Aufgabe 1 (4 Punkte)

Sei $\rho: \mathbb{R}^+ \to \mathbb{R}$ gegeben durch $\rho(r) = r$ und $\mathbb{R}^+ \times_{\rho} \mathbb{S}^{n-1}$ bezeichnet das zugehörige warped product wobei $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : \langle x, x \rangle_{eucl} = 1\}$ mit der eingeschränkten Euklidischen Metrik. Wir definieren $\Phi: \mathbb{R}^+ \times_{\rho} \mathbb{S}^{n-1} \to \mathbb{R}^n \setminus \{0\}$ durch $\Phi(r, w) = rw$. Zeigen Sie: Φ ist eine Isometrie zwischen der warped product Metrik und der Euklidischen Metric $\langle \cdot, \cdot \rangle_{eucl}$ auf $\mathbb{R}^n \setminus \{0\}$.

Aufgabe 2 (4 Punkte)

Sei M eine Untermannigfaltigkeit des \mathbb{R}^n und $i^*\langle\cdot,\cdot\rangle_{eucl}=g$ die durch die Einbettung $i:M\to\mathbb{R}^n$ induzierte Riemannsche Metrik. Wir bezeichnen mit $TM^\perp=\bigcup_{p\in M}T_pM^\perp$ das Normalenvektorbündel mit der zugehörigen Projektionsabbildung $\pi^\perp:TM^\perp\to M$ wobei $T_pM^\perp=\{v\in T_p\mathbb{R}^n\simeq\mathbb{R}^n:\langle v,w\rangle_{eucl}=0\ \forall w\in TM\}.$

Zeigen Sie, dass auf dem Normalenbündel wie folgt ein Zusammenhang definiert werden kann:

$$(X,Y) \in \Gamma(TM) \times \Gamma(TM^{\perp}) \mapsto \nabla_X^{\perp} Y := (\bar{\nabla}_X Y)^{\perp} \in \Gamma(TM^{\perp}),$$

wobei $\bar{\nabla}$ den Standardzusammenhang auf $T\mathbb{R}^n$ bezeichnet.

Aufgabe 3 (4 Punkte)

Sei M eine glatte Mannigfaltigkeit und sei ∇ ein Zusammenhang auf TM. Es seien glatte, lokale Basisvektorfelder $(E_i)_{i=1,\dots,m}$ und $(\tilde{E}_i)_{i=1,\dots,m}$ für TM auf einer offenen Menge $U \subset M$ gegeben. Es gibt eine Matrix-wertige Funktion $A: U \to Gl(m, \mathbb{R})$ mit glatten Einträgen $A_i^j \in C^\infty(U)$, so dass $\tilde{E}_i = A_i^j E_i$ auf U. Es seien Γ_{ij}^k und $\tilde{\Gamma}_{ij}^k$ die zugehörigen Christoffelsymbole. Zeigen Sie, dass

$$\tilde{\Gamma}_{ij}^k = (A^{-1})_l^k A_i^r A_j^s \Gamma_{rs}^l + (A^{-1})_l^k A_i^r E_r (A_j^s).$$

Abgabe am Montag, 23. Mai bis 12 Uhr beim Assistenten.