Übung zur Geometrie der metrischen Räume
Dr. Christian Ketterer

Problem 1 (4 Punkte)
Consider the region $E=\left\{(x, y): 0 \leq y \leq e^{-x}, x \geq 0\right\}$ equipped with the induced Euclidean metric. This is the region enclosed between the graph of $e^{-x}, x \geq 0$, the x-axis, and the segment $\{(0, y): y \in[0,1]\}$. We glue E together by identifying $(x, 0)$ with $\left(x+1, e^{-(x+1)}\right)$ for all $x \geq 0$. Show that the diameter of the resulting glued space is finite.
Hint: Consider paths that connect $\left(n, e^{-n}\right)$ with $(n, 0)$. Use the following estimate $\sum_{n=1}^{\infty} e^{-n} \leq \int_{0}^{\infty} e^{-x} d x=1$.

Problem 2 (4 Punkte)
One says a group G acts on a set X if there exists a map $\phi: G \times X \rightarrow X$, $(g, x) \rightarrow \phi(g, x)=: g(x)$ such that
(i) $g h(x)=g(h(x))$, and
(ii) $e(x)=x$
for every $g, h \in G, x \in X$. Here e is the unit of G.
Now let (X, d) be a length space and $G \subset \operatorname{Iso}(X)$ where $\operatorname{Iso}(X)$ is the isometry group of (X, d). We introduce an equivalence relation R_{G} via $x R_{G} y$ if and only if $\exists g \in G$ such that $x=g(y)$. We define $\bar{d}(\bar{x}, \bar{y}):=\inf \{d(x, y): x \in \bar{x}, y \in \bar{y}\}$ for $\bar{x}, \bar{y} \in X / G$. Recall that the equivalence class \bar{x} is given by the orbit $\{g(x) \in X: g \in G\}$.
Show that \bar{d} coincides with $d_{R_{G}}$.
Problem 3 (4 Punkte)
Let (X, d) be a length space and let $C(X)$ be the metric cone over X. Let $\bar{\gamma}:[a, b] \rightarrow$ $C(X)$ be a curve in the cone given by $\bar{\gamma}(t)=(r(t), \gamma(t))$ where γ is a curve in X. Prove that

$$
L(\bar{\gamma}) \geq \sqrt{r(a)^{2}+r(b)^{2}-2 r(a) r(b) \cos L(\gamma)}
$$

if $L(\gamma) \leq \pi$, and

$$
L(\bar{\gamma}) \geq r(a)+r(b)
$$

if $L(\gamma) \geq \pi$.
Bonus Problem (2 Punkte)
Use ϵ-midpoints to show that the direct product of two length spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ is a again a length space.

Abgabe am Dezember, 06. November bis 12 Uhr beim Assistenten.

