Aufgabe 1 (4 Punkte)

Die Potenzreihe $f(z) = \sum_{k=0}^{\infty} a_k z^k$ konvergiere in $B_R(0)$ mit R > 0 und für alle $z \in \mathbb{C}$ mit |2z| < R gelte $f(2z) = (f(z))^2$. Zeigen Sie: Ist $a_0 \neq 0$, so folgt $f(z) = \exp(a_1 z)$ für $z \in B_R(0)$.

Aufgabe 2 (4 Punkte)

Sei $P(z) = \sum_{k=0}^{\infty} a_k z^k$ eine Potenzreihe mit Konvergenzradius R > 0, so dass $P(x) \in \mathbb{R}$ für $x \in (-R, R)$. Zeigen Sie $a_k \in \mathbb{R}$ und $P(\overline{z}) = \overline{P(z)}$ für alle $z \in B_R(0)$.

Aufgabe 3 (4 Punkte)

- (a) Sei $l:G\to\mathbb{C}$ holomorph. Zeigen Sie: l ist eine Logarithmusfunktion genau dann, wenn $l'(z)=\frac{1}{z}$ in G und es existiert ein a mit $\exp(l(a))=a$. Hinweis: Leiten Sie $g(z)=z\exp(-l(z))$ ab und verwenden Sie eine Aussage aus der Vorlesung.
- (b) Es seien $u(x,y) = \log \sqrt{x^2 + y^2}$ und $v(x,y) = \arctan \frac{y}{x}$ für x > 0, wobei arctan : $\mathbb{R} \to \mathbb{R}$ die reelle Arcustangensfunktion ist. Zeigen Sie, dass f = u + iv holomorph ist und berechnen Sie die Ableitung.
- (c) Finden Sie für die Reihe

$$P(z) = \sum_{k=0}^{\infty} (1-z)^k$$

eine holomorphe Funktion g, so dass g'(z) = P(z) mit g(1) = 0.

Abgabe bis Mittwoch, 9. November, 16 Uhr, in dem dafür vorgesehenen Briefkasten im Mathematischen Institut.