$\exp(z) = e^z$$
.

Bemerkung 3.6.5 exp wächst monoton und ist überall positiv. Außerdem gilt

$$\lim_{n \to \infty} \exp(n) = \infty$$
$$\lim_{n \to \infty} \exp(-n) = 0.$$

4 Stetigkeit

4.1 Stetige Funktionen und der Zwischenwertsatz

Definition

Sei $D \subset \mathbb{R}$ und $f: D \to \mathbb{R}$ eine Funktion.

- 1. f heißt stetig bei $p \in D$, wenn es für alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodaß $|f(x) f(p)| < \epsilon$ für alle $x \in D$ mit $|x p| < \delta$.
- 2. f heißt stetig, wenn f bei allen $p \in D$ stetig ist.

Bemerkung Konstante Funktionen, die Funktionen $x \mapsto x$, abs(x) = |x| und exp(x) sind stetig.

Lemma 4.1.1 Die Funktion

$$x \mapsto \frac{1}{x}$$

ist eine stetige Funktion auf $\mathbb{R} \setminus \{0\}$.

Satz 4.1.2 (Zwischenwertsatz) $f : [a,b] \to \mathbb{R}$ sei stetig. Dann nimmt f jeden Wert zwischen f(a) und f(b) an.

Folgerung 4.1.3 $\exp(x)$ nimmt jeden positiven Wert genau einmal an.

Definition

Der (natürliche) Logarithmus

$$\log: \mathbb{R}_{>0} \to \mathbb{R}$$

ist die Umkehrfunktion von exp.

Es gilt log(e) = 1 und log(xy) = log(x) + log(y).

Satz 4.1.4 (Summe und Produkt stetiger Funktionen) Wenn f und g stetige Funktionen $D \to \mathbb{R}$ sind, sind auch f + g und fg stetige Funktion von D nach \mathbb{R} .

Folgerung 4.1.5 Polynomfunktionen $f: \mathbb{R} \to \mathbb{R}$, definiert durch

$$f(x) = a_0 + a_1 x + \dots + a_n x^n,$$

sind stetiq.

Satz 4.1.6 (Verknüpfung stetiger Funktionen) Die Funktionen $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$ seien stetig und g(E) Teilmenge von D. Dann ist auch $f \circ g: D \to \mathbb{R}$ stetig.

Folgerung 4.1.7 f und g seien stetig auf D und g ohne Nullstelle auf D. Dann ist auch

$$\frac{f}{g}:D o\mathbb{R}$$

stetig.

4.2 Umkehrfunktionen

Definition

Eine Teilmenge X von \mathbb{R} heißt convex, wenn für alle $x, y \in X$ auch alle Elemente von [x, y] zu X gehören.

Lemma 4.2.1 Die convexen Teilmengen von \mathbb{R} sind genau die Intervalle.

Als Intervalle gelten dabei jetzt auch die Mengen

$$\begin{array}{ll} [a,\infty),\; (-\infty,b] & \quad \ \ \, abgeschlossen \\ (a,\infty),\; (-\infty,b) & \quad \ \, of\! f\! e\! n \\ (-\infty,\infty) = \mathbb{R} & \quad \ \, of\! f\! e\! n \; \text{und} \; abgeschlossen \end{array}$$

Satz 4.2.2 (Abstrakter Zwischenwertsatz) f sei stetig auf dem Intervall D, dann ist auch f(D) ein Intervall.

Definition

Eine Funktion $f: D \to \mathbb{R}$ heißt monoton wachsend, wenn für alle $x, y \in D$

$$x < y \Rightarrow f(x) \le f(y),$$

und streng monoton wachsend, wenn

$$x < y \Rightarrow f(x) < f(y)$$
.

Entsprechend definiert man (streng) monoton fallend. f heißt (streng) monoton, wenn f (streng) monoton wächst oder (streng) monoton fällt.

Lemma 4.2.3 f sei streng monoton auf dem Intervall D. Dann ist die Umkehrfunktion

$$f^{-1}: f(D) \to \mathbb{R}$$

stetig.

Satz 4.2.4 (Satz von der Umkehrfunktion) f sei streng monoton auf dem Intervall D und stetig. Dann ist das Bild I = f(D) wieder ein Intervall und die Umkehrfunktion $f^{-1}: I \to \mathbb{R}$ streng monoton und stetig.

4.3 Wurzeln, Potenz und Logarithmus

Definition

n sei eine ganze Zahl, ungleich Null. Die n-te Wurzel

$$\sqrt[n]{x}: \mathbb{R}_{>0} \to \mathbb{R}$$

ist die Umkehrfunktion der n-ten Potenz

$$x^n: \mathbb{R}_{>0} \to \mathbb{R}$$
.

Für positive x gilt $\log(\sqrt[n]{x}) = \frac{1}{n}\log(x)$.

Folgerung 4.3.1 $\log(x)$ und $\sqrt[n]{x}$ sind stetig.

Wir erweitern die Potenzfunktion a^z , $(z \in \mathbb{Z})$ auf beliebige Exponenten.

Definition

Für positive a und beliebige x definieren wir die Potenzfunktion durch

$$a^x = \exp(x \log(a)).$$

Es gilt $e^x = \exp(x)$ und $a^{\frac{1}{n}} = \sqrt[n]{a}$.

Bemerkung 4.3.2 Es bestehen die folgenden Rechenregeln.

$$a^{1} = a$$

$$a^{x+y} = a^{x}a^{y}$$

$$(ab)^{x} = a^{x}b^{x}$$

$$(a^{x})^{y} = a^{xy}$$

Wenn $a \neq 1$, ist a^x streng monoton und nimmt alle positiven Zahlen als Werte an.

Definition

Sei a eine positive Zahl ungleich 1. Der Logarithmus $\log_a(x)$ zur Basis a ist die Umkehrfunktion der Potenzfunktion a^x .

Es ist $\log_{e}(x) = \log(x)$.

Bemerkung 4.3.3

$$\log_a(x) = \frac{\log(x)}{\log(a)}$$

4.4 Folgenstetigkeit

Satz 4.4.1 $f: D \to \mathbb{R}$ ist genau dann stetig, wenn für jede Folge (a_n) aus D, die gegen ein $a \in D$ konvergiert, die Folge $(f(a_n))$ gegen f(a) konvergiert.

Man beweist damit leicht, daß $\lim_{n\to\infty} \sqrt[n]{a} = 1$ für positive a.

4.5 Stetige Funktionen auf kompakten Mengen

Definition

Eine Teilmenge K von $\mathbb R$ heißt kompakt, wenn jede Folge aus K einen Häufungspunkt in K hat.

Intervalle sind nur dann kompakt, wenn sie die Form [a, b] haben.

Satz 4.5.1 Eine stetige Funktion mit kompaktem, nicht leerem Definitionsbereich nimmt Maximum und Minimum an.

Definition

Eine Funktion $f:D\to\mathbb{R}$ heißt gleichmäßig stetig, wenn es für alle $\epsilon>0$ ein $\delta>0$ gibt, sodaß für alle $x,y\in D$

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Satz 4.5.2 Eine stetige Funktion mit kompakten Definitionsbereich ist gleichmäßig stetig.

5 Integration und Differentiation

5.1 Integration

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion und

$$a = a_0 \le a_1 \le \dots \le a_n = b$$

eine Unterteilung \mathcal{U} des Definitionsbereich.

Definition

Die zu \mathcal{U} gehörende Untersumme ist

$$\underline{I}_{\mathcal{U}}(f) = \sum_{i=1}^{n} \inf f[a_{i-1}, a_i] \cdot (a_i - a_{i-1})$$

Lemma 5.1.1 Wenn V eine Verfeinerung von \mathcal{U} ist, ist $\underline{I}_{\mathcal{U}}(f) \leq \underline{I}_{\mathcal{V}}(f)$.

Definition

Das Integral von f über [a, b] ist

$$\int_{a}^{b} f = \sup\{ \, \underline{\mathbf{I}}_{\mathcal{U}}(f) \mid \mathcal{U} \text{ Unterteilung von } [a, b] \, \}$$

Andere Schreibweisen für das Integral sind:

$$\int_{a}^{b} f(x) dx \text{ und } \int_{[a,b]} f.$$

Definition

Für Funktionen $f,g:D\to\mathbb{R}$ bedeutet $f\leq g,$ daß $f(x)\leq g(x)$ für alle $x\in D.$

Lemma 5.1.2 (Grundlegende Eigenschaften des Integrals)

1. Für konstante Funktionen c gilt

$$\int_{a}^{b} c = c(b - a).$$

2. Wenn $c \in [a, b]$, ist

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

3. Wenn $f \leq g$, ist

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

Definition

Sein \mathcal{U} eine Unterteilung von [a,b]. Die zu \mathcal{U} gehörende Obersumme ist

$$\bar{\mathbf{I}}_{\mathcal{U}}(f) = \sum_{i=1}^{n} \sup f[a_{i-1}, a_i] \cdot (a_i - a_{i-1})$$

Es ist klar, daß $\int_a^b f \leq \bar{I}_{\mathcal{U}}(f)$.

Lemma 5.1.3 $\int_a^b f$ ist das Infimum aller $\bar{\mathbf{I}}_{\mathcal{U}}(f)$.

Satz 5.1.4 (Integrationsregeln)

1.

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

2. Für alle $\lambda \in \mathbb{R}$ ist

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

3.

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

Definition

Für b < a definieren wir $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

Mit dieser Definition gilt Lemma 5.1.2(2) für beliebige a, b, c.

5.2 Differentiation

Definition

Sei D eine Teilmenge von \mathbb{R} . p heißt Häufungspunkt von D, wenn es für alle $\delta > 0$ ein $x \in D \setminus \{p\}$ gibt mit $|x - p| < \delta$.

Definition

Sei $\phi: D \to \mathbb{R}$, p ein Häufungspunkt von D und $b \in \mathbb{R}$. ϕ konvergiert für $x \to p$ gegen b, wenn es für alle $\epsilon > 0$ ein $\delta > 0$ gibt, sodaß für alle $x \in D \setminus \{p\}$

$$|x - p| < \delta \Rightarrow |\phi(x) - b| < \epsilon.$$

Lemma 5.2.1 ϕ konvergiert für $x \rightarrow p$ gegen höchstens einen Wert.

