Aufgabe 1 (4 Punkte)

Seien (M,g) und (\tilde{M},\tilde{g}) Riemannsche Mannigfaltigkeiten und $F:M\to \tilde{M}$ eine Isometrie. Entsprechend seien $\nabla,\tilde{\nabla}$ und R,\tilde{R} jeweils die Levi-Civita Zusammenhänge und die Krümmungstensoren von g und \tilde{g} . Zeigen Sie:

- (a) Sind $\tilde{X}, \tilde{Y} \in \Gamma(T\tilde{M})$ F-verwandt zu $X, Y \in \Gamma(TM)$ (d. h. für alle $p \in M$ gilt $DF_p(X_p) = \tilde{X}_{F(p)}$ und $DF_p(Y_p) = \tilde{Y}_{F(p)}$), so ist $\tilde{\nabla}_{\tilde{X}}\tilde{Y}$ F-verwandt zu $\nabla_X Y$.
- (b) Sind $v, w, z \in T_pM$, $\tilde{v} = DF_p(v)$, $\tilde{w} = DF_p(w)$ und $\tilde{z} = DF_p(z)$, so gilt $DF_p(R(v, w)z) = \tilde{R}(\tilde{v}, \tilde{w})\tilde{z}$.

Aufgabe 2 (4 Punkte)

Sei (M,g) eine Riemannsche Mannigfaltigkeit, $\pi:TM\to M$ das Tangentialbündel und $\phi:U\to V$ eine Karte. ϕ induziert eine lokale Trivialisierung von TM über U, d.h. $\pi^{-1}(U)=U\times\mathbb{R}^m$, oder $E_i=\frac{\partial}{\partial x^i},\,i=1,\ldots,m$, ist ein Basisfeld von TM auf U. Es seien ω_i^j die Zusammenhangs-1-Formen und Ω_i^j die Krümmngs-2-Formen, welche definiert sind durch

$$\nabla_X E_i =: \sum_{i=1}^m \omega_i^j(X) E_j \text{ und } R(X,Y) E_i =: \sum_{i=1}^m \Omega_i^j(X,Y) E_j \quad \forall X,Y \in \Gamma(TU).$$

Zeigen Sie, dass

$$\Omega_i^j = d\omega_i^j - \sum_{k=1}^m \omega_i^k \wedge \omega_k^j.$$

Aufgabe 3 (4 Punkte)

Ein Vektorfeld X auf einer Riemannschen Mannigfaltigkeit (M,g) heißt Killing-Vektorfeld, falls der (lokale) Fluss Φ_t^X von X für jedes $t \in \mathbb{R}$ isometrisch ist. Zeigen Sie:

- (a) Ein Vektorfeld X(x) = (x, V(x)) auf \mathbb{R}^n mit der Euklidischen Metrik $\langle \cdot, \cdot \rangle_{eucl}$ ist genau dann ein Killing Vektorfeld, wenn eine schiefsymmetrische Matrix $A \in \mathcal{M}(n, \mathbb{R})$ und ein Vektor $v \in \mathbb{R}^n$ existiert, so dass V(x) = Ax + v.
- (b) Ein Vektorfeld X auf der Riemannschen Mannigfaltigkeit (M,g) ist genau dann ein Killing-Vektorfeld, wenn

$$g(\nabla_v X|_p, w) + g(v, \nabla_w X|_p) = 0 \ \forall p \in M, \ \forall v, w \in T_p M$$

d.h. die Bilinearform $(v, w) \mapsto g(\nabla_v X|_p, w)$ ist schiefsymmetrisch.

Abgabe am Dienstag, 13. Juni bis 12 Uhr beim Assistenten.