Exercise 1 (4 points)

Let (M, g) be a Riemannian manifold, and let $f \in C^{\infty}(M)$. $\nabla^2 f \in \Gamma(T_2^0 M)$ denotes the Hessian form of f. f is called convex if, for every $p \in M$, the symmetric bilinear form $\nabla^2 f | p$ is positive semidefinite. A subset $U \subset M$ is called totally convex if every geodesic $c : [a, b] \to M$ with $c(a), c(b) \in U$ lies entirely within U. Show that:

- (a) If $f \in C^{\infty}(M)$ and $c : (a, b) \to M$ is a geodesic, then $\nabla^2 f | c(t)(c'(t), c'(t)) = (f \circ c)''(t)$.
- (b) f is convex if and only if $f \circ c : (a, b) \to \mathbb{R}$ is convex for every geodesic $c : (a, b) \to M$.
- (c) If f is convex, then for every $t \in \mathbb{R}$, the set $f^{-1}((-\infty, t))$ is totally convex.

Exercise 2 (4 points)

Let $\mathbb{S}^n \subset \mathbb{R}^n$ be the unit sphere with the induced metric. Show that:

- (a) For every $p \in \mathbb{S}^n$, \exp_p is defined on the entire $T\mathbb{S}_p^n$ and $\exp_p |B\pi(0_p) : B_{\pi}(0_p) \to \mathbb{S}^n \setminus -p$ is a diffeomorphism.
- (b) For $q \in \mathbb{S}^n \setminus -p$, compute the Hessian form of

$$Q(x) := \langle (\exp_p |_{B_{\pi}(0_p)})^{-1}(x), (\exp_p |_{B_{\pi}(0_p)})^{-1}(x) \rangle.$$

For which q is the Hessian form $\nabla^2 Q | q$ positive definite, and for which q is it positive semidefinite? *Hint: First show that* $Q(x) = (\arccos\langle x, p \rangle)^2$. *Then compute the Hessian form using Exercise 1 (a). Consider the radial and orthogonal components in* $T_x \mathbb{S}^n$ with respect to $c'_v(1)$, where $v = (\exp_p | B_\pi(0_p))^{-1}(x)$.

Exercise 3 (4 points) Let (M, g) be a connected Riemannian manifold.

- (a) Show that (M, g) is complete if and only if the following holds: For any subset $A \subset M$, A is compact if and only if A is closed and bounded with respect to d_g .
- (b) Let g and \tilde{g} be Riemannian metrics on M. Show: If $\tilde{g}(v,v) \geq g(v,v)$ for all $v \in TM$ and (M,g) is complete, then (M,\tilde{g}) is also complete.
- (c) Let $M \subset \mathbb{R}^n$ be an embedded submanifold with the inclusion map $\iota : M \to \mathbb{R}^n$. Let $g = \iota^* \langle \cdot, \cdot \rangle$ be the Riemannian metric induced by the Euclidean metric. Show: If M is closed as a subset of \mathbb{R}^n , then (M, g) is complete.

Abgabe am Dienstag, 04. Juli bis 12 Uhr beim Assistenten.