Daß ϕ für $x \to p$ gegen b konvergiert, notieren wir als

$$\lim_{x \to p} \phi(x) = b.$$

Bemerkung 5.2.2 $\phi: D \to \mathbb{R}$ ist genau dann stetig bei $p \in D$, wenn

$$\lim_{x \to p} \phi(x) = \phi(p).$$

Definition

Sei $f:D\to\mathbb{R}$ eine Funktion und $p\in D$ ein Häufungspunkt von D. f heißt differenzierbar bei p mit Ableitung b, wenn

$$\lim_{x \to p} \frac{f(x) - f(p)}{x - p} = b.$$

Wir notieren das als

$$f'(p) = b$$

oder

$$\frac{\mathrm{d}f}{\mathrm{d}x}(p) = b.$$

Lemma 5.2.3 Wenn f differenzierbar bei p ist, ist f stetig bei p.

Definition

Sei D eine Teilmenge von R, in der jeder Punkt Häufungspunkt ist⁸. Eine Funktion $f:D\to\mathbb{R}$ heißt differenzierbar, wenn f an allen Stellen $p\in D$ differenzierbar ist

Die Ableitung von $f, p \mapsto f'(p)$, bezeichnen wir mit f' oder mit $\frac{df}{dx}$.

Die konstante Funktion $c:\mathbb{R}\to\mathbb{R}$ und die Funktion $x:\mathbb{R}\to\mathbb{R}$ sind differenzierbar. Es gilt $\frac{\mathrm{d}c}{\mathrm{d}x}=0$ und $\frac{\mathrm{d}x}{\mathrm{d}x}=1$.

Satz 5.2.4 (Summenregel und Produktregel) $f, g : D \to \mathbb{R}$ seien differenzierbar bei p. Dann sind auch f + g und fg differenzierbar bei p und es gilt

$$(f+g)'(p) = f'(p) + g'(p)$$

 $(fg)'(p) = f'(p)g(p) + f(p)g'(p).$

Folgerung 5.2.5 Polynomfunktionen sind differenzierbar. Es gilt

$$(a_0 + a_1x + \dots + a_nx^n)' = a_1 + \dots + na_nx^{n-1}$$

Satz 5.2.6 (Kettenregel) Seien $f: U \to \mathbb{R}$ und $g: V \to \mathbb{R}$ Funktionen mit $f(U) \subset V$. Wenn f differenzierbar ist bei p und g bei f(p), dann ist $g \circ f$ differenzierbar bei p und es gilt

$$(g \circ f)'(p) = g'(f(p))f'(p).$$

Satz 5.2.7 (Ableitung von Brüchen) Die Funktionen $f,g:D\to\mathbb{R}$ seien differenzierbar bei p und g habe keine Nullstelle in D. Dann ist auch $\frac{f}{g}$ differenzierbar bei p und es gilt

$$\left(\frac{f}{g}\right)'(p) = \frac{f'(p)g(p) - f(p)g'(p)}{g^2(p)}.$$

Insbesondere ist

$$\left(\frac{1}{g}\right)'(p) = -\frac{g'(p)}{g^2(p)}.$$

Lemma 5.2.8 exp : $\mathbb{R} \to \mathbb{R}$ ist differenzierbar. Es gilt

$$\frac{\mathrm{d}\exp(x)}{\mathrm{d}x} = \exp(x).$$

Satz 5.2.9 (Ableitung der Umkehrfunktion) Sei D ein Intervall, $f: D \to \mathbb{R}$ streng monoton und stetig mit Umkehrfunktion g und f(p) = q. Wenn f bei p differenzierbar ist und $f'(p) \neq 0$, ist g differenzierbar bei q und es gilt

$$g'(q) = \frac{1}{f'(p)}.$$

 $^{^8\}mathrm{Das}$ ist zum Beispiel der Fall, wenn Dendliche Vereinigung von (unendlichen) Intervallen ist.

Folgerung 5.2.10

1. $\log : \mathbb{R}_{>0} \to \mathbb{R}$ ist differenzierbar. Es gilt

$$\frac{\mathrm{d}\log(x)}{\mathrm{d}x} = \frac{1}{x}.$$

2. Für alle b ist $x^b : \mathbb{R}_{>0} \to \mathbb{R}$ differenzierbar und es gilt

$$\frac{\mathrm{d}\,x^b}{\mathrm{d}x} = bx^{b-1}.$$

5.3 Monotone und konvexe Funktionen

Satz 5.3.1 (Maxima: Notwendige Bedingung) $f:(a,b) \to \mathbb{R}$ sei differenzierbar bei p. Wenn f bei p ein Maximum oder Minimum hat, ist f'(p) = 0.

Satz 5.3.2 (Satz von Rolle)⁹ $f:[a,b] \to \mathbb{R}$ sei stetig und differenzierbar auf (a,b). Wenn f(a) = f(b), gibt es ein $p \in (a,b)$ mit f'(p) = 0.

Folgerung 5.3.3 (Mittelwertsatz) $f : [a,b] \to \mathbb{R}$ sei stetig und differenzierbar auf (a,b). Dann gibt es ein ein $p \in (a,b)$ mit

$$f'(p) = \frac{f(b) - f(a)}{b - a}.$$

Satz 5.3.4 (Erste Ableitung und Monotonie) Sei I ein Intervall und $f: I \to \mathbb{R}$ differenzierbar. Dann gilt

- 1. $f' > 0 \Rightarrow f \text{ wächst streng monoton}$ $f' > 0 \Rightarrow f \text{ fällt streng monoton}$
- 2. $f' \ge 0 \Leftrightarrow f \text{ wächst monoton}$ $f' \le 0 \Leftrightarrow f \text{ fällt monoton}$
- 3. $f' = 0 \Leftrightarrow f \text{ ist konstant}$

Im obigen Satz braucht man in den Randpunkten von I nur die Stetigkeit von f zu fordern.

Definition

Sei $p \in D$ ein Häufungspunkt von D. $f: D \to \mathbb{R}$ ist n-mal differenzierbar in p, wenn es ein $\epsilon > 0$ gibt, sodaß auf $U = D \cap (p - \epsilon, p + \epsilon)$ alle $f, f', \ldots, f^{(n-2)}$ differenzierbar sind und $f^{(n-1)}$ in p differenzierbar ist. Daß f 0-mal differenzierbar in p ist, soll heißen, daß f in p stetig ist.

Definition

 $f:D\to\mathbb{R}$ hat in $p\in D$ ein lokales Maximum, wenn für ein $\epsilon>0$ und für alle x in $U=D\cap(p-\epsilon,p+\epsilon)$

$$f(x) \le f(p).$$

Das lokale Maximum heißt isoliert, wenn f(x) < f(p) für alle $x \in U \setminus \{p\}$. (Isolierte) lokale Minima definiert man analog.

⁹Michel Rolle (1652-1719)

Satz 5.3.5 (Maxima: hinreichende Bedingung) I sei ein Intervall, $f: I \to \mathbb{R}$ differenzierbar und f'(p) = 0. Wenn f in p zweimal differenzierbar ist und f''(p) < 0, hat f in p ein isoliertes lokales Maximum. Wenn f''(p) > 0, hat f in p ein isoliertes lokales Minimum.

Definition

Sei Iein Intervall. $f:I\to\mathbb{R}$ heißt convex, wenn für alle $a,b\in I$ und alle $t\in [0,1]$

$$tf(a) + (1-t)f(b) > f(ta + (1-t)b).$$

Wenn immer

$$tf(a) + (1-t)f(b) \le f(ta + (1-t)b),$$

ist f concav.

Satz 5.3.6 (Konvexe Funktionen) I sei ein Intervall und $f: I \to \mathbb{R}$ zweimal differenzierbar. Dann ist f genau dann convex, wenn $f'' \geq 0$, und concav, wenn $f'' \leq 0$.

5.4 Die Regeln von l'Hospital

Satz 5.4.1 (Regel von l'Hospital (1))¹⁰ Sei I ein Intervall und p eine Häufungspunkt von I. $f, g: I \to \mathbb{R}$ seien differenzierbar und

$$\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0.$$

Wenn g und g' keine Nullstellen auf $I \setminus \{p\}$ haben und wenn $\lim_{x \to p} (f'(x)/g'(x))$ existiert, so ist

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)}.$$

Lemma 5.4.2 (Allgemeiner Mittelwertsatz) $f,g:[a,b] \to \mathbb{R}$ seien stetig und differenzierbar auf (a,b). Dann gibt es ein ein $p \in (a,b)$ mit

$$f'(p)(g(b) - g(a)) = g'(p)(f(b) - f(a)).$$

Definition

Sei D eine Teilmenge von \mathbb{R} und $f:D\to\mathbb{R}$ eine Funktion.

1. Sei p ein Häufungspunkt von D. Dann bedeutet

$$\lim_{x \to p} f(x) = \infty,$$

daß es für alle M ein $\delta > 0$ gibt, sodaß $|x - p| < \delta \Rightarrow M < f(x)$ für alle $x \in D \setminus \{p\}$.

2. Für nach oben unbeschränkte D bedeutet

$$\lim_{x \to \infty} f(x) = b,$$

daß es für alle $\epsilon > 0$ ein N gibt, sodaß $N < x \Rightarrow |f(x) - b| < \epsilon$ für alle $x \in D$

¹⁰Guillaume de l'Hospital (1661-1704)

3. Für nach oben unbeschränkte D bedeutet

$$\lim_{x \to \infty} f(x) = \infty,$$

daß es für alle M ein N gibt, sodaß $N < x \Rightarrow M < f(x)$ für alle $x \in D$.

Man definiert analoges für $-\infty$.

Wir erweitern \mathbb{R} durch die beiden Symbole ∞ und $-\infty$ zu $\overline{\mathbb{R}}$..

