Problem 1 (8 Punkte)

Let X_{n}, X be compact metric spaces. Prove the following statements.
(a) $\left(X_{n}, o_{n}\right) \xrightarrow{G H}(X, o)$ implies $X_{n} \xrightarrow{G H} X$.
(b) If $X_{n} \xrightarrow{G H} X$ and $o \in X$, then one can choose $o_{n} \in X_{n}$ such that $\left(X_{n}, o_{n}\right) \xrightarrow{G H}$ (X, o).
(c) Consider pointed metric spaces $\left(X_{n}, o_{n}\right), n \in \mathbb{N}$ and (X, o) such that $\left(X_{n}, o_{n}\right) \xrightarrow{G H}(X, o)$. Assume X is a length space. Then $B_{r}\left(o_{n}\right) \xrightarrow{G H} B_{r}(o)$ for all $r>0$.
(d) Let $\left(X_{n}, o_{n}\right) \xrightarrow{G H}(X, o)$. Asume that X_{n} is boundedly compact and X is complete. Then X is boundedly compact.

Problem 2 (4 Punkte)
Prove that the quadruple condition is equivalent to the following modified quadrupel condition: For every $x \in X$ there exists an open neighborhood U such that for any quadruple $(a ; b, c, d)$ in U there exists a quadruple $(\bar{a} ; \bar{b}, \bar{c}, \bar{d})$ in the k-plane such that the segments $[\bar{a}, \bar{b}],[\bar{a}, \bar{c}]$ and $[\bar{a}, \bar{d}]$ devide the full angle at \bar{a} into 3 angles less than π where $|\bar{a} \bar{b}|=|a b|,|\bar{a} \bar{c}|=|a c|,|\bar{a} \bar{d}|=|a d|$, and $|\bar{b} \bar{c}| \geq|b c|,|\bar{c} \bar{d}| \geq|c d|$ and $|\overline{d b}| \geq|d b|$.
Bonus Problem (4 Punkte)
Construct a metric space X with two points $p, q \in X$ such that the balls $B_{r}(p)$ and $B_{r}(q)$ are isometric for every $r>0$, but there is no isometry from X to itself that sends p to q.
Hint: There is an example among finite spaces.

Abgabe am Donnerstag, 2. Februar bis 12 Uhr beim Assistenten.

