Exercise 1 (4 points)

Let (M, g) and (\tilde{M}, \tilde{g}) be Riemannian manifolds, and let $F : M \to \tilde{M}$ be an isometry. Denote $\nabla, \tilde{\nabla}$ as the Levi-Civita connections, and R, \tilde{R} as the curvature tensors of g and \tilde{g} , respectively. Show that:

- (a) If $\tilde{X}, \tilde{Y} \in \Gamma(T\tilde{M})$ are *F*-related to $X, Y \in \Gamma(TM)$ (i.e., for all $p \in M$, $DF_p(X_p) = \tilde{X}_{F(p)}$ and $DF_p(Y_p) = \tilde{Y}_{F(p)}$), then $\tilde{\nabla}_{\tilde{X}}\tilde{Y}$ is *F*-related to $\nabla_X Y$.
- (b) If $v, w, z \in T_p M$, $\tilde{v} = DF_p(v)$, $\tilde{w} = DF_p(w)$, and $\tilde{z} = DF_p(z)$, then $DF_p(R(v, w)z) = \tilde{R}(\tilde{v}, \tilde{w})\tilde{z}$.

Exercise 2 (4 points)

Let (M, g) be a Riemannian manifold, $\pi : TM \to M$ be the tangent bundle, and $\phi: U \to V$ be a chart. ϕ induces a local trivialization of TM over U, i.e., $\pi^{-1}(U) = U \times \mathbb{R}^m$, where $E_i = \frac{\partial}{\partial x^i}$, $i = 1, \ldots, m$, is a basis field of TM on U. Let ω_i^j be the connection 1-forms and Ω_i^j be the curvature 2-forms defined by

$$\nabla_X E_i =: \sum_{i=1}^m \omega_i^j(X) E_j \text{ und } R(X, Y) E_i =: \sum_{i=1}^m \Omega_i^j(X, Y) E_j \quad \forall X, Y \in \Gamma(TU).$$

Show that

$$\Omega_i^j = d\omega_i^j - \sum_{k=1}^m \omega_i^k \wedge \omega_k^j.$$

Exercise 3 (4 points)

A vector field X on a Riemannian manifold (M, g) is called a Killing vector field if the (local) flow Φ_t^X of X is isometric for every $t \in \mathbb{R}$. Show that:

- (a) A vector field X(x) = (x, V(x)) on \mathbb{R}^n with the Euclidean metric $\langle \cdot, \cdot \rangle_{eucl}$ is a Killing vector field if and only if there exists a skew-symmetric matrix $A \in \mathcal{M}(n, \mathbb{R})$ and a vector $v \in \mathbb{R}^n$ such that V(x) = Ax + v.
- (b) A vector field X on the Riemannian manifold (M,g) is a Killing vector field if and only if

$$g(\nabla_v X|_p, w) + g(v, \nabla_w X|_p) = 0 \ \forall p \in M, \ \forall v, w \in T_p M$$

i.e., the bilinear form $(v, w) \mapsto g(\nabla_v X|_p, w)$ is skew-symmetric.

Abgabe am Dienstag, 13. Juni bis 12 Uhr beim Assistenten.