Problem 1 (4 Punkte)
(a) Let (X, d) be an ∞-pseudo-metric space. Show that the relation $x \sim y \Leftrightarrow$ $d(x, y)<\infty$ is an equivalence relation, and the restriction of d to each equivalence class is a (finite) pseudo-metric.
(b) Let (X, d) be a pseudo-metric space. Show that the relation $x R y \Leftrightarrow d(x, y)=0$ is an equivalence relation, and $\hat{d}([x],[y])=d(x, y)$ is metric on \hat{X} / R.

Prolem 2 (4 Punkte)
(a) The diameter of a set S in a metric space X is defined by $\operatorname{diam}(S)=\sup _{x, y}|x y|$. Prove that the metric space X is complete if and only if it possesses the following property. If $\left\{X_{n}\right\}$ is sequence of closed subsets of X such that $X_{n+1} \subset$ X_{n} for all n, and $\operatorname{diam}\left(X_{n}\right) \rightarrow 0$ as $n \rightarrow 0$, then the sets X_{n} have a common point.
(b) Prove: a metric space is compact if and only if every sequence has converging subsequence.

Problem 3 (4 Punkte) Let X be a metric space. Prove that
(a) 1. If X is compact, then $\operatorname{diam}_{X}<\infty$.
2. There exist two points $x, y \in X$ such that $|x y|=\operatorname{diam}_{X}$.
(b) Define $\operatorname{rad}_{X}=\inf _{x \in X} \sup _{y \in X}|x y|$. Show that $\operatorname{rad}_{X}=\inf \{r>0: X \subset$ $B_{r}(x)$ for $\left.x \in X\right\}$.
(c) For two subsets $A, B \subset X$ define $d(A, B)=\inf \{|x y|: x \in A, y \in B\}$. Show that there exist $x \in A$ and $y \in B$ such that $|x y|=d(A, B)$ if A, B are compact. Does d satisfy the triangle inequality?

Problem 4 (Bonus) (2 Punkte)
Let X be a complete metric space, $0<\lambda<1$ and $f: X \rightarrow X$ a map such that $|f(x) f(y)| \leq \lambda|x y|$ for all $x, y \in X$. Show that there exists a point $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$.

Abgabe am Mittwoch, 1. November bis 12 Uhr beim Assistenten.

