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1 Metric Spaces

1.1 Definition. Let X be a set. A function d : X x X — R>¢ is a pseudo-metric (also
semi-metric) if

1. d(z,z) =0Vz € X,

2. d(z,y) = d(y,x) Vz,y € X, (Symmetry)

3. d(z,y) < d(x,z) +d(z,y) Vz,y,z € X. (A-inequality)
The pair (X, d) is a pseudo-metric space.
If the first property is replaced with

4. d(z,y) =0 & z=y Vr,y € X,
we call (X, d) a metric space.

Notation. Unless different metrics on the same set X are considerd we will omit an explicite
reference to the metric d and we will just say ”a metric space X”, and we frequently write
d(z,y) = |zy| for z,y € X.

1.2 Proposition. Let d be a pseudo-metric on X. Consider the equivalence relation x ~y
& d(z,y) =0. If v ~x1 and y ~ y1, then d(z,y) = d(z1,y1). Hence, the projection d of
d onto X/ ~= X is well-defined and (X ,d) is a metric space.

1.3 Definition. Let XY be two metric spaces. A map f : X — Y is called distance
preserving if | f(z)f(y)| = |zy| Vx,y € X. If f is bijective then f called an isometry. Two
metric spaces are isometric if there exists an isometry from one to the other.

1.4 Ezamples. (a) Let X be a set and define

0 x=uy;

d(wy) = [oy] = {1 o

(X,d) is a metric space.

(b) Let X and Y be metric spaces. A metric on X X Y is defined via

(2, ), (2", 9)] = V/]z2'|? + [yy'|2.

In particular, if X =Y =R equipped with 22/ = | — /|, then |(z,y), (+/,3/)| =
(2, y) = (@', ¥ )|y 00 R x R = R?.

(c) Let X be a metric space and A > 0. The dilated (or rescaled) metric space AX is
the same set X equipped with the metric dyx (z,y) = Ad(z,y).

Let Y C X be a subset. The restricted metric on Y is defined as dy := dx|yxy-



(d) Let V be a vector space. A function |-|:V — R is called a norm if Yv,w € V and
VA € R it holds

L. [v]=0 ©v=0,
2. [Avf = [Af]o],
3. Jo+w] < o] + [,

Then (V,d) with d(v, w) := |v — w| is a metric space.
Remark. One may also consider (pseudo)-metrics with values in [0, co]. We call them oco-
metrics. The following shows how to reduce questions about co-metrics to genuine metrics.
Define an equivalence relation x ~ y via |zy| < co. The equivalence class X, of a point
x € X will be called metric component of z. By the triangle inequality d|x,xx, is then
a finite (pseudo)-metric space. On the other, if {X,} is a collection of (pseudo)-metric
spaces, then the disjoint union X =], X« equipped with

1z {an (x,y) if z,y € X, for some a,
zy| =

otherwise

is an oo-(pseudo)-metric space.
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1.5 Definition. Let X be a metric space. For r € (0,00] let B.(z) = {y € X : |xy| < r} be
the ball of radius r with center z and let B,(x) = {y € X : |zy| < r} be the corresponding
closed ball. The topology associated to a metric space is define as follows: U C X is open
if Vo € U there exists € > 0 such that B.(z) C U. A C X is closed if X\ A is open. This
topology is a Hausdorff topology.

The standard definitions of convergence, continuous function, etc. admit straightfor-
ward generalizations.

1.6 Definition. Let X be a metric space. A sequence (x,) is a Cauchy sequence if
|Zn x| — 0 if n,m — oco. X is called complete if every Cauchy sequence has a limit.

Remark. Completeness is not a topological property. There exist homeomorphic metric
spaces X and Y such that X is complete but Y is not.

1.7 Definition. Let X and Y be metric spaces. A map f : X — Y is called Lipschitz if
3C > 0 such that |f(z1)f(z2)| < Clz122| V1,22 € X. C is called a Lipschitz constant of
f and the minimal C' is called dilatation of f and denoted with dil f.

A Lipschitz function with Lipschitz constant less than 1 is called non-expanding.

1.8 Proposition. Let X,Y be metric spaces such thatY is complete, let X' C X be dense

in X and let f: X' — Y be a Lipschitz map. Then there exists a unique continuous map
f:X =Y such that f|x = f, f is Lipschitz and dil f = dil f.

