Aufgabe 1 (Anwendung der direkten Methode) Sei $\Omega \subset \mathbb{R}^n$ beschränkt. Lösen Sie die folgenden Variationsprobleme:

1. Nichtlineare Poisson-Gleichung: Betrachte $u_0 \in W^{1,2}(\Omega, \mathbb{R}^m)$ und

$$\mathcal{C} = \left\{ u : u - u_0 \in W_0^{1,2}(\Omega, \mathbb{R}^m) \right\}.$$

Für $F \in C^{\infty}(\mathbb{R}^m, \mathbb{R})$ betrachte

$$\min_{u \in \mathcal{C}} \left\{ \int_{\Omega} \left(\frac{1}{2} |Du|_{HS}^2 + F(u) \right) dx \right\}.$$

2. p-harmonische Funktionen: Sei $\mathcal{C} = W_0^{1,2}(\Omega)$.

$$\min_{u \in \mathcal{C}} \left\{ \int_{\Omega} \frac{1}{p} |Du|^p dx \right\}.$$

3. Geodätische in \mathbb{R}^n : Seien $x,y\in\mathbb{R}^n$ und $\mathcal{C}=W^{1,\infty}([0,1],\mathbb{R}^n)\cap\{\gamma:[0,1]\to\mathbb{R}:\gamma(0)=x,\gamma(1)=y\}.$

$$\min_{u \in \mathcal{C}} \left\{ \int_0^1 |\gamma'(t)|^2 dt \right\}.$$

Zeigen Sie: $\gamma \to \int_0^1 |\gamma'(t)|^2 dt$ ist im Allgemeinen nicht stetig bezüglich gleichmäßiger Konvergenz.