Problem 1 (4 Bonuspunkte)

Let X be a compact Alexandrov space with curvature ≥ 1 and diam_X = π . Prove that X is isometric to a spherical suspension over a compact Alexandrov space of curvature ≥ 1 . Recall that a spherical suspension over some metric space Y with diam_Y $\leq \pi$ is the quotient space $[0,\pi] \times Y/\sim$ built from $(0,x) \sim (0,y)$ and $(\pi,x) \sim (\pi,y)$ equipped with the metric d_S given by

$$\cos d_S((s,x),(t,y)) = \cos s \cos t + \sin s \sin t \cos d_Y(x,y).$$

Hint: Let $p, q \in X$ be points with $|pq| = \pi$. Define $Y = \{x \in X : |px| = |qx| = \pi/2\}$. Then prove the following facts: (1) $\forall x, y \in Y$ shortest paths [px] and [qx] are unique and $\angle pxy = \angle qxy = \angle pyx = \angle qyx = \pi/2$. In particular the triangles are isometric to comparison triangles in the 1-plane. (2) Y is a convex subset of X. (3) Y is an Alexandrov space of curvature ≥ 1 . (4) Every point in X belongs to some shortest path connecting p and q.

Problem 2 (4 Bonuspunkte)

The radius rad_X of a compact metric space X is the minimal number r > 0 such that $X = \overline{B}_r(p)$ for some $p \in X$. Prove that

- (a) $\frac{1}{2} \operatorname{diam}_X \leq \operatorname{rad}_X \leq \operatorname{diam}_X$ for every metric space X.
- (b) If X is an n-dimensional Alexandrov space of curvature ≥ 1 and $\operatorname{rad}_X = \pi$, then X is isometric to \mathbb{S}^n .

HInt: Use the result of Problem 1.

Problem 3 (4 Bonuspunkte)

Let $n \in \mathbb{N}$. Prove that for every $\epsilon > 0$ there exists $\delta > 0$ such that for any Alexandrov space X with curvature ≥ 1 and $\dim_H X \leq n$ the following holds.

- 1. If $\operatorname{diam}_X > \pi \delta$, then X is ϵ -close in the Gromov-Hausdorff sense to a spherical suspension over some Alexandrove space Y with curvature ≥ 1 and $\operatorname{dim}_H Y \leq n 1$.
- 2. If $\operatorname{rad}_X > \pi \delta$, then X is ϵ -close in the Gromov-Hausdorff sense to \mathbb{S}^k for $k \in \{2, \ldots, n\}$.

Problem 3 (4 Bonuspunkte)

Let Y be an (n-1)-dimensional Alexandrov space of curvature ≥ 1 containing n pairs of points $\{(x_i, y_i\}$ such that $|x_i y_i| = \pi$ for all i and the determinant of the $n \times n$ matrix $(\cos |x_i x_j|)_{i,j}$ is nonzero. Prove that Y is isometric to \mathbb{S}^{n-1} .