Proof. Consider z € X and (z;) € X' = z € X. We define f(z) := lim; o0 f(;).
Observe that (f(z;))ien is a Cauchy sequence and therefore indeed convergent in Y because
|f(zs) f(z;)| < dil flziz;| for all 4,5 € N and |z;2;] — 0 for 4, j — oo since the sequence
(x;) converges. _

Hence we have a map f : X — Y. We have the inequality

|F) Fa)] =t () ()] < Tim dil flasat] = dil flazaf)

Hence fis Lipschitz with Lipschitz constant dil f and dil fg dil f. Moreover dil f: dil f.
Otherwise this would contradict the definition of dil f.
The uniqueness of f is easily verified. O

1.9 Theorem. Let X be a metric space. 3 a complete metric space X such that X is
dense subset of X. X is unique in the following sense: If X' is another metric space with
these properties, then there exists a unique isometry f : X — X' such that flx =id.

Proof. We consider the set X of all Cauchy sequences (z,,). A function on X? is given by
d((zn), (yn)) = lim |zpyn|.
n—oo

The limit always exists in [0,00). It is elementary to check that d is a pseudo-metric on
X. We define X = X /oo where () ~ (yn) if and only if d((zy), (yn)) = 0.

A natural map from X to X is given by = — (x,) with z, = = ¥n € N. This map
is distance preserving and we can identify X with its image in X. X is also dense in X
since every element [(z,,)] € X is the limit of squence ([(z%)])ien € X where (z) is the
sequence w.r.t. n given by 2!, = x; for all n € N.

The uniqueness follows from Proposition The inclusion map i : X C X — X’ has
unique extension to X. O



1.1 Compact spaces

Recall that a topological space X is called compact if any open covering of X has a finite
sub-collection that still covers X.

1.10 Fact. Let X be a Hausdorff topological space.
1. If S C X is compact, then S is closed in X.
if X is compact and S C X is closed, then S is compact.
A subset S C R"™ is compact if and only if S is closed and bounded.

If X is compact and f : X — Y is continuous, then f(X) is compact.

Svod o e

If X is compact and f : X =Y is continuous and bijective, then f is a homeomor-
phism.

1.11 Definition. e Let X be a metric space and € > 0. A set S C X is called an
e-net if Vo € X Jy € S such that |zy| < e.

e The metric space X is called totally bounded if Ve > 0 there is a finite e-net in X.

e A set S in a metric space X is called e-separated for € > 0, if |zy| > € for any two
points x,y € S.

e A set § C X is called maximal e-separated in X, if S U {x} is not e-separated for
every x € X\S.

1.12 Lemma. A mazimal e-separated set S C X is an e-net.

Proof. Assume S is not an e-net. Then 3z € X such that B.(z) NS = (). This contradicts
with S being maximal e-separated. O

Let X be a metric space. We define
1. The diameter diamy := sup, ,x |ry| of X,
2. The radius radx := infzex sup,c x [zy| of X.

Remark. It holds radx = inf{r > 0: B,(z) D X,z € X} (Exercise).
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1.13 Theorem. Let X be a metric space. Then the following statements are equivalent:
1. X is compact.
2. Any sequence in X has a converging subsequence.
3. Any infinite subset of X has an accumulation point.
4. X is complete and totally bounded.
In particular, if X is compact, then diamyx < oo (Exercise).

Proof (Sketch). 1. = 2. (Exercise), 2. = 3. (easy)

3. = 4. We show that for every e > 0 there exists a finite e-net.

Assume this is not true. Then we construct a sequence of points (x;) C X such that
|zizit1| > € Vi € N. But this will contradict 3.

The sequence (x;) is constructed inductively. Assume we have already found points
(xi)i=1,..n With |z;x;| > €. Since {x1,...,2,} cannot be a e-net, there exists a point
ZTnt1 € X such that d(z,z;) >eVi=1,...,n

Hence, Ve > 0 we find a finite e-net in X and therefore X is totally bounded. Moreover,
given a Cauchy sequence 3. implies that there exists a converging subsequence. But since
the original sequence was Cauchy it already converges.

4. = 1. Assume X is not compact. Hence there exists an open cover {Uy} of X
without a finite subcover.
We define a sequence (z,,) as follows. For € = % 3 a finite e-net S7. Hence there exists

a least one point 1 € S such that no finite subset of {U,} covers B1 (x1).

In the next step, for e = 2% = 1 there exists a finite e-net Ss. We can find a least

one point xa € Sy such that Bl( 9) N Bi(x1) # () and there is no finite subset of {U,}
2
covering B1 (z2).
Iteratlvely we find a sequence (xy,) such that B . (Z,Un+1) NB L () # 0 for all n € N.

Hence |2, 2, + 1] < 5 57 + 2,}“ < 2,},1 and therefore

m m 1
ol € 30 gy = ot 3o e < iy V>
k=n k=0

It follows (x,,) is a Cauchysequence. Thus (z,) — a € X.
Ja such that a € U,. We choose € > 0 such that Be(a) C U,. Now we choose n € N
big enough such that 42n r < eand |z,,a] < 5= It follows for y € B X (z,) that

v, al < |y, zp| + |n,
Hence B 1 (x,,) C Be(a) C U, in contradiction to the choice of . O
2n

Remark. The theorem remains true for oo-metric spaces. One can show that a compact
oo-metric space is the finite union of compact metric spaces.



