Übung zur Geometrie der metrischen Räume
Dr. Christian Ketterer

Problem 1 (4 Punkte)
Let X, Y and Z be metric spaces, and let \Re_{1} be a correspondence between X and Y, and \Re_{2} be a correspondence between Y and Z. A composition of \Re_{1} and \Re_{2}, denoted as $\Re_{1} \circ \mathfrak{R}_{2}$, is the set of all $(x, z) \in X \times Z$ for which there is $y \in Y$ such that $(x, y) \in \mathfrak{R}_{1}$ and $(y, z) \in \mathfrak{R}_{2}$.
(a) Prove that $\Re_{1} \circ \Re_{2}$ is a correspondence between X and Z.
(b) Prove that dist $\mathfrak{R}_{1} \circ \mathfrak{R}_{2} \leq \operatorname{dist} \mathfrak{R}_{1}+\mathfrak{R}_{2}$.
(c) Use (b) to give an alternative proof of the triangle inequality for the GromovHausdorff distance.

Problem 2 (4 Punkte)
Prove the following generalization of Theorem 5.19 from the lecture: if X and Y are metric spaces with $d_{G H}(X, Y)=0, X$ is compact and Y is complete, then X and Y are isometric.

Problem 3 (4 Punkte)
Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of metric spaces, and let X be a finite metric space of cardinality $N, X=\left\{x_{i}: 1 \leq i \leq N\right\}$.
(a) Assume $X_{n} \xrightarrow{G H} X$. Prove that, for all n sufficiently large, the cardinality of X_{n} is at least N.
(b) Prove that $X_{n} \xrightarrow{G H} X$ if and only if the following holds. For all sufficiently large n, X_{n} can be split into a disjoint union of N nonempty sets $X_{n, 1}, X_{n, 2}, \ldots, X_{n, N}$ so that for all i, j we have

$$
\operatorname{diam} X_{n, i} \rightarrow 0, \quad d\left(X_{n, i}, X_{n, j}\right) \rightarrow\left|x_{i} x_{j}\right| \quad \text { as } n \rightarrow \infty
$$

Bonus Problem (4 Punkte)
Let N be a fixed natural number. Prove that the Lipschitz, uniform and GromovHausdorff convergence determine the same topology on the class of finite metric spaces of cardinality N.

Abgabe am Donnerstag, 25. Januar bis 12 Uhr beim Assistenten.