Satz 5.4.3 (Regel von l'Hospital (2)) Sei I ein Intervall und $p \in \overline{\mathbb{R}}$. $f, g: I \to \mathbb{R}$ seien differenzierbar und

$$\lim_{x\to p} f(x) = \lim_{x\to p} g(x) \in \{0,\infty,-\infty\}.$$

Wenn g und g' keine Nullstellen auf $I \setminus \{p\}$ haben und wenn $\lim_{x \to p} (f'(x)/g'(x))$ in $\overline{\mathbb{R}}$ existiert, so ist

$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)}.$$

5.5 Hauptsatz der Differential- und Integralrechnung

Definition

Sei I ein Intervall und $f: I \to \mathbb{R}$ eine Funktion. Ein differenzierbares $F: I \to \mathbb{R}$ heißt Stammfunktion von f, wenn F' = f.

 $\begin{array}{ll} \mathbf{Bemerkung} & \textit{Verschiedene Stammfunktionen von } f \textit{ unterscheiden sich nur um} \\ eine \textit{ additive Konstante}. \end{array}$

Satz 5.5.1 (Leibniz, Newton 1670-1675)¹¹ Sei I ein Intervall, $f: I \to \mathbb{R}$ eine stetige Funktion und $y_0 \in I$. Dann definiert

$$F(y) = \int_{y_0}^{y} f(x) \, \mathrm{d}x$$

eine Stammfunktion von f mit $F(y_0) = 0$.

Wir verwenden die Schreibweise

$$\int f \quad \text{oder} \quad \int f(x) \, \mathrm{d}x$$

für (irgend)eine Stammfunktion von f, das unbestimmte Integral.

Eine Funktion $F:I\to\mathbb{R}$ ist stetig differenzierbar, wenn F differenzierbar ist und die Ableitung F' stetig ist. Wir bezeichnen mit $\mathrm{C}^1(I)$ den \mathbb{R} -Vektorraum aller stetig differenzierbaren Funktionen und mit $\mathrm{C}^0(I)$ den Vektorraum aller stetigen Funktionen. Differentiation ist eine surjektive Abbildung $\mathrm{C}^1(I)\to\mathrm{C}^0(I)$ mit der Menge der konstanten Funktionen als Kern.

¹¹Isaac Newton (1643-1727)

Folgerung 5.5.2 Sei F eine Stammfunktion der stetigen Funktion f. Dann ist

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Man verwendet häufig die Notation $F(x)|_a^b$ für F(b) - F(a).

5.6 Integrationsregeln

Satz 5.6.1 (Integration durch Substitution) Sei $g \in C^1[a,b]$ und f stetig auf dem Bild von g. Dann ist

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(y) \, dy.$$

Satz 5.6.2 (Partielle Integration) $F\ddot{u}r$ stetig differenzierbare f,g gilt

$$\int fg' = fg - \int f'g$$

6 Potenzreihen

6.1 Funktionenfolgen

Definition

Sei D eine Menge und (f_n) eine Folge von Funktionen $D \to \mathbb{R}$. (f_n) konvergiert (punktweise) gegen $f: D \to \mathbb{R}$, wenn $\lim_{n \to \infty} f_n(d) = f(d)$ für alle $d \in D$. Wir schreiben dafür

$$\lim_{n\to\infty} f_n = f.$$

 (f_n) konvergiert gleichmäßig gegen f, wenn es für alle $\epsilon>0$ eine natürliche Zahl N gibt, sodaß $|f_n(d)-f(d)|\leq \epsilon$ für alle $n\geq N$ und alle $d\in D$.

Lemma 6.1.1 Sei D eine Teilmenge von \mathbb{R} und (f_n) eine Folge von stetigen Funktion, die gleichmäßig gegen $f: D \to \mathbb{R}$ konvergiert. Dann gilt:

- 1. f ist stetig
- 2. Wenn D das Intervall [a, b] enthält, ist

$$\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} f.$$

6.2 Potenzreihen

Eine Potenzreihe ist eine Reihe der Form $\sum_{n=0}^{\infty} a_n x^n$ für reelle Zahlen a_n und unbestimmtes x.

Eine Potenzreihe bei p ist eine Reihe der Form $\sum_{n=0}^{\infty} a_n (x-p)^n$.

Lemma 6.2.1 Zu jeder Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$ gibt es ein $r \in \mathbb{R}_{\geq 0} \cup \{\infty\}$ mit

- a) $\sum_{n=0}^{\infty} a_n x^n$ konvergiert absolut für alle $x \in (-r, r)$.
- b) $\sum_{n=0}^{\infty} a_n x^n$ divergiert für alle $x \notin [-r, r]$.

rheißt der Konvergenz
radius von $\sum_{n=0}^{\infty}a_{n}x^{n},\,(-r,r)$ das Konvergenz
intervall.

Bemerkung 6.2.2 Der Konvergenzradius von $\sum_{n=0}^{\infty} a_n x^n$ berechnet sich als

$$r = \liminf_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}.$$

Satz 6.2.3 Die Folge der Partialsummen einer Potenzreihe konvergieren gleichmäßig auf jedem kompakten Teilintervall ihres Konvergenzintervalls.

Folgerung 6.2.4 Sei f(x) die von $\sum_{n=0}^{\infty} a_n x^n$ auf dem Konvergenzintervall dargestellte Funktion. f(x) ist stetig und sogar differenzierbar. Integral und Ableitung werden lassen sich durch gliedweise Integration und Ableitung berechnen:

$$\int_0^x f(\xi) \,\mathrm{d}\xi = \sum_{n=1}^\infty \frac{a_{n-1}}{n} x^n$$

und

$$f'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

dargestellt. Beide Reihen haben den gleichen Konvergenzradius wie $\sum_{n=0}^{\infty} a_n x^n$.

Beispiel: Im Konvergenzintervall (-1,1) gilt

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

6.3 Taylorreihen

Definition

f sei unendlich oft bei p differenzierbar. Die Taylorreihe¹² von p bei f ist

$$T_f(x) = f(p) + \frac{f'(p)}{1!}(x-p) + \frac{f''(p)}{2!}(x-p)^2 + \cdots$$

Bemerkung 6.3.1 Die Taylorreihe einer Funktion, die von einer Potenzreihe dargestellt wird, ist diese Potenzreihe selbst.

Definition

Sei f n-mal differenzierbar an der Stelle p. Das n-te Taylorpolynom von f bei p ist

$$T_f^n(x) = f(p) + \frac{f'(p)}{1!}(x-p) + \frac{f''(p)}{2!}(x-p)^2 + \dots + \frac{f^{(n)}}{n!}(p)(x-p)^n$$

¹²Brook Taylor (1685-1731)

Bemerkung 6.3.2 Es gilt

$$\lim_{x \to p} \frac{f(x) - T_f^n(x)}{(x - p)^n} = 0.$$

 T_f^n ist das einzige Polynom höchsten n-ten Grades mit dieser Eigenschaft.

Man sagt: T_f^n stimmt bei p mit f überein bis zur Ordnung n.

Satz 6.3.3 f sei auf dem Intervall I (n+1)-mal differenzierbar. Dann gibt es für alle $p \neq x$ in I ein ξ zwischen p und x mit

$$f(x) = T_f^n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-p)^{n+1}.$$

Man nennt den zweiten Summanden das Lagrangesche Restglied¹³.

Folgerung 6.3.4 f sei unendlich oft differenzierbar, r eine positive Zahl. Wenn für ein M, fast alle n und alle $\xi \in (-r, r)$

$$\left| \frac{f^n(\xi)}{n!} \right| \le \frac{M}{r^n},\tag{1}$$

wird f auf (-r,r) durch seine Taylorreihe bei 0 dargestellt.

Bemerkung 6.3.5 Wenn f(n+1)-mal stetig differenzierbar ist, gilt

$$f(x) = T_f^n(x) + \frac{1}{n!} \int_{n}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Mit Hilfe dieser Integraldarstellung des Restglieds läßt sich die rechte Seite von (1) zu $\frac{M}{(r-|\xi|)^n}$ verbessern.

6.4 Der Grenzwertsatz von Abel

Satz 6.4.1 (Abel)¹⁴ Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius r. Wenn $\sum_{n=0}^{\infty} a_n r^n$ gegen b konvergiert, ist $\lim_{x\to r} f(x) = b$.

Als Folgerung ergibt sich zum Beispiel

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \log(2)$$

6.5 Analytische Funktionen

Definition

Eine Teilmenge D von \mathbb{R} heißt offen, wenn es für jedes $p \in D$ eine Umgebung (p-r,p+r) gibt, die ganz in D liegt.

¹³Joseph Louis Lagrange (1736-1813)

¹⁴Nils Hendrik Abel (1802-1829)

Definition

Sei D offen. Eine Funktion $f:D\to\mathbb{R}$ ist analytisch, wenn jedes $p\in D$ eine Umgebung besitzt, in der f von einer Potenzreihe bei p dargestellt wird.

Lemma 6.5.1 Funktionen, die durch Potenzreihen dargestellt werden, sind analytisch.

Satz 6.5.2 f und g seien analytisch. Dann sind auch

- 1. f + g und $f \cdot g$,
- 2. $f \circ g$,
- 3. g^{-1} , wenn g eine differenzierbare Umkehrfunktion hat,

 $analytisch.^{15}$

Definition

Für natürliche Zahlen nund reelle Zahlen α definiert man den Binomialkoeffizient

$$\binom{\alpha}{n} = \frac{\alpha(\alpha - 1) \cdots (\alpha - n + 1)}{n!}.$$

Lemma 6.5.3 (Die Binomialreihe) Für alle α und $x \in (-1,1)$ ist

$$(1+x)^{\alpha} = 1 + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + {\alpha \choose 3}x^3 \cdots$$

7 Trigonometrische Funktionen

7.1 Sinus und Cosinus

Definition

Sinus und Cosinus sind definiert durch die Potenzreihen

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

Lemma 7.1.1

- 1. Sinus und Cosinus sind auf ganz \mathbb{R} definiert.
- 2. $\sin(-x) = -\sin(x)$, $\cos(-x) = \cos(x)$.
- 3. $\sin(0) = 0$, $\cos(0) = 1$.
- 4. $\sin'(x) = \cos(x)$, $\cos'(x) = -\sin(x)$.

