Problem 1 (4 Punkte)

Let X, Y and Z be metric spaces, and let \mathfrak{R}_1 be a correspondence between X and Y, and \mathfrak{R}_2 be a correspondence between Y and Z. A composition of \mathfrak{R}_1 and \mathfrak{R}_2 , denoted as $\mathfrak{R}_1 \circ \mathfrak{R}_2$, is the set of all $(x, z) \in X \times Z$ for which there is $y \in Y$ such that $(x, y) \in \mathfrak{R}_1$ and $(y, z) \in \mathfrak{R}_2$.

- (a) Prove that $\mathfrak{R}_1 \circ \mathfrak{R}_2$ is a correspondence between X and Z.
- (b) Prove that dist $\mathfrak{R}_1 \circ \mathfrak{R}_2 \leq \operatorname{dist} \mathfrak{R}_1 + \mathfrak{R}_2$.
- (c) Use (b) to give an alternative proof of the triangle inequality for the Gromov-Hausdorff distance.

Problem 2 (4 Punkte)

Prove the following generalization of Theorem 5.19 from the lecture: if X and Y are metric spaces with $d_{GH}(X,Y) = 0$, X is compact and Y is complete, then X and Y are isometric.

Problem 3 (4 Punkte)

Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of metric spaces, and let X be a finite metric space of cardinality $N, X = \{x_i : 1 \le i \le N\}$.

- (a) Assume $X_n \xrightarrow{GH} X$. Prove that, for all *n* sufficiently large, the cardinality of X_n is at least *N*.
- (b) Prove that $X_n \xrightarrow{GH} X$ if and only if the following holds. For all sufficiently large n, X_n can be split into a disjoint union of N nonempty sets $X_{n,1}, X_{n,2}, \ldots, X_{n,N}$ so that for all i, j we have

diam
$$X_{n,i} \to 0$$
, $d(X_{n,i}, X_{n,j}) \to |x_i x_j|$ as $n \to \infty$.

Bonus Problem (4 Punkte)

Let N be a fixed natural number. Prove that the Lipschitz, uniform and Gromov-Hausdorff convergence determine the same topology on the class of finite metric spaces of cardinality N.

Abgabe am Donnerstag, 25. Januar bis 12 Uhr beim Assistenten.