Aufgabe 1 (4 Punkte)

Seien (M, g) and (N, h) vollstaendige, zusammenhängende Riemannsche Mannigfaltigkeiten und sei N zusätzlich einfach zusammenhängend. Zeigen Sie:

Ist $f: M \to N$ eine glatte Abbildung, so dass $Df_p: (T_pM, g_p) \to (T_{f(p)}N, h_{f(p)})$ für alle $p \in M$ eine Isometrie ist, dann ist f eine Isometrie.

Aufgabe 2 (4 Punkte)

Sei (M, g) eine kompakte zusammenhängende Riemannsche Mannigfaltigkeit und d^g die Distanzfunktion bzg. g.

- (a) Sei (M, d) ein kompakter metrischer Raum und $V \subset M \times M$ offen mit $\Delta \subset V$, wobei $\Delta = \{(x, x) \in M \times M\}$. Dann existiert ein $\epsilon > 0$, so dass $\{(p, q) \in M \times M : d^g(p, q) < \epsilon\}$.
- (b) Es existiert ein $\epsilon > 0$, so dass für all $p, q \in M$ mit $d^g(p,q) < \epsilon$ genau eine Geodätische $c_{p,q} : [0,1] \to M$ mit $c_{p,q}(0) = p$ und $c_{p,q}(1) = q$ und $L^g(c) < \epsilon$ existiert. Außerdem hängt $c'_{p,q}(0) \in TM$ glatt von $(p,q) \in M \times M$ ab.
- (c) Für alle $K \subset M$ kompakt existiert ein $\epsilon > 0$, so dass für all $p \in K$ die Abbildung $\exp_p|_{B_{\epsilon}(0_p)}$ ein Diffeomorphismus ist.
- (d) Ist N eine weitere Mannigfaltigkeit und $f, h \in C^{\infty}(N, M)$ mit $d^g(f(x), h(x)) < \epsilon$ für alle $x \in N$ mit $\epsilon > 0$ aus (b), dann sind f und h homotop.

Aufgabe 3 (4 Punkte)

Berechnen Sie die Krümmung von \mathbb{H}_r^n mit Hilfe von Jacobi feldern.

Hinweis: Benutzen Sie, dass \mathbb{H}_r^n ein Raum freier Beweglichkeit ist.

Freiwillig Abgabe beim Dozenten.