 $^{^{15}}$ Siehe Konrad Knopp Theorie und Anwendung der unendlichen Reihen, 5. Auflage, Springer 1964 , $\S 21$

Satz 7.1.2 (Additionstheorem für Sinus und Cosinus)

$$\sin(x+y) = \cos(x)\sin(y) + \sin(x)\cos(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

Folgerung 7.1.3

$$\sin^2(x) + \cos^2(x) = 1$$

Lemma 7.1.4 cos hat eine positive Nullstelle.

Wir definieren $\frac{\pi}{2}$ als die kleinste positive Nullstelle der Cosinus
funktion. Es ist

$$\pi = 3.14159265358979323844...$$

Archimedes¹⁶ hatte die Abschätzung

$$3\frac{10}{71} < \pi < 3\frac{1}{7}.$$

Folgerung 7.1.5 $\sin(x + \frac{\pi}{2}) = \cos(x)$

Lemma 7.1.6 Die Sinusfunktion wächst zwischen 0 und $\frac{\pi}{2}$ streng monoton von 0 auf 1. Außerdem gilt

$$\begin{array}{lcl} \sin(\frac{\pi}{2}+x) & = & \sin(\frac{\pi}{2}-x) \\ \sin(\pi+x) & = & -\sin(x) \\ \sin(\frac{3\pi}{2}+x) & = & -\sin(\frac{\pi}{2}-x) \\ \sin(2\pi+x) & = & \sin(x) \end{array}$$

7.2 Weitere trigonometrische Funktionen

Definition

Der Tangens

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

ist definiert, wenn $\cos(x)$ ungleich Null sind. Das heißt für alle $x \notin \mathbb{Z}\pi + \frac{\pi}{2}$.

Lemma 7.2.1

$$\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

Definition

sin bildet $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ streng monoton wachsend auf $\left[-1, 1\right]$ ab. tan bildet $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ streng monoton wachsend auf $\mathbb R$ ab. Arcussinus¹⁷ und Arcustangens sind die Umkehrfunktionen

$$\begin{aligned} \arcsin: [-1,1] & \to & [-\frac{\pi}{2},\frac{\pi}{2}] \\ \arctan: \mathbb{R} & \to & (-\frac{\pi}{2},\frac{\pi}{2}) \end{aligned}$$

 $^{^{16}\}mathrm{Archimedes}$ von Syrakus (287-212 v.Chr.)

¹⁷Die Arcussinusfunktion wurde erst im Sommersemester behandelt.

Lemma 7.2.2

$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \quad (auf (-1,1))$$
$$\arctan'(x) = \frac{1}{1+x^2}$$

Folgerung 7.2.3 arcsin und arctan haben auf (-1,1) die folgenden Reihendar-stellungen.

$$\arcsin(x) = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots$$
$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$

Es ergibt sich zum Beipiel

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \cdots.$$

Definition

Der Wert des uneigentlichen Integrals

$$\int_{a}^{\infty} f$$

ist der Grenzwert $\lim_{b\to\infty} \int_a^b f$.

Folgerung 7.2.4

$$\int_0^\infty \frac{1}{1+x^2} \, \mathrm{d}x = \frac{\pi}{2}$$

Lemma 7.2.5 Die Fläche des Einheitskreises ist π .

7.3 Hyperbolische trigonometrische Funktionen

(Beginn des Sommersemesters)

Definition

Der Sinus hyperbolicus ist die Funktion

$$\sinh(x) = \frac{e^x - e^{-x}}{2}.$$

Der Cosinus hyperbolicus

$$\cosh(x) = \frac{e^x + e^{-x}}{2}.$$

23

Lemma 7.3.1 sinh und cosh sind differenzierbar mit den Ableitungen

$$\sinh'(x) = \cosh(x)$$

 $\cos'(x) = \sinh(x)$

Außerdem gilt

$$\cosh^2(x) - \sinh^2(x) = 1.$$

 $\sinh: \mathbb{R} \to \mathbb{R}$ ist streng monoton wachsend und surjektiv. Die Umkehrfunktion heißt Area Sinus hyperbolicus und wird mit arsinh bezeichnet.

Lemma 7.3.2 arsinh ist differenzierbar. Es ist

$$\operatorname{arsinh}'(x) = \frac{1}{\sqrt{1+y^2}}.$$

7.4 Fourierreihen

Definition

Sei p eine positive reelle Zahl und $f:\mathbb{R}\to\cdots$ eine Funktion mit beliebigem Wertebereich. f heißt periodisch mit Periode p (oder p–periodisch), wenn für alle x

$$f(x+p) = f(x).$$

Definition

Eine Fourierreihe¹⁸ ist eine Reihe der Form

$$c + \sum_{\nu=1}^{\infty} (a_{\nu} \sin(\nu x) + b_{\nu} \cos(\nu x)).$$
 (2)

Eine Fourierreihe, die für alle x konvergiert, stellt offenbar eine 2π -periodische Funktion dar.

Wir werden im nächsten Kapitel (Abschnitt 8.6) den folgenden Satz beweisen

Satz 7.4.1 Jede stetig differenzierbare, 2π -periodische Funktion ist gleichmäßiger Limes einer eindeutig bestimmten Fourierreihe.

Die Eindeutigkeit folgt aus dem nächsten Lemma

Lemma 7.4.2 Wenn f gleichmäßiger Limes der Fourierreihe (2) ist, berechnen sich c, die a_{ν} und b_{ν} mit

$$c = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx$$

$$a_{\nu} = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(\nu x) dx$$

$$b_{\nu} = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(\nu x) dx$$

¹⁸Joseph Fourier (1768-1833)

Für beliebige (stückweise) stetige 2π -periodischen Funktionen f nennt man die im Lemma definierten Zahlen die Fourierkoeffizienten der Fourierreihe von f

Die komplexe Formulierung von Satz 7.4.1 ist

Satz 7.4.3 Jede stetig differenzierbare, 2π -periodische Funktion $f: \mathbb{R} \to \mathbb{C}$ ist gleichmäßiger Limes einer eindeutig bestimmten komplexen Fourierreihe

$$\sum_{z \in \mathbb{Z}} c_z e^{zx i}.$$

Die komplexen Fourierkoeffizienten berechnen sich mit

$$c_z = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-zx i} dx.$$

8 Metrische Räume und Topologie

8.1 Metrische Räume

Definition

Ein metrischer Raum ist eine Menge X mit einer $Metrik\ d: X\times X\to \mathbb{R}_{\geq 0},$ einer Funktion, die den folgenden Axiomen genügt:

$$d(x,y) = 0 \Leftrightarrow x = y$$
 (Symmetrie)
$$d(x,y) = d(y,x)$$
 (Dreiecksungleichung)
$$d(x,z) \leq d(x,y) + d(y,z)$$

Beispiele:

- \mathbb{R} mit der Metrik |x-y|
- \bullet Wenn X_1,\ldots,X_n metrische Räume sind, macht die Maximumsmetrik

$$d((x_1, \dots, x_n), (y_1, \dots, y_n)) = \max_{i=1\dots n} d(x_i, y_i)$$

 $X_1 \times \cdots \times X_n$ zu einem metrischen Raum.

 \bullet Der \mathbb{R}^n mit der euklidischen~Metrik :

$$|(x_i) - (y_i)| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

Als Standardmetrik des \mathbb{R}^n verwenden wir die Maximumsmetrik von $\mathbb{R} \times \cdots \times \mathbb{R}$.

Definition

Der (offene) Ball um x mit Radius r ist

$$B(x,r) = \{ y \mid d(x,y) < r \}.$$

Definition

Eine Abbildung $f:X\to Y$ zwischen metrischen Räumen ist stetig bei $x\in X,$ wenn es für alle $\epsilon>0$ ein $\delta>0$ gibt mit

$$f(B(x,\delta)) \subset B(f(x),\epsilon).$$

Zum Beispiel ist $d: X \times X \to \mathbb{R}$ stetig.

Lemma 8.1.1 Addition und Multiplikation sind stetige Funktionen $\mathbb{R}^2 \to \mathbb{R}$.

Bemerkung 8.1.2 X und die Y_i seien metrische Räume. $f: X \to Y_1 \times \cdots Y_n$ ist genau dann stetig, wenn alle Komponenten $f_i: X \to Y_i$ von f stetig sind.

Proposition 8.1.3 (vgl. 4.1.6) Die Verknüpfung von stetigen Funktion ist wieder stetig.

Folgerung 8.1.4 (vgl. 4.1.7) Wenn $f, g: X \to \mathbb{R}$ stetig sind, sind auch f + g und $f \cdot g$ stetig.

8.2 Folgen in metrischen Räumen

Definition (vgl. Abschnitt 3.1)

Eine Folge x_0, x_1, \ldots in einem metrischen Raum X konvergiert gegen x, wenn für alle $\epsilon > 0$ der offene Ball $B(x, \epsilon)$ fast alle Glieder der Folge enthält.

Satz 8.2.1 (vgl. 4.4.1) Sei $f: X \to Y$ eine Abbildung zwischen metrischen Räumen. f ist genau dann stetig, wenn für jede Folge (a_n) aus X, die gegen ein $a \in X$ konvergiert, die Folge $(f(a_n))$ gegen f(a) konvergiert.

Definition

Ein metrischer Raum ist vollständig, wenn jede Cauchy-Folge konvergiert.

Bemerkung 8.2.2 Die direkte Summe vollständiger Räume ist wieder vollständig.

Insbesondere ist der \mathbb{R}^n vollständig.

8.3 Kompakte metrische Räume

Definition (vgl. Abschnitt 4.5)

Ein metrischer Raum ist kompakt, wenn jede Folge eine konvergente Teilfolge besitzt.

Proposition 8.3.1 Das Produkt von endlich vielen kompakten metrischen Räumen ist wieder kompakt.

Definition

• Eine Teilmenge A eines metrischen Raumes X ist abgeschlossen, wenn der Grenzwert jeder konvergenten Folge in A wieder zu A gehört.

• Ein metrischer Raum X ist beschränkt, wenn es eine Schranke M gibt, sodaß $d(x,y) \leq M$ für alle $x,y \in X$.

Bemerkung 8.3.2

- 1. Kompakte metrische Räume sind beschränkt und vollständig.
- 2. Vollständige Unterräume eines metrischen Raumes sind abgeschlossen.

