Übung zur Geometrie der metrischen Räume
Dr. Christian Ketterer

Problem 1 (4 Punkte)

Let (X, d) be a metric space. Prove the following statements.
(a) If d is strictly intrinsic, then for all $x, y \in X$ there exists an α-midpoint $z \in X$ for all $\alpha \in(0,1)$, i.e. $d(x, z)=\alpha d(x, y)$ and $d(z, y)=(1-\alpha) d(x, y)$.
(b) Assume (X, d) is complete. If for all $x, y \in X$ there exists a ϵ-midpoint $z \in X$ for all $\epsilon>0$, then d is intrinsic, i.e. a length metric.

Problem 2 (4 Punkte)

A complete metric space (X, d) is a length space if and only if given $\epsilon>0$ and two points $x, y \in X$, there exists a finit sequence of points $x=x_{1}, \ldots, x_{k}=y, k \in \mathbb{N}$, such that $d\left(x_{i}, x_{i+1}\right) \leq \epsilon$ for all $i \in\{1, \ldots, k-1\}$ and $\sum_{i=1}^{k-1} d\left(x_{i}, x_{i+1}\right) \leq d(x, y)+\epsilon$. If (X, d) is strictly intrinsic, the last inequality becomes $\sum_{i=1}^{k-1} d\left(x_{i}, x_{i+1}\right) \leq d(x, y)$.

Problem 3 (4 Punkte)
(a) Let X be a length space, and Y a metric space. Let $f: X \rightarrow Y$ be a locally Lipschitz map with Lipschitz constant $C>0$. Prove that f is Lipschitz with the same Lipschitz constant.
(b) Let (X, d) be a length space and A a connected open subset of X. Then d induces on A a finite-valued intrinsic metric $d_{A}: A \times A \rightarrow[0, \infty)$. Moreover, every point $p \in A$ has a neighborhood $U \subset A$ such that for any two points $p, q \in U$ we have $d(p, q)=d_{A}(p, q)$.

Problem 4 (Bonus) (1 Punkte)
Prove that the completion of a length space is a length space.
Abgabe am Mittwoch, 22. November bis 12 Uhr beim Assistenten.

