Aufgabe 1 (4 Punkte)

Sei V ein Vektorraum. Die Kontraktion $c_{ij}: \bigotimes_{k=1}^{s} V^* \otimes \bigotimes_{l=1}^{r} V \to \bigotimes_{k=1}^{s-1} V^* \otimes \bigotimes_{l=1}^{r-1} V$ ist die lineare Abbildung, welche eindeutig durch die Zuordnung

$$c_{ij}(v_1 \otimes \cdots \otimes v_r \otimes v^1 \otimes \cdots \otimes v^s) := v^j(v_i)(v_1 \otimes \cdots \otimes \hat{v}_i \otimes \cdots \otimes v_r \otimes v^1 \otimes \cdots \otimes \hat{v}^j \otimes \cdots \otimes v^s)$$

auf den Monomen definiert ist. Sei M eine Mannigfaltigkeit. Zeigen Sie:

- (a) Ist ∇ eine linearer Zusammenhang auf TM, so existiert zu $r, s \geq 0$ genau ein linearer Zusammenhang $\nabla^{r,s}$ auf T_s^rM , so dass die folgenden Eigenschaften gelten:
 - (i) $\forall S \in \Gamma(T_s^r M), \forall X \in \Gamma(TM)$ und jede Kontraktion c gilt $\nabla_X^{r-1,s-1}(c(S)) = c(\nabla_X^{r,s} S).$
 - (ii) $\forall S \in \Gamma(T_s^r M), T \in \Gamma(T_q^p M) \text{ und } \forall X \in \Gamma(TM) \text{ gilt}$ $\nabla_X^{r+p,s+q}(S \otimes T) = (\nabla_X^{r,s} S) \otimes T + S \otimes (\nabla_X^{p,q} T).$
- (b) Sei (M,g) eine Riemannsche Mannigfaltigkeit und ∇ sei ein torsionsfreier Zusammenhang. Zeigen Sie: ∇ is genau dann der Levi-Civita Zusammenhang, wenn $\nabla_w^{0,2}g=0$.

Aufgabe 2 (4 Punkte)

Sei g eine biinvariante Riemannsche Metrik auf der Liegruppe G (vgl. mit Blatt 3, Aufgabe 3) und ∇ der zugehörige Levi-Civita-Zusammenhang. Zeigen Sie:

- (a) Jedes linksinvariante Vektorfeld ist ein Killing-Vektorfeld. (Blatt 6, Aufgabe 3)
- (b) Ist X ein linksinvariantes Vektorfeld, so gilt $\nabla_X X = 0$ und jede Flußlinie von X ist eine Geodätische.
- (c) Sind X und Y linksinvariante Vektorfelder, so gilt $\nabla_X Y = \frac{1}{2}[X, Y]$. Hinweise: Benutzen Sie die Torsionsfreiheit des Levi-Civita-Zusammenhangs.

Aufgabe 3 (4 Punkte)

Sei (M, g) eine Riemannsche Mannigfaltigkeit und $\phi: U \to V$ eine Karte. Es seien ${}^{\phi}g_{ij}$ die Koeffizienten der lokalen Darstellung von g. Es sei $p \in U$ mit $\phi(p) = 0$ und es gelte ${}^{\phi}g_{ij}(p) = \delta_{ij}$. Zeigen Sie:

- (a) $d\left({}^{\phi}g_{ij}\right)|_{p}=0$ genau dann, wenn ${}^{\phi}\Gamma_{ij}^{k}(p)=0$ für alle $i,j,k=1,\ldots,m$.
- (b) Es existiert ein Diffeomorphimsu $\varphi: V \subset \mathbb{R}^m \to \tilde{V}$, so dass für $\psi = \varphi \circ \phi$ gilt: ${}^{\psi}\Gamma^k_{ij} = 0 \ \forall i, j, k = 1, \ldots, m$.

Hinweise: Betrachten Sie ein Polynom der Form $\varphi(x) = \sum_{k=1}^{m} (x^k + C_{ij}^k x_i x_j) e_k$.

Abgabe am Dienstag, 20. Juni bis 12 Uhr beim Assistenten.