Exercise 1 (4 points) *Existence of convex neighborhoods*.

Let (M, g) be a Riemannian manifold, $p \in M$, and let $U \subset T_p M$ be open such that $\exp_p|_U : U \to V = \exp_p(U)$ is a diffeomorphism. Let $Q : V \to \mathbb{R}$ be defined by

$$Q(x) = \langle (\exp_p |_U)^{-1}(x), (\exp_p |U)^{-1}(x) \rangle.$$

Show that:

- (a) For $v \in T_p M$, we have $\nabla^2 Q(v, v) = 2\langle v, v \rangle$.
- (b) There exists a neighborhood $V' \subset V$ of p such that $Q|V': V' \to \mathbb{R}$ is convex.
- (c) There exists a neighborhood W of p such that for all $x, y \in W$, there is a unique shortest path between x and y in M, and it lies in W.

Hint: Exercise 1, Sheet 9.

Exercise 2 (4 points)

(a) Let $(V, \langle \cdot, \cdot \rangle)$ be an *m*-dimensional Euclidean vector space, and let $b : V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form. Let $S^{m-1} = v \in V : |v| = 1$ be the unit sphere in V. Show that:

$$\frac{1}{\operatorname{vol}_{m-1}(S^{m-1})} \int_{S^{m-1}} b(v, v) d\operatorname{vol}^{S^{m-1}} = \frac{1}{m} \operatorname{Tr}(b)$$

where $d \operatorname{vol}^{S^{m-1}}$ is the volume element on S^{m-1} induced by $(V, \langle \cdot, \cdot \rangle)$.

(b) Let (M, g) be an *m*-dimensional Riemannian manifold, $p \in M$, and $v \in T_pM$ with |v| = 1. Show that

$$\operatorname{ric}(v,v) = \frac{m-1}{\operatorname{vol}_{m-2}(S^{m-2})} \int_{S} K(\operatorname{Span}(u,v)) d\operatorname{vol}^{S}(u)$$

where $S = u \in T_p M$: $\langle u, v \rangle = 0, |u| = 1$ is the unit sphere in the orthogonal complement of $v \in T_p M$.

Exercise 3 (4 points)

Let G be a Lie group equipped with a bi-invariant metric $\langle \cdot, \cdot \rangle$. Show that:

(a) For $u, v, w, z \in T_eG$, we have:

$$R(u,v)w = -\frac{1}{4}\left[[u,v],w\right] \quad \text{and} \quad \langle R(u,v)w,z\rangle = \frac{1}{4}\langle [u,v],[z,w]\rangle.$$

If u and v are orthonormal, then $K(\text{Span}u, v) = \frac{1}{4}|[u, v]|^2$.

(b) SO(3) equipped with the bi-invariant metric from Exercise 3, Sheet 3, has constant sectional curvature. Calculate this constant.

Abgabe am Dienstag, 11. Juli bis 12 Uhr beim Assistenten.