Exercise 1 (4 points) Existence of convex neighborhoods.
Let (M, g) be a Riemannian manifold, $p \in M$, and let $U \subset T_{p} M$ be open such that $\left.\exp _{p}\right|_{U}: U \rightarrow V=\exp _{p}(U)$ is a diffeomorphism. Let $Q: V \rightarrow \mathbb{R}$ be defined by

$$
Q(x)=\left\langle\left(\left.\exp _{p}\right|_{U}\right)^{-1}(x),\left(\exp _{p} \mid U\right)^{-1}(x)\right\rangle
$$

Show that:
(a) For $v \in T_{p} M$, we have $\nabla^{2} Q(v, v)=2\langle v, v\rangle$.
(b) There exists a neighborhood $V^{\prime} \subset V$ of p such that $Q \mid V^{\prime}: V^{\prime} \rightarrow \mathbb{R}$ is convex.
(c) There exists a neighborhood W of p such that for all $x, y \in W$, there is a unique shortest path between x and y in M, and it lies in W.
Hint: Exercise 1, Sheet 9.
Exercise 2 (4 points)
(a) Let $(V,\langle\cdot, \cdot\rangle)$ be an m-dimensional Euclidean vector space, and let $b: V \times V \rightarrow$ \mathbb{R} be a symmetric bilinear form. Let $S^{m-1}=v \in V:|v|=1$ be the unit sphere in V. Show that:

$$
\frac{1}{\operatorname{vol}_{m-1}\left(S^{m-1}\right)} \int_{S^{m-1}} b(v, v) d \mathrm{vol}^{S^{m-1}}=\frac{1}{m} \operatorname{Tr}(b)
$$

where $d \mathrm{vol}^{S^{m-1}}$ is the volume element on S^{m-1} induced by $(V,\langle\cdot, \cdot\rangle)$.
(b) Let (M, g) be an m-dimensional Riemannian manifold, $p \in M$, and $v \in T_{p} M$ with $|v|=1$. Show that

$$
\operatorname{ric}(v, v)=\frac{m-1}{\operatorname{vol}_{m-2}\left(S^{m-2}\right)} \int_{S} K(\operatorname{Span}(u, v)) d \operatorname{vol}^{S}(u)
$$

where $S=u \in T_{p} M:\langle u, v\rangle=0,|u|=1$ is the unit sphere in the orthogonal complement of $v \in T_{p} M$.

Exercise 3 (4 points)
Let G be a Lie group equipped with a bi-invariant metric $\langle\cdot, \cdot\rangle$. Show that:
(a) For $u, v, w, z \in T_{e} G$, we have:

$$
R(u, v) w=-\frac{1}{4}[[u, v], w] \quad \text { and } \quad\langle R(u, v) w, z\rangle=\frac{1}{4}\langle[u, v],[z, w]\rangle .
$$

If u and v are orthonormal, then $K(\operatorname{Span} u, v)=\frac{1}{4}|[u, v]|^{2}$.
(b) $S O(3)$ equipped with the bi-invariant metric from Exercise 3, Sheet 3, has constant sectional curvature. Calculate this constant.

Abgabe am Dienstag, 11. Juli bis 12 Uhr beim Assistenten.