Satz 8.3.3 (Heine–Borel)¹⁹ Eine Teilmenge des \mathbb{R}^n ist genau dann kompakt, wenn sie beschränkt und abgeschlossen ist.

Proposition 8.3.4 Das stetige Bild eines kompakten metrischen Raumes ist kompakt.

Folgerung 8.3.5 (vgl. 4.5.1) Eine stetige Funktion auf einem nicht-leeren kompakten metrischen Raum nimmt Maximum und Minimum an.

Definition

Eine Funktion $f:X\to Y$ zwischen zwei metrischen Räumen heißt gleichmäßig stetig, wenn es für alle $\epsilon>0$ ein $\delta>0$ gibt, sodaß für alle $x,y\in X$

$$d(x, y) < \delta \implies d(f(x), f(y)) < \epsilon.$$

Satz 8.3.6 (vgl. 4.5.2) Eine stetige Funktion auf einem kompakten metrischen Raum ist gleichmäßig stetig.

8.4 Topologische Räume

Definition (vgl. Abschnitt 6.5)

Eine Teilmenge O eines metrischen Raumes X heißt offen, wenn es zu jedem $x \in O$ einen Ball $B(x, \epsilon)$ gibt, der ganz in O liegt.

Bemerkung 8.4.1 Sei X ein metrischer Raum und τ das System aller offener Teilmengen. τ hat die folgenden Eigenschaften:

- 1. \emptyset und X gehören zu τ .
- 2. τ ist abgeschlossen unter endlichen Durchschnitten
- 3. τ ist abgeschlossen unter (beliebigen) Vereinigungen.

Definition

Ein topologischer Raum ist eine Menge X zusammen mit einem System τ von Teilmengen, das die drei Eigenschaften in der Bemerkung 8.4.1 hat. Die Elemente von τ nennt man die offenen Mengen von X.

Definition

 (X, σ) sei ein topologischer Raum.

¹⁹Eduard Heine (1821-1881), Emile Borel (1871-1956)

- $A \subset X$ heißt abgeschlossen, wenn $X \setminus A$ offen ist. Der Abschluß \overline{S} einer Teilmenge S ist die kleinste abgeschlossene Teilmenge von X, die S enthält.
- Eine Umgebung von $x \in X$ ist eine Menge, die eine offene Menge enthält, die wiederum x enthält.
- Eine Folge (x_i) konvergiert gegen x, wenn jede Umgebung von x fast alle Glieder der Folge enthält.
- Eine Funktion $f: X \to Y$ in einen topologischen Raum (Y, τ) heißt stetig, wenn das Urbild jeder offenen Teilmenge von Y unter f offen in X ist.
- \bullet Xheißt hausdorffsch $^{20},$ wenn je zwei verschiedene Punkte disjunkte Umgebungen haben.
- ullet X heißt kompakt, wenn X hausdorffsch ist und wenn jede Überdeckung von X mit offenen Mengen eine endliche Teilüberdeckung hat.

Bemerkung 8.4.2 Im Fall metrischer Räume stimmen diese Definitionen mit den früheren Definitionen überein.

Definition

Sei (X, σ) ein topologischer Raum und S eine Teilmenge von X.

- \bullet S heißt dicht, wenn X der Abschluß von S ist.
- Das Innere $\overset{\circ}{S}$ von S ist $X \setminus \overline{X \setminus S}$.
- Der Rand ∂S von S ist $\overline{S} \setminus \overset{\circ}{S}$.

8.5 Normierte Vektorräume

Definition

Sei V ein reeller Vektorraum. Einen Norm auf V ist eine Abbildung $\| \ \| : V \to \mathbb{R}_{\geq 0}$ mit den folgenden Eigenschaften

$$\begin{aligned} \|v\| &= 0 &\Leftrightarrow v = 0 \\ \|\alpha v\| &= |\alpha| \|v\| \\ \|u + v\| &\leq \|u\| + \|v\| \end{aligned}$$

Eine Norm definiert vermöge

$$d(x,y) = ||x - y||$$

immer eine Metrik und damit eine Topologie auf V.

Sei $p \in [1, \infty)$. Dann ist die p-Norm auf \mathbb{R}^n

$$\|(x_1,\ldots,x_n)\|_p = (|x_1|^p + \cdots + |x_n|^p)^{\frac{1}{p}}.$$

 $^{^{20}}$ Felix Hausdorff (1868-1942)

Für p=2ist das die euklidische Norm. Beim Grenzübergang $p\to\infty$ ergibt sich die Maximumsnorm

$$\|(x_1,\ldots,x_n)\|_{\infty} = \max(|x_1|,\ldots,|x_n|)$$

Auf dem Funktionenraum $C^0([a,b])$ definiert man analog

$$||f||_p = \left(\int_a^b |f(x)|^p\right)^{\frac{1}{p}}$$

und

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|.$$

Proposition 8.5.1 Eine lineare Abbildung f zwischen zwei normierten Vektorräumen $(V^1, \|\ \|^1)$ und $(V^2, \|\ \|^2)$ ist genau dann stetig, wenn f auf der Einheitskugel von V^1 beschränkt ist, das heißt, wenn es ein M gibt, sodaß für alle $v \in V^1$

$$||v||^1 \le 1 \implies ||f(v)||^2 \le M.$$

Folgerung 8.5.2 Zwei Normen $\| \|^1$ und $\| \|^2$ auf V definieren genau dann die gleiche Topologie auf V, wenn sie äquivalent sind, das heißt, daß für zwei reelle Zahlen r_1 und r_2 und alle $v \in V$

$$||v||^{1} \leq r_{1} ||v||^{2}$$
$$||v||^{2} \leq r_{2} ||v||^{1}$$

Satz 8.5.3 Alle Normen auf \mathbb{R}^n sind äquivalent.

8.6 Der Satz von Stone-Weierstraß

Satz 8.6.1 (Stone–Weierstraß)²¹ Sei X ein kompakter Raum und A eine \mathbb{R} –Algebra von stetigen reellwertigen Funktionen auf X. Die zwei folgenden Bedingungen seien erfüllt:

- Zu je zwei verschieden Punkten $x, y \in X$ gibt es ein $f \in A$ mit $f(x) \neq f(y)$.
- Zu jedem Punkt $x \in X$ gibt es ein $f \in A$ mit $f(x) \neq 0$.

Dann ist jede stetige Funktion auf X gleichmäßiger Limes von Funktionen aus A.

Folgerung 8.6.2 Jede stetige Funktion $f:[a,b] \to \mathbb{R}$ ist gleichmäßiger Limes von Polynomfunktionen.

Folgerung 8.6.3 Zu jeder 2π -periodischen stetigen Funktion $f: \mathbb{R} \to \mathbb{R}$ und jedem $\epsilon > 0$ gibt es ein trigonometrisches Polynom $s(x) = c + \sum_{\nu=1}^{n} (a_{\nu} \sin(\nu x) + b_{\nu} \cos(\nu x))$ mit $||f - s||_{\infty} < \epsilon$

²¹Marshall Stone (1903-1989)

Folgerung 8.6.4 *Jede stetige* 2π *-periodische Funktion ist* $\| \|_2$ *-Limes ihrer Fourierreihe.*

Mit Hilfe dieser Folgerung beweist man Satz 7.4.1.

9 Differenzierbare Kurven im \mathbb{R}^n

9.1 Bogenlänge

Definition

Eine Kurve ist eine stetige Abbildung von einem kompakten Intervall in einen topologischen Raum.

Definition

Sei $f:[a,b]\to X$ eine Kurve in einem metrischen Raum X. Die Bogenlänge von f ist

$$L(f) = \sup \left\{ \sum_{i=1}^{n} d(f(a_{i-1}), f(a_i)) \mid a = a_0 \le \dots \le a_n = b \right\}.$$

Kurven mit endlicher Bogenlänge heißen rektifizierbar.

Die Bogenlänge hängt von der Parametrisierung nicht ab:

Lemma 9.1.1 Sei $\pi:[c,d] \to [a,b]$ eine monotone Bijektion. Dann haben f und $f \circ \pi$ die gleiche Bogenlänge.

Für Kurven im \mathbb{R}^n verwendet man in der Definition der Bogenlänge die euklidische Metrik.

Definition

Sei I ein Intervall in \mathbb{R} . Eine Funktion $f:I\to\mathbb{R}^n$ heißt differenzierbar , wenn alle Komponentenfunktionen $f_i:I\to\mathbb{R}$ differenzierbar sind.

$$f' = \left(\begin{array}{c} f_1' \\ \vdots \\ f_n' \end{array}\right)$$

heißt die Ableitung von f. Wir schreiben statt f' auch $\frac{\mathrm{d}f}{\mathrm{d}x}$.

Satz 9.1.2 Sei $f:[a,b] \to \mathbb{R}^n$ eine stetig differenzierbare Kurve. Dann ist

$$L(f) = \int_{a}^{b} ||f'(t)|| dt.$$

Stetig differenzierbare Kurven sind also rektifizierbar.

Folgerung 9.1.3 Die Länge der Kreiskurve

$$\begin{array}{ccc}
[0, 2\pi] & \to & \mathbb{R}^2 \\
\phi & \mapsto & (\cos \phi, \sin \phi)
\end{array}$$

ist 2π .

Bemerkung 9.1.4 In Satz 9.1.2 genügt es, zu fordern, daß f auf (a,b) stetig differenzierbar ist.²²

Folgerung 9.1.5 Der Graph einer stetigen Funktion $g:[a,b] \to \mathbb{R}$ wird parametrisiert durch durch $x \mapsto (x,g(x))$. Wenn g stetig differenzierbar ist, ist die Länge dieser Kurve

$$\int_a^b \sqrt{1 + g'(x)^2} \, \mathrm{d}x.$$

9.2 Kurvenintegrale

Definition

Sei O eine offene Teilmenge des \mathbb{R}^n . Eine 1–Form²³ auf O ist eine stetige Abbildung $\omega:O\to\mathbb{R}^n$.

