Problem 1 (4 Punkte)

Consider the region $E = \{(x, y) : 0 \le y \le e^{-x}, x \ge 0\}$ equipped with the induced Euclidean metric. This is the region enclosed between the graph of $e^{-x}, x \ge 0$, the x-axis, and the segment $\{(0, y) : y \in [0, 1]\}$. We glue E together by identifying (x, 0) with $(x + 1, e^{-(x+1)})$ for all $x \ge 0$. Show that the diameter of the resulting glued space is finite.

Hint: Consider paths that connect (n, e^{-n}) with (n, 0). Use the following estimate $\sum_{n=1}^{\infty} e^{-n} \leq \int_{0}^{\infty} e^{-x} dx = 1.$

Problem 2 (4 Punkte)

One says a group G acts on a set X if there exists a map $\phi : G \times X \to X$, $(g, x) \to \phi(g, x) =: g(x)$ such that

(i) gh(x) = g(h(x)), and

(ii)
$$e(x) = x$$

for every $g, h \in G, x \in X$. Here e is the unit of G.

Now let (X, d) be a length space and $G \subset \text{Iso}(X)$ where Iso(X) is the isometry group of (X, d). We introduce an equivalence relation R_G via xR_Gy if and only if $\exists g \in G$ such that x = g(y). We define $\overline{d}(\overline{x}, \overline{y}) := \inf\{d(x, y) : x \in \overline{x}, y \in \overline{y}\}$ for $\overline{x}, \overline{y} \in X/G$. Recall that the equivalence class \overline{x} is given by the orbit $\{g(x) \in X : g \in G\}$. Show that \overline{d} coincides with d_{R_G} .

Problem 3 (4 Punkte)

Let (X, d) be a length space and let C(X) be the metric cone over X. Let $\bar{\gamma} : [a, b] \to C(X)$ be a curve in the cone given by $\bar{\gamma}(t) = (r(t), \gamma(t))$ where γ is a curve in X. Prove that

$$L(\bar{\gamma}) \ge \sqrt{r(a)^2 + r(b)^2 - 2r(a)r(b)\cos L(\gamma)}$$

if $L(\gamma) \leq \pi$, and

$$L(\bar{\gamma}) \ge r(a) + r(b)$$

if $L(\gamma) \ge \pi$.

Bonus Problem (2 Punkte)

Use ϵ -midpoints to show that the direct product of two length spaces (X, d_X) and (Y, d_Y) is a again a length space.

Abgabe am Dezember, 06. November bis 12 Uhr beim Assistenten.