1.14 Theorem (Lebesgue’s Lemma). Let X be a compact metric space, and let {Uq }aca
be an open covering of X. Then 45 > 0 such that any ball of radius § > 0 in X is contained
in Uy for some o € A.

Proof. We assume X\U, # 0 Vo € A. Otherwise we are done. We define
f(z) =sup{r e R: Ja € As.t. By(x) C Uy} € [0, 0].

Claim: f(z) € (0,00) Vx € X. If f(z) = oo, then ¥V n € N 3 an index «,, such that
By (z) C U,. On the other hand 3y, ¢ U,,. Hence |y,z| > n Vn € N. This contradicts
diamy < oo. For all x € X Jr > 0 sucht that B,(z) C U, for some «. Hence f(z) > 0.

Claim: The function f is continuous. In fact we show that f is nonexpanding. We
notice that for all x € X it holds By(,)(z) C U, for some a. Let z,y € X.

5t case: Ty ¢ Byy(x) and ¢ By (y), then |7(2)— ()] < max{f(x), F(u)} < |y,

2nd case: If ¥ € By, (y) and By gy (z) C By (y), then f(x) = sup{r > 0: B.(z) C
By (y)} and hence f(z) = f(y) — |zyl|. Since f(x) < f(y), we have

[f(y) = f(x)] = fy) = f(x) = |ayl.

8rd case: If x € By (y), Bya)(®)\Byu)(y) # 0 and |zy| > f(x). Then f(x) >
sup{r > 0: B.(z) C By (y)} = f(y) — |zy| > 0 and hence

lzyl > f(y) — f(x) > |zy| — f(z) > 0 since |zy| > f(x).

Hence |zy| > [f(x) — f(y)l-

4th case: If x € By (y), By (®)\ B (y) and |zy| < f(z), then y € By, (7). From
the 2nd and 3rd step we get |zy| > f(y) — f(x). Since y € Bj,)(x) we can also apply the
2nd and 3rd step with z and y in reversed roles to obtain |xy| > f(x) — f(y), and hence
lzyl = | f(x) = f(y)l-

Since f is continuous on a compact space, there exists § > 0 such that f(x) > o
Vz € X. This is the statement. O

1.15 Corollary. Let X and Y be metric spacces and let X be compact. If f : X = Y
is continuous, then Ye > 0 35 > 0 such that |f(z1)f(z2)| < € for all z1,22 € X with
‘.%133‘2‘ < 9.

Proof. Continuity implies that for all z € X there exists an open neighborhood U, of x
such that f(U,) C Be(f(z)). By Lebesgue’s covering lemma there exists 6 > 0 such that
Bs(z) C Uy Vo € X. Hence, if z,y € X such that |x,y| < 0 then |f(x)f(y)| < e. O

1.16 Theorem. A compact metric space X cannot be isometric to a proper subset of
itself, i.e. if f: X — X 1is distance preserving, then f(X) = X.

Proof. We argue by contradiction. Let p € X\ f(X). Since f(X) is compact and hence
closed, there exists € > 0 such that B.(p) N f(X) = (. Let n be the maximal cardinality
of an e-separated set in X and let S C X be an e-separated set of cardinality n. Since
f is distance preserving f(S) is also e-separated. But d(p, f(S)) > d(p, f(X)) > € and
therefore f(S)U{p} is an e-separated set of cardinality n + 1. This is a contradiction. [



1.17 Theorem. Let X be a compact metric space. Then
1. Any nonexpanding surjective map f: X — X is an isometry.
2. If amap f: X — X is such that | f(z)f(y)| > |zy| Vz,y € X, then f is an isometry.

Proof. 1. We show that f is distance preserving and apply the previous theorem. Assume
this is not the case. Then Jp,q € X such that |f(p)f(¢)| < |pg|- Then we can pick € > 0
such that |f(p)f(q)] < |pg| — 5e.

Let n be a natural number such that 3 an e-net in X of cardinality n, and consider
the set 91 € X™ of all n-tuples of points in X that form an e-net in X. This is a closed
set in X™ and therefore also compact. Define D : X™ — R by

n
D(:L’l,...,wn) = Z |$z$]|

4,j=1

This function is continuous and therefore attains a minimum on N. Let (z1,...,z,) be
such a minimum. Since f is nonexpanding and surjective also (f(z1),..., f(xy)) is in .
Moreover D(f(x1),..., f(zn)) < D(z1,...,x,) and since (x1,...,2,) is a minimum of D
on N, it holds D(f(x; ) o flxg)) = (:L'l, ..., @p), and in fact | f(z;) f(z;)| = |2z, since
f is nonexpanding.

