Problem 1 (4 Punkte)
Let X be a metric space and let $\mathfrak{M}(X)$ the collection of closed subsets in X. Consider a sequence $A_{i} \in \mathfrak{M}(X)$ converging to a set $A \in \mathfrak{M}(X)$ w.r.t. the Hausdorff distance in X (in short: $A_{i} \xrightarrow{H} A$ in X, or $A_{i} \xrightarrow{H} A$ in $\mathfrak{M}(X)$). Prove that
(a) A is the set of limits of all converging sequences $\left\{a_{n}\right\}$ in X such that $a_{n} \in A_{n}$ for all n.
(b) $A=\bigcap_{n=1}^{\infty} \overline{\bigcup_{m=n}^{\infty} A_{m}}$.
(c) Assume X is compact. If $A_{i+1} \subset A_{i}$ for all $i \in \mathbb{N}$, then $\left\{A_{i}\right\}$ converges in $\mathfrak{M}(X)$ to the intersections $\bigcap_{i \in \mathbb{N}} A_{i}$. If $A_{i+1} \supset A_{i}$ for all $i \in \mathbb{N}$, then $\left\{A_{i}\right\}_{i \in \mathbb{N}}$ converges in $\mathfrak{M}(X)$ to the closure of the union $\bigcup_{i \in \mathbb{N}} X_{i}$.
(d) Let $A_{i} \xrightarrow{H} A$ in $\mathfrak{M}\left(\mathbb{R}^{n}\right)$ and all sets A_{i} are convex. Prove that A is convex.

Problem 2 (4 Punkte)

(a) Prove that $d_{G H}(X, Y)<\infty$ if X and Y are bounded metric spaces.
(b) Let X and Y be metric spaces and $\operatorname{diam} X<\infty$. Prove that $d_{G H}(X, Y) \geq$ $\frac{1}{2}|\operatorname{diam} X-\operatorname{diam} Y|$.
(c) Let P be a metric space consisting of one point. Prove that $d_{G H}(X, P)=$ $\operatorname{diam}(X) / 2$ for any metric space X.

Problem 3 (4 Punkte)
Let X, Y be two metric spaces. Recall that the dilatation of a Lipschitz map f : $X \rightarrow Y$ is defined by

$$
\operatorname{dil} f=\sup _{x, x^{\prime} \in X} \frac{d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)}{d_{X}\left(x, x^{\prime}\right)}
$$

A homeomorphism $f: X \rightarrow Y$ is called bi-Lipschitz if both f and f^{-1} are Lipschitz maps.
The Lipschitz distance d_{L} between two metric spaces X and Y is defined by

$$
d_{L}(X, Y)=\inf _{f: X \rightarrow Y} \log \left(\max \left\{\operatorname{dil} f, \operatorname{dil} f^{-1}\right\}\right)
$$

where the infimum is taken over all bi-Lipschitz homeomorphisms $f: X \rightarrow Y$. If there is no bi-Lipschitz homeomorphism from X to Y, then one sets $d_{L}(X, Y)=\infty$.
(a) Show that d_{L} is nonnegative, symmetric and satisfies the triangle inequality. Moreover, for compact metric spaces X and $Y, d_{L}(X, Y)=0$ if and only if X is isometric to Y.
(b) Show that convergence of compact metric spaces w.r.t. d_{L} implies uniform convergence.
(c) Prove that convergence w.r.t. d_{L} is equivalent to uniform convergence within the class of finite metric spaces.

Abgabe am Donnerstag, 18. Januar bis 12 Uhr beim Assistenten.

