Übung zur Geometrie der metrischen Räume Dr. Christian Ketterer

Wintersemester 2023/24, Blatt 4
6. November 2023

Problem 1 (4 Punkte)
Let (X, d) be a metric space. We consider a continuous paths $\gamma:[a, b] \rightarrow X$. Recall that a partition Z is a tuple $\left(t_{0}, \ldots, t_{N}\right)$ with $t_{0}=a \leq t_{1} \leq \cdots \leq t_{N}=b \in[a, b]$. We define $|Z|=\max _{i=1, \ldots, N}\left|t_{i}-t_{i-1}\right|$ and $L^{Z}(\gamma)=\sum_{i=1}^{\bar{N}} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right.$. The induced length of γ is $L_{d}(\gamma)=\sup _{Z \text { partition }} L^{Z}(\gamma)$. Show that

$$
L(\gamma)=\lim _{i \rightarrow \infty} L^{Z_{i}}(\gamma)
$$

where $\left\{Z_{i}\right\}_{i \in \mathbb{N}}$ are partitions such that $\left|Z_{i}\right| \downarrow 0$.
Problem 2 (4 Punkte)
Let $(V,|\cdot|)$ be a finite dimensional normed vector space and $\gamma:[a, b] \rightarrow V$ a differentiable path. Let (V, d) be the metric space associated to $(V,|\cdot|)$, i.e. $d(\cdot, \cdot)=$ $|\cdot-\cdot|$. Let $L_{d}(\gamma)$ be the induced lenght. Show that

$$
L_{d}(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

Problem 3 (4 Punkte)
Consider $\mathbb{S}^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ with the induced Euclidean metric d_{2}. Show that
(a) $\left(\mathbb{S}^{1}, d_{2}\right)$ is not a length space.
(b) The induced intrinsic distance \hat{d}_{2} is given by $\hat{d}_{2}(x, y)=\arccos \langle x, y\rangle_{2}$ where $\langle x, y\rangle_{2}$ is the Euclidean inner product.

Problem 4 (Bonus) (1 Punkte)
Show: If a length space (X, d) is homeomorphic to a segment, then it is isometric to a segment.

Abgabe am Mittwoch, 15. November bis 12 Uhr beim Assistenten.

