Problem 1 (4 points)

A variant of the Cayley transformation between $H=\{x+i y \in \mathbb{C}: y>0\}$ and $B_{1}(0)=\{x+i y \in \mathbb{C}:|x+i y|<1\}$ is $\phi(z)=i \frac{z-i}{z+i}$. Show:
(a) In real variables, ϕ can be written as

$$
\phi(x, y)=\left(\frac{2 x}{|x|^{2}+(y+1)^{2}}, \frac{|x|^{2}+|y|^{2}-R^{2}}{|x|^{2}+(y+1)^{2}}\right) .
$$

(b) ϕ is an isometry between the half-plane model and the Poincaré model of the hyperbolic space.

Problem 2 (4 points)

A set $\Gamma=\left\{\sum_{i=1}^{n} k_{i} e_{i}: k_{i} \in \mathbb{Z}\right\}$ for a basis $\left(e_{i}\right)_{i=1, \ldots, n} \subset \mathbb{R}^{n}$ is called a lattice. It is known from differential geometry that \mathbb{R}^{n} / Γ is diffeomorphic to the torus \mathbb{T}^{n}. Let $\langle\cdot, \cdot\rangle_{\text {eucl }}$ be the Euclidean metric on \mathbb{R}^{n}. Show:
(a) There exists a unique Riemannian metric on g_{Γ} on \mathbb{R}^{n} / Γ such that the projection $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / \Gamma$ is a local isometry, i.e., $\pi^{*} g_{\Gamma}=\langle\cdot, \cdot\rangle_{\text {eucl }}$.
(b) $\left(\mathbb{R}^{n} / \Gamma, g_{\Gamma}\right)$ is isometric to $\left(\mathbb{R}^{n} / \Gamma^{\prime}, g_{\Gamma^{\prime}}\right)$ if and only if there exists an isometry F of $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle_{\text {eucl }}\right)$ with $F(\Gamma)=\Gamma^{\prime}$.

Problem 3 (4 points)

A Riemannian metric g on a Lie group G is called left-invariant (right-invariant) if for each $h \in G$, the left translation l_{h} (or right translation r_{h}) is an isometry. A metric that is both left- and right-invariant is called bi-invariant.
(a) Show: If b is a scalar product on $T_{e} G$, then there exists a unique left-invariant Riemannian metric g on G with $g_{e}=b$.
(b) Let $G=S O(n)$ and $b(A, B):=\operatorname{trace}\left(A^{T} B\right)$ for $A, B \in T_{E_{n}} S O(n)$. Show that the left-invariant metric induced by b is bi-invariant.

Abgabe am Montag, 15. Mai bis 12 Uhr beim Assistenten.

