Übung zur Geometrie der metrischen Räume
Dr. Christian Ketterer

Wintersemester 2023/24, Blatt 9
13. Dezember 2023

Problem 1 (4 Punkte)

Consider two length spaces X_{1} and X_{2} of nonpositive (nonnegative) curvature. Show that the direct metric product $X_{1} \times X_{2}$ is a length space with nonpositive (nonnegative) curvature.
Hint: Consider a triangle Δ in $X_{1} \times X_{2}$, and let Δ_{1} and Δ_{2} be the projections of Δ to X_{1} and to X_{2}. Choose comparison triangles for Δ_{1} and Δ_{2} in \mathbb{R}^{2} and construct a comparison triangle for Δ contained in a plane in $\mathbb{R}^{2} \times \mathbb{R}^{2}$.

Problem 2 (4 Punkte)
Let $F \in C^{2}([0, L])$ and let $F^{\prime \prime}=f$. A 1-Lipschitz function $g:[0, L] \rightarrow \mathbb{R}$ is called f-convex if $g-F$ is concave. Prove that

1. g is continuous.
2. g has right and left derivatives, and the left derivative is not greater than the right one.
3. The set of points where g is not differentiable is finite or countable.
4. The derivative of g is continuous on the set where it is defined.

Bonus Problem (6 Punkte)

Show that the following property is implied by but not equivalent to the triangle condition for nonpositive curvature. For any triangle $\Delta a b c$, and any midpoints d and e of its sides $[a b]$ and $[b c]$ the inequality $2|d e| \leq|a c|$ holds.
Hint: Consider a normed vector space. Abgabe am Dezember, 21. Dezember bis 12

Uhr beim Assistenten.