Sei O offen in \mathbb{R}^n , $\omega:O\to\mathbb{R}$ eine 1–Form und $c:[a,b]\to O$ eine rektifizierbare Kurve in O. $\mathcal{U}=\{a_0,\ldots,a_N\}$ sei eine Unterteilung von [a,b]. Wir definieren

$$I_{\mathcal{U}}(\omega) = \sum_{i=1}^{n} \langle \omega(c(a_{i-1})), c(a_i) - c(a_{i-1}) \rangle.^{24}$$

Lemma 9.2.1 Es gibt eine eindeutig bestimmte reelle Zahl A mit folgender Eigenschaft: Für alle $\epsilon > 0$ gibt es ein Unterteilung \mathcal{U} , soda β für jede Verfeinerung \mathcal{V} von \mathcal{U}

$$|A - I_{\mathcal{V}}(\omega)| \le \epsilon.$$

Definition

Das Integral von ω entlang der rektifizierbaren Kurve c ist

$$\int_{\mathcal{C}} \omega = A.$$

Lemma 9.2.2 Sei $\pi : [c,d] \rightarrow [a,b]$ eine monotone Bijektion.

 $^{^{22}\}int_a^b \|f'\|,$ ein uneigentliches Integral, ist dann, für ein beliebiges $c\in(a,b),$ definiert als $\lim_{a'\to a}\int_{a'}^c \|f'\| + \lim_{b'\to b}\int_c^{b'} \|f'\|.$ 23 In koordinatenfreier Schreibweise: Sei Vein endlich-dimensionaler \mathbb{R} -Vektorraum und

 $^{^{23}}$ In koordinatenfreier Schreibweise: Sei V ein endlich-dimensionaler \mathbb{R} -Vektorraum und O eine offene Teilmenge von V. Dann versteht man unter einer 1-Form auf O eine stetige Abbildung ω von O in den Dualraum V^* . Eine Abbildung in V ist ein Vektorfeld. Weil man im \mathbb{R}^n nicht zwischen Vektoren und Linearformen unterscheiden muß, nennt man 1-Formen auf dem \mathbb{R}^n auch Vektorfelder.

 $^{^{24}\}langle x,y\rangle$ ist das Standardskalarprodukt von x und y. Wenn $x\in V^*$ und $y\in V,$ ist $\langle x,y\rangle$ eine andere Schreibweise für x(y).

- 1. Wenn π monoton wächst, ist $\int_{c \circ \pi} \omega = \int_c \omega$.
- 2. Wenn π monoton fällt, ist $\int_{CO\pi} \omega = -\int_C \omega$.

Satz 9.2.3 Wenn c stetig differenzierbar ist, ist

$$\int_{c} \omega = \int_{a}^{b} \langle \omega(c(t)), c'(t) \rangle dt.$$

9.3 Partielle Ableitungen

Definition

Sei $U \subset \mathbb{R}^n$ offen. $f: U \to \mathbb{R}$ heißt partiell differenzierbar, wenn für alle i und alle a_1, \ldots, a_n die auf $\{x \in \mathbb{R} \mid (a_1, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_n) \in U\}$ definierte Funktion

$$x \mapsto f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_n)$$

differenzierbar ist. Ihre Ableitung bei a_i schreibt man als

$$\frac{\partial f}{\partial x_i}(a_1,\ldots,a_i,\ldots,a_n),$$

die partielle Ableitung von f nach x_i . Das Differential (oder der Gradient) von f ist der Zeilenvektor

$$\mathrm{d}f = \Big(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\Big).$$

f heißt stetig partiell differenzierbar, wenn f partiell differenzierbar und df stetig ist²⁵.

Satz 9.3.1 $f: U \to \mathbb{R}$ sei stetig partiell differenzierbar und c eine rektifizierbare Kurve in U, die die Punkte \bar{a} und \bar{b} verbindet. Dann ist

$$\int_{C} \mathrm{d}f = f(\bar{b}) - f(\bar{a}).$$

Folgerung 9.3.2 (Kettenregel) Sei $f: U \to \mathbb{R}$ stetig partiell differenzierbar und c eine stetig²⁶ differenzierbare Kurve in U. Dann ist

$$\frac{\mathrm{d}f(c(x))}{\mathrm{d}x} = <(\mathrm{d}f)(c(x)), c'(x) > .$$

Lemma 9.3.3 (Über Integrale mit einem Parameter) X sei ein topologischer Raum, $f: X \times [a,b] \to \mathbb{R}$ stetig. Dann ist $\int_a^b f(x,t) dt$ eine stetige Funktion von x.

Mit Hilfe der Formel

$$g(x+h) = g(x) + h \int_0^1 g'(x+hs) ds$$
 (3)

folgt daraus:

 $[\]overline{^{25}}\,\mathrm{d}f$ ist also eine 1–Form.

 $^{^{26}\}mathrm{Es}$ genügt, wenn c differenzierbar ist (Satz 10.1.4).

Folgerung 9.3.4 (Differenzieren unter dem Integral) Sei I ein Intervall und $f: I \times [a,b] \to \mathbb{R}$ stetig und stetig partiell differenzierbar in der ersten Variable. Dann ist $F(x) = \int_a^b f(x,t) \, \mathrm{d}t$ differenzierbar und es ist

$$\frac{\mathrm{d}F(x)}{\mathrm{d}x} = \int_a^b \frac{\partial f(x,t)}{\partial x} \,\mathrm{d}t.$$

Folgerung 9.3.5 (Vertauschbarkeit von partiellen Ableitungen) U sei eine offene Teilmenge von \mathbb{R}^2 und f(x,y) eine Funktion $U \to \mathbb{R}$. Wenn $\frac{\partial}{\partial x} \frac{\partial f}{\partial y}$ existiert und stetig ist, dann existiert auch $\frac{\partial}{\partial y} \frac{\partial f}{\partial x}$ und es ist

$$\frac{\partial}{\partial x}\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x}.$$

Für die Vertauschbarkeit genügt es anzunehmen, daß f Sinn von Abschnitt 10.1 zweimal differenzierbar ist. Es gilt, mit den Bezeichnungen von 10.1:

Bemerkung 9.3.6 (H.A. Schwarz)²⁷ V und W seien normierte Vektorräume, A offen in V, $f:A \to W$ zweimal differenzierbar bei $p \in A$. Dann gilt für alle $v, w \in V$

$$(D_v D_w f)(p) = (D_w D_v f)(p).$$

9.4 Geschlossene und exakte 1-Formen

Definition

Eine 1-Form $\omega = (\omega_1, \dots, \omega_n)$ heißt (stetig) partiell differenzierbar, wenn alle Komponenten ω_i (stetig) partiell differenzierbar sind.

Definition

Eine 1-Form $\omega: U \to \mathbb{R}^n$ heißt

• geschlossen (oder wirbelfrei), wenn sie stetig partiell differenzierbar ist und für alle i, j

$$\frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}.$$

• exakt (oder ein Gradientenfeld), wenn für eine partiell²⁸ differenzierbare Funktion $f:U\to\mathbb{R}$

$$\omega = \mathrm{d}f.$$

Lemma 9.4.1 Exakte, stetig partiell differenzierbare 1–Formen sind geschlossen.

Lemma 9.4.2 Eine 1–Form $\omega:U\to\mathbb{R}^n$ ist genau dann exakt, wenn $\int_c\omega=0$ für alle geschlossenen²⁹ c in U.

²⁷Hermann Amadeus Schwarz (1843-1921)

 $^{^{28}}f$ muß natürlich stetig partiell differenzierbar sein.

 $^{^{29}\}mathrm{Wir}$ nehmen immer an, daß Kurven rektifizierbar sind.

Definition

Eine Teilmenge X von \mathbb{R}^n heißt sternförmig, wenn es einen Punkt $x \in X$ gibt, sodaß für jedes $y \in X$ die ganze Verbindungsgerade zwischen x und y in X liegt.

Satz 9.4.3 (Poincaré)³⁰ Geschlossene 1-Formen mit sternförmigem Definitionsbereich sind exakt.

Differenzierbare Abbildungen in mehreren Va-10 riablen

10.1 Das Differential

Definition

V und W seien normierte Vektorräume, A eine offene Teilmenge von V. Eine Funktion $f: A \to W$ heißt differenzierbar bei $p \in A$, wenn es eine stetige lineare Abbildung $L: V \to W$ gibt, sodaß

$$\lim_{h \to 0} \frac{f(p+h) - f(p) - L(h)}{\|h\|} = 0.$$

L ist eindeutig bestimmt. Wir nennen

$$d_p(f) = L$$

das Differential³¹ von f an der Stelle p.

f heißt differenzierbar, wenn f bei allen $p \in A$ differenzierbar ist, und stetig differenzierbar, wenn df eine stetige³² Funktion (von p) ist.

Beispiel: Wenn $f: V \to W$ linear und stetig ist, ist $d_p f = f$ für alle p.

Bemerkung 10.1.1 Differenzierbare Abbildungen sind stetig.

Bemerkung 10.1.2 Sei I ein Intervall und $f: I \to \mathbb{R}^n$. Dann ist f genau dann differenzierbar, wenn f differenzierbar ist im Sinn der Definition auf Seite 30. $d_p f : \mathbb{R} \to \mathbb{R}^n$ wird durch den Vektor f'(p) gegeben³³.

Lemma 10.1.3 Sei U offen in \mathbb{R}^n und $f: U \to \mathbb{R}$.

1. Wenn f differenzierbar bei p, ist f partiell differenzierbar bei p. Die Linearform $d_p f: \mathbb{R}^n \to \mathbb{R}$ wird gegeben durch den Zeilenvektor $\left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$. (Man beachte die Übereinstimmung mit der Definition von df auf Seite 32.)

$$||L|| = \sup_{\|v\|=1} ||L(v)||.$$

 $^{^{30}}$ Henri Poincaré (1854-1912)

 $^{^{31}}$ Man kann die Normen von V und W durch äquivalente Normen ersetzen, ohne daß sich d_p zu ändert. $^{32} \mathrm{Der}$ Vektorraum $\mathrm{L}(V,W)$ der stetigen linearen Abbildungen $V \to W$ hat die Norm

³³Beachte, daß man $L(\mathbb{R}, W)$ mit W identifizieren kann

2. Wenn f stetig partiell differenzierbar ist, ist f stetig differenzierbar.

Satz 10.1.4 (Kettenregel) U,V und W seien normierte Vektorräume, $A \subset U$, $B \subset V$ offen, $f: A \to B$ und $g: B \to W$ differenzierbar. Dann ist auch $g \circ f$ differenzierbar und es gilt für alle $p \in A$

$$d_p(g \circ f) = (d_{f(p)}g) \circ d_p f.$$

Folgerung 10.1.5 Sei $A \subset U$ offen und $f: A \to W$ differenzierbar bei p und $v \in V$. Dann ist

$$\frac{\mathrm{d}f(p+xv)}{\mathrm{d}x}(0) = \mathrm{d}_p f(v).$$

Die Richtungsableitung $d_p f(v)$ notiert man auch als $D_v f(p)$, die Ableitung von f in Richtung v.

