Problem

Let $\nu \in 1, \ldots, n-1$ and let $\langle v, w \rangle_{\nu} = -\sum_{i=i}^{\nu} v_i w_i + \sum_{i=\nu+1}^{n} v_i w_i, \quad v, w \in \mathbb{R}^n$, be a symmetric, non-degenerate bilinear form on \mathbb{R}^n of index ν . A tensor field b on $T(\mathbb{R}^n) \simeq \mathbb{R}^n \times \mathbb{R}^n$ is defined by $b_x(v, w) := \langle v, w \rangle_{\nu}$. Show that:

There is no compact hypersurface $M \subset \mathbb{R}^n$ such that the induced symmetric (2, 0)-tensor field i^*b of b on M is non-degenerate at every point $x \in M$.

Hint: First consider that every hyperplane in \mathbb{R}^n *appears as a tangent plane of* M*.*