Übung zur Geometrie der metrischen Räume
Dr. Christian Ketterer

Wintersemester 2023/24, Blatt 14
6. Februar 2024

Problem 1 (4 Bonuspunkte)
Let X be a compact Alexandrov space with curvature ≥ 1 and $\operatorname{diam}_{X}=\pi$. Prove that X is isometric to a spherical suspension over a compact Alexandrov space of curvature ≥ 1. Recall that a spherical suspension over some metric space Y with $\operatorname{diam}_{Y} \leq \pi$ is the quotient space $[0, \pi] \times Y / \sim \operatorname{built}$ from $(0, x) \sim(0, y)$ and $(\pi, x) \sim(\pi, y)$ equipped with the metric d_{S} given by

$$
\cos d_{S}((s, x),(t, y))=\cos s \cos t+\sin s \sin t \cos d_{Y}(x, y)
$$

Hint: Let $p, q \in X$ be points with $|p q|=\pi$. Define $Y=\{x \in X:|p x|=|q x|=\pi / 2\}$. Then prove the following facts: (1) $\forall x, y \in Y$ shortest paths $[p x]$ and $[q x]$ are unique and $\angle p x y=\angle q x y=\angle p y x=\angle q y x=\pi / 2$. In particular the triangles are isometric to comparison triangles in the 1-plane. (2) Y is a convex subset of X. (3) Y is an Alexandrov space of curvature ≥ 1. (4) Every point in X belongs to some shortest path connecting p and q.

Problem 2 (4 Bonuspunkte)

The radius rad_{X} of a compact metric space X is the minimal number $r>0$ such that $X=\bar{B}_{r}(p)$ for some $p \in X$. Prove that
(a) $\frac{1}{2} \operatorname{diam}_{X} \leq \operatorname{rad}_{X} \leq \operatorname{diam}_{X}$ for every metric space X.
(b) If X is an n-dimensional Alexandrov space of curvature ≥ 1 and $\operatorname{rad}_{X}=\pi$, then X is isometric to \mathbb{S}^{n}.
HInt: Use the result of Problem 1.

Problem 3 (4 Bonuspunkte)

Let $n \in \mathbb{N}$. Prove that for every $\epsilon>0$ there exists $\delta>0$ such that for any Alexandrov space X with curvature ≥ 1 and $\operatorname{dim}_{H} X \leq n$ the following holds.

1. If $\operatorname{diam}_{X}>\pi-\delta$, then X is ϵ-close in the Gromov-Hausdorff sense to a spherical suspension over some Alexandrove space Y with curvature ≥ 1 and $\operatorname{dim}_{H} Y \leq n-1$.
2. If $\operatorname{rad}_{X}>\pi-\delta$, then X is ϵ-close in the Gromov-Hausdorff sense to \mathbb{S}^{k} for $k \in\{2, \ldots, n\}$.

Problem 3 (4 Bonuspunkte)
Let Y be an $(n-1)$-dimensional Alexandrov space of curvature ≥ 1 containing n pairs of points $\left\{\left(x_{i}, y_{i}\right\}\right.$ such that $\left|x_{i} y_{i}\right|=\pi$ for all i and the determinant of the $n \times n$ matrix $\left(\cos \left|x_{i} x_{j}\right|\right)_{i, j}$ is nonzero. Prove that Y is isometric to \mathbb{S}^{n-1}.