Satz 10.1.6 (Komponentenregel) U,W_1 und W_2 seien normierte Vektorräume, $A \subset U$ offen. Eine Funktion $f = (f_1, f_2) : U \to W_1 \times W_2$ ist genau dann differenzierbar, wenn f_1 und f_2 differenzierbar sind. Es gilt dann

$$df = (df_1, df_2).$$

Wir nennen eine Funktion f nach \mathbb{R}^m partiell differenzierbar, wenn die Komponenten f_1, \ldots, f_n partiell differenzierbar sind.

Folgerung 10.1.7 Sei U offen in \mathbb{R}^n und $f: U \to \mathbb{R}^m$.

1. Wenn f differenzierbar bei p, ist f partiell differenzierbar bei p. $d_p f: \mathbb{R}^n \to \mathbb{R}^m$ wird gegeben durch die $Jacobi-Matrix^{34}$

$$\frac{\partial(f_1,\ldots,f_m)}{\partial(x_1,\ldots,x_n)} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}.$$

(Man beachte die Übereinstimmung mit der Definition von df auf Seite 32.)

 $2.\ \ Wenn\ f\ stetig\ partiell\ differenzierbar\ ist,\ ist\ f\ stetig\ differenzierbar.$

Folgerung 10.1.8 (Summenregel) V und W seien normierte Vektorräume, $A \subset V$ offen und $f,g:A \to W$ differenzierbar. Dann ist auch f+g differenzierbar und es gilt

$$d(f+g) = df + dg.$$

Lemma 10.1.9 (Produktregel) U, V und W seien normierte Vektorräume und $F:U\times V\to W$ bilinear und stetig. Dann ist F differenzierbar und es gilt

$$d_{(p_1,p_2)}F(h_1,h_2) = F(p_1,h_2) + F(h_1,p_2).$$

Für differenzierbare matrizenwertige Funktionen A(x) und B(x) zum Beispiel ist

$$(AB)' = AB' + A'B.$$

³⁴Carl Jacobi (1804-1851)

10.2 Taylorentwicklung

Notation: Wenn f k-mal differenzierbar ist schreiben wir

$$\frac{\partial^k f}{\partial x_1 \partial x_2 \cdots \partial x_k} = \frac{\partial}{\partial x_k} \frac{\partial}{\partial x_{k-1}} \cdots \frac{\partial f}{\partial x_1}$$

Wenn f k-mal stetig³⁵ differenzierbar ist, kommt es auf die Reihenfolge der ∂x_i nicht an (Folgerung 9.3.5).

Satz 10.2.1 (Taylorentwicklung) Sei U offen in \mathbb{R}^n , $f: U \to \mathbb{R}$ k+1-mal differenzierbar, $p \in U$ und $h = (h_1, \ldots, h_n)$ so klein, daß die Strecke zwischen p und p + h ganz in U liegt. Dann ist für ein $\tau \in [0, 1]$

$$f(p+h) = f(p) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(p) h_{i} + \dots + \frac{1}{k!} \sum_{i_{1},\dots,i_{k}=1}^{n} \frac{\partial^{k} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}}(p) h_{i_{1}} \cdots h_{i_{k}} + \frac{1}{(k+1)!} \sum_{i_{1},\dots,i_{k+1}=1}^{n} \frac{\partial^{k+1} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k+1}}}(p+\tau h) h_{i_{1}} \cdots h_{i_{k+1}}.$$

Für einen Multiindex $\alpha=(\alpha_1,\ldots,\alpha_n)$ verwenden wir die folgenden Abkürzungen

$$|\alpha| = \alpha_1 + \dots + \alpha_n$$

$$\alpha! = \alpha_1! \dots \alpha_n!$$

$$h^{\alpha} = h_1^{\alpha_1} \dots h_n^{\alpha_n}$$

$$\partial^{\alpha} f = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}$$

Die Taylorentwicklung schreibt sich dann einfacher als

$$f(p+h) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f}{\alpha!}(p) h^{\alpha} + \sum_{|\alpha| = k+1} \frac{\partial^{\alpha} f}{\alpha!}(p+\tau h) h^{\alpha}$$

10.3 Maxima und Minima

Sei U offen in \mathbb{R}^n , $f:U\to\mathbb{R}$ differenzierbar und $p\in U$.

Proposition 10.3.1 Wenn f bei p ein lokales Maximum oder Minimum hat, ist $d_p f = 0$.

Wenn $d_p f = 0$, heißt p kritischer Punkt von f.

Definition

Wenn f zweimal partiell differenzierbar ist, nennt man die Matrix

$$H_p(f) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$$

³⁵Wegen 9.3.6 ist diese Voraussetzung in Wahrheit unnötig.

die Hesse–Matrix 36 von f bei p.

Satz 10.3.2 (Maxima und Minima in mehreren Veränderlichen) Sei f zweimal stetig differenzierbar und p ein kritischer Punkt von f. Dann gilt

- 1. Wenn $H_p(f)$ positiv definit³⁷ ist, hat f ein isoliertes Minimum. bei p.
- 2. Wenn $H_p(f)$ negativ definit ist, hat f ein isoliertes Maximum. bei p.
- 3. Wenn $H_p(f)$ indefinit ist, hat f bei p weder ein lokales Minimum noch ein lokales Maximum.

10.4 Implizit definierte Funktionen

Satz 10.4.1 (Implizite Funktionen) Sei U offen in $\mathbb{R}^n \times \mathbb{R}^m$ und $f(\bar{x}, \bar{y}) : U \to \mathbb{R}^m$ stetig und stetig differenzierbar in den letzten m Variablen. Sei $(\bar{a}, \bar{b}) \in U$ und $f(\bar{a}, \bar{b}) = 0$ und die Matrix $D(\bar{a}, \bar{b}) = \left(\frac{\partial f_i}{\partial y_k}(\bar{a}, \bar{b})\right)$ regulär. Dann gibt es zwei offene Umgebungen A und B von \bar{a} und \bar{b} soda β

- 1. $A \times B \subset U$
- 2. Für alle $a' \in A$ gibt es genau ein $b' = g(a') \in B$ mit f(a', b') = 0.
- 3. Die Funktion $g: A \to B$ ist stetig.

Wenn f stetig differenzierbar ist, ist auch g stetig differenzierbar. Wenn $df(\bar{x}, \bar{y}) = (C(\bar{x}, \bar{y}), D(\bar{x}, \bar{y}))$, ist

$$(dg)(\bar{x}) = D(\bar{x}, g(\bar{x}))^{-1}C(\bar{x}, g(\bar{x}))$$
 (4)

Folgerung 10.4.2 (Umkehrfunktion) Sei U offen in \mathbb{R}^n , $f: U \to \mathbb{R}^n$ stetig differenzierbar und $p \in U$. Wenn $d_p f$ regulär ist, gibt es eine offene Umgebung A von p, die von f injektiv auf eine offene Menge B abgebildet wird. Die Umkehrabbildung $g: B \to A$ ist stetig differenzierbar und es gilt

$$d_{f(p)}g = (d_p f)^{-1}.$$

³⁶Otto Ludwig Hesse (1811-1874)

³⁷ Eine symmetrische reelle Matrix $A=(a_{ij})_{i,j\leq n}$ ist positiv definit, wenn die quadratische Form $q(\bar{x})=\sum_{i,j\leq n}a_{ij}x_ix_j$, außer bei $\bar{x}=0$, nur positive Werte annimmt. A ist negative definit, wenn q nur negative Werte hat. A ist indefinit, wenn q positive und negative Werte annimmt. Kriterien:

^{• (}Hurwitzkriterium) A ist genau dann positiv definit, wenn für alle $m \le n$ die Determinante der Matrix $(a_{ij})_{i,j \le m}$ positiv ist.

[•] A ist genau dann negativ definit, wenn -A positiv definit ist.

[•] Eine reguläre Matrix ist genau dann indefinit, wenn sie weder positiv noch negativ definit ist.

Index

(a,b), 3	$\sqrt[n]{x}$, 10
	•
(a,b], 3	π , 5, 22
[a,b), 3	\underline{p} -Norm, 28, 29
[a,b], 3	$\mathbb{R}, 17$
arcsin, 22	$\overset{\circ}{S},28$
arctan, 22	 '
arsinh, 24	S, 28
	∂S , 28
$a^{b}, 10$	$\sin, 21$
$\binom{\alpha}{n}$, 21	$\sinh, 23$
B(x,r), 25	$\sum_{n=0}^{\infty} a_n, 6$
$C^0(I), 17, 29$	tan, 22
$C^{1}(I)$, 17	
$\cos, 21$	$ v _p$, 28
cosh, 23	$ v _{\infty}$, 29
	$(x_i) \to x, 3$
df, 32, 34	$\langle x, y \rangle$, 31
$\frac{\mathrm{d}f}{\mathrm{d}x}$, 14, 30 $\frac{\partial(f_1,,f_m)}{\partial(x_1,,x_n)}$, 35	
$\frac{\partial(f_1,\ldots,f_m)}{\partial(x_m,x_m)}$, 35	Abel, N.H., 20
$\frac{\partial(x_1,,x_n)}{\partial f}$	Abelscher Grenzwertsatz, 20
$\frac{\partial f}{\partial x_i}$, 32	abgeschlossene Menge, 26, 28
$\frac{\mathrm{d}f}{\mathrm{d}x}(p), 13$	abgeschlossenes Intervall, 3, 9
$\frac{\partial^k f}{\partial x^k}$ 36	
$\frac{\partial^k f}{\partial x_1 \partial x_2 \cdots \partial x_k}, 36$ $d_p f, 34$	Ableitung, 14, 30
	bei $p, 13$
$D_v f(p), 35$	der Umkehrfunktion, 14, 37
e, 7	partielle, 32
$\exp, 7$	von Brüchen, 14
f', 14, 30	Abschluß, 28
$f \leq g$, 12	absolut konvergente Reihe, 6, 7
$ f _p$, 29	abstrakter Zwischenwertsatz, 9
f'(p), 13	
	abzählbare Menge, 5
$ f _{\infty}$, 29	Additions theorem für Sinus und Co-
$F(x) _a^b$, 18	$\sin s$, 22
$\int_a^b f$, 12	äquivalente Normen, 29
$\int_{a}^{b} f(x) \mathrm{d}x, 12, 13$	algebraische Zahl, 5
	allgemeiner Mittelwertsatz, 16
$\int_{[a,b]} f, 12$	analytische Funktion, 21
$\int_{c} \omega$, 31	·
$\int f$, 17	Archimedes, 22
$\int f(x) dx$, 17	Arcussinus, 22
$\ddot{\mathbf{I}}_{\mathcal{U}}(f), 12$	Arcustangens, 22
	Area Sinus hyperbolicus, 24
$\underline{\underline{I}}_{\mathcal{U}}(f), 12$	
L(f), 30	Ball, 25
$\lim_{n\to\infty} x_n, 3, 4$	beschränkte Folge, 4
$\liminf_{n\to\infty} a_n, 5$	beschränkter metrischer Raum, 27
$\lim_{x\to p} \phi(x), 13, 16$	bestimmt divergente Folge, 4
$\limsup_{n\to\infty} a_n, 5$	9 9 1
$\log_{10} 9, 10, 19$	bilineare Abbildung, 35
- · · · · · · · · · · · · · · · · · · ·	Binomialkoeffizient, 21
$\log_a(x), 11$	Binomialreihe, 21

Bogenlänge, 30	concave, 16
Bolzano, B., 4	convexe, 16
Borel, E., 27	differenzierbare, 14, 30, 34 n -fach, 15
Cantor, G., 5	gleichmäßig stetige, 11, 27
Cauchy, A.L., 5	implizit definierte, 37
Cauchyfolge, 5	konstante, 8, 12, 14
concave Funktion, 16	monotone, 15
convexe	partiell differenzierbare, 32, 35
Funktion, 16	periodische, 24
Menge, 9	stetig differenzierbare, 17, 34
Cosinus, 21	stetig partiell differenzierbare,
hyperbolicus, 23	32, 33
	stetige, 8, 26, 28
Differential, 32, 34	(streng) monoton fallende, 10
differenzierbare Funktion, 14, 30, 34	(streng) monoton wachsende, 9
Differenzierbarkeit, 14, 34	(streng) monotone, 10
n-fache, 15	Funktionenfolge
bei $p, 13, 34$	gleichmäßig konvergente, 18
partielle, 32, 33, 35	konvergente, 18
stetig partielle, 32, 33	,
stetige, 17, 34	geometrische Reihe, 6
divergente Folge, 3	geschlossene 1–Form, 33
Dreiecksungleichung, 25	gleichmäßig
Einhaitalanda 99	konvergente Funktionenfolge, 18
Einheitskreis, 23	stetige Funktion, 11, 27
euklidische Metrik, 25	Gradient, 32
Euler, L., 7	Gradientenfeld, 33
Eulersche Zahl, 7	Grenzwert, 3
exakte 1–Form, 33	Grenzwertsatz von Abel, 20
Exponential funktion, 7	TT:: 6
Folge, 3	Häufungspunkt
beschränkte, 4	einer Folge, 4
bestimmt divergente, 4	einer Menge, 13
divergente, 3	harmonische Reihe, 6
konvergente, 3, 28	Hauptsatz der Differential- und In-
unbestimmt divergente, 4	tegralrechnung, 17
1–Form, 31	Hausdorff, F., 28
exakte, 33	hausdorffscher Raum, 28
geschlossene, 33	Heine, E., 27
(stetig) partiell differenzierba-	Hesse, O.L., 37
re, 33	Hesse–Matrix, 37
Fourier, J., 24	Hurwitzkriterium, 37
Fourierkoeffizient, 25	hyperbolische trigonometrische Funk-
komplexer, 25	tionen, 23
Fourierreihe, 24	implizit definierte Funktion, 37
komplexe, 25	indefinite Matrix, 37
Funktion	Inneres, 28
analytische, 21	Integral, 12
<i>V</i> /	1110081011, 12

eigentliches, 23	superior, 5
einer 1–Form, 31	Lindemann, C.L.F., 5
unbestimmtes, 17	Logarithmus, 9, 10, 19
uneigentliches, 31	zur Basis $a, 11$
Integration	lokales
durch Substitution, 18	Maximum, 15, 36
partielle, 18	Minimum, 15, 36
Integrationsregeln, 12	
Intervall, 3, 9	Majorantenkriterium, 7
abgeschlossenes, 3, 9	Matrix
offenes, 3, 9	Hesse-, 37
isoliertes lokales	indefinite, 37
Maximum, 15, 37	Jacobi-, 35
Minimum, 15, 37	negativ definite, 37
	positiv definite, 37
Jacobi, C., 35	Maximum, 11, 27
Jacobi–Matrix, 35	hinreichende Bedingung, 16, 37
1 14 00 05	isoliertes lokales, 15, 37
Kettenregel, 14, 32, 35	lokales, 15, 36
kompakte Menge, 11	notwendige Bedingung, 15, 36,
kompakter Raum, 26, 28	37
komplexe	Maximumsmetrik, 25
Fourierkoeffizienten, 25	Maximumsnorm, 29
Fourierreihe, 25	Menge
Komponentenregel, 35	abgeschlossene, 26, 28
konkav, siehe concav	abzählbare, 5
konstante Funktion, 8, 12, 14	convexe, 9
konvergente	kompakte, 11
Folge, 3, 28	offene, 20, 27
Funktionenfolge, 18	sternförmige, 34
Konvergenz	überabzählbare, 5
einer Folge, 3, 26, 28	Metrik, 25
einer Funktion, 13 einer Funktionenfolge, 18	euklidische, 25
einer Reihe, 6	metrischer Raum, 25
Konvergenzintervall, 19	Minimum, 11, 27, 36
Konvergenzradius, 19	hinreichende Bedingung, 16, 37
konvex, siehe convex	isoliertes lokales, 15, 37
Kreiskurve, 31	lokales, 15, 36
kritischer Punkt, 36	notwendige Bedingung, 15, 36,
Kurve, 30	37
rektifizierbare, 30	Mittelwertsatz, 15
rekumzierbare, 50	allgemeiner, 16 monoton
Lagrange, J.L., 20	
Lagrangesches Restglied, 20	fallende Funktion, 10
Leibniz, G.W., 6	wachsende Funktion, 9
Leibnizkriterium, 6	monotone Funktion, 10, 15
l'Hospital, G., 16	Multiindex, 36
Limes, 3, 28	negativ definite Matrix, 37
inferior, 5	Newton, I., 17
	- · - · · · , - · , - ·

Norm, 28	von Bolzano–Weierstraß, 4
äquivalente, 29	von Cantor, 5
normierter Vektorraum, 28	von der Umkehrfunktion, 10, 37
Nullfolge, 3	von Heine–Borel, 27
	von Lindemann, 5
Obersumme, 12	von Poincaré, 34
offene	von Rolle, 15
Intervalle, 3, 9	von Schwarz, 33
Menge, 20, 27	von Stone–Weierstraß, 29
offene Menge, 27	Schwarz, H.A., 33
D 1: 1	Sinus, 21
Partialsumme, 6	hyperbolicus, 23
partielle	Stammfunktion, 17
Ableitung, 32	sternförmige Menge, 34
Differenzierbarkeit, 32, 33, 35	stetig differenzierbare Funktion, 17,
partielle Integration, 18	34
Periode einer Funktion, 24	stetig partiell differenzierbare Funk-
periodische Funktion, 24	tion, $32, 33$
Poincaré, H., 34	stetige
Polynomfunktion, 9, 14	Differenzierbarkeit, 17, 34
positiv definite Matrix, 37	Funktion, 8, 26, 28
Potenzfunktion, 10	partielle Differenzierbarkeit, 32,
Potenzreihe, 18	33
bei p, 18	Stetigkeit, 8
Produktregel, 14, 35	bei $p, 8$
Quotientenkriterium, 7	Stone, M., 29
Quoticincintricinani, 1	streng monoton
Rand, 28	fallende Funktion, 10
Raum	wachsende Funktion, 10
beschränkter, 27	streng monotone Funktion, 10
hausdorffscher, 28	Substitution, 18
kompakter, 26, 28	Summenregel, 14, 35
metrischer, 25	
topologischer, 27	Tangens, 22
vollständiger, 26	Taylor, B., 19
Regel von l'Hospital, 16, 17	Taylorpolynom, 19
Reihe, 6	Taylorreihe, 19, 36
absolut konvergente, 6, 7	Teilfolge, 4
geometrische, 6	topologischer Raum, 27
harmonische, 6	1 11 3.4 -
konvergente, 6	überabzählbare Menge, 5
rektifizierbare Kurve, 30	Ubereinstimmung bis zur Ordnung
Restglied, siehe Lagrangesches Rest-	n, 20
glied	Umgebung, 28
Integraldarstellung, 20	Umkehrfunktion, 10, 14, 37
Richtungsableitung, 35	Umordnungssatz, 7
Rolle, M., 15	unbestimmt divergente Folge, 4
, ,	unbestimmtes Integral, 17
Satz	uneigentliches Integral, 23, 31
von Abel, 20	Untersumme, 12

Unterteilung, 11

Vektorfeld, 31 Verfeinerung, 12 vollständiger metrischer Raum, 26

Weierstraß, C., 4 wirbelfreie 1–Form, 33 Wurzelfunktion, 10

Zwischenwertsatz, 8 abstrakter, 9