On the other hand 3, j € {1,...,n} such that |z;p| < € and |z;¢| < e. Hence

Ipq| < pzi| + |ziz;| + 29| < |xizy| + 2€
and

|fxa) fa)] < | fF@) F(@] + 1f (o) f ()| + | f(a) f ()]
< |pq| — 5¢ + |pxi| + |qz;| < [pg| — 3e < |wiz;| —€

Hence |f(x;)f(x;)| < |z;x;| — e. This is a contradiction with what we just proved.

2. Define Y = f(X). Then Y is dense in X. Assume this would not be true. Then there
exists p € X and e > 0 such that B.(p)NY = (). Let S be a maximal e-separating set in X.
Since |f(x)f(y)| > |zy| Vz,y € X, it follows that also f(S) is maximal e-separating, and
hence f(S) C Y is an e-net in X. Therefore d(p, F(S)) < ¢, or in other words Jy € f(.5)
such that d(p,y) < e. This is a contradiction.

Consider now the map g = f~! : Y — X. g is nonexpanding and defined on a dense
subset in X. Hence g there exists a unique nonexpanding map g : X — X. By 1. we have
that g is an isometry, and in particular f is distance preserving. By 1. again f itself is an
isometry. ]
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1.2 Hausdorff measure and Hausdorff dimension

1.18 Definition (Hausdorff measure). Let X be a metric space and let n be a nonnegative
real number. Let {S;};cs be a finite or countable family of sets in X. The n-weight of this
family is defined as
wn({Si}ier) = Y _(diam S;)".
el
If n = 0, substitute any term 0° in the formula by 1.
Given € > 0 and a subset A C X define

Hoe(A) = inf{wn({Si})ier : A C | and diam(S;) < e Vi}.
el
The infimum is taken over all finite or countable coverings of A by sets of diameter If there

is no such covering we set H,, (A) = oco.
The n-dimensional Hausdorff measure of A is defined by the formula

H"(A) = C(n) lim Hy (A)

where C'(n) is a positive normalisation constant.
Moreover we define H™ () = 0.

Remark. e The value H, . is nonincreasing in € (Hqe 1 for € | 0). Hence H"(A) is
well-defined for any subset A C X and any metric space X. It may be either a
nonnegative real number or 4oco.

e The constant C'(n) is introduced for one reason only: if n is an integer, one chooses
C(n) such that the n-dimensional Hausdorff measure of sets in R™ has the property
Hr([0,1]") = 1.

1.19 Proposition. Let X be a metric space and A, B C X as well as {A; }ier C 2%,
1. A C B, then H"(A) < H"(B),
2. H"(Ujer Ai) C 2 ier H'(As) for any finite or countable collection of sets A; C X,
3. d(A,B) >0, then H"(AU B) = H"(A) + H"(B).
Proof. 1. A cover {S;}; of B is always also a cover of A. Hence H, (A) < Hy o (A) Ve >0
and consequently H"(A) < H"(B).
'2. Let {S;}] be a cover of A;, 1 € I =N, such that H, ((A4;) > wn({SJZ}) — 57 . Hence
{55}, is a cover of | ;o A;i = A. Hence

If € | 0, then H"(A) < ey H"(Ai).

3. Given any cover {S;} of A and {S;} of B, we can intersect every S; with B.(A) =
{y € X : 3z € Ast. |zy| < ¢ and every S; with B.(B) where ¢ € (0,d(A, B)). This
procedure only decreases the diameter. Hence w.l.og. we can assume sets in a covering of
A are disjoint from the sets in a covering of B. O



1.20 Remark. Caratheodory’s theorem yields that by these three properties H" restricted
to the Borel g-algebra of X is measure for any n > 0.

We recall some definitions from measure theory.
Let X be a set. A family A C 2% is called a o-algebra if

1. 0, X €,
2. ABeA= A\Be,
3. {Aitien CUA= Ujen4i €2
A measure on 2 is a function p : A — [0, 0o] such that
L pu(@) =0,

2. {Aitien CA = p(Ujen Ai) = D e #(Ai) where {A;} is a finite or countable family
of disjoint sets (o-additivity)

If T C 2% is an arbritrary collection of subsets of X, then there exists a smallest o-algebra
o(%) that contains T. We say o(%) is generated by T. The o-algebra generated by open
sets in a topological space X is called the Borel o-algebra of X and the elements of the
Borel o-algebra are called Borel sets.

1.21 Theorem. Let H,, be the n-dimensional Hausdorff measure on (R™, deye). Let wy, be
the volume of the Fuclidean, n-dimensional ball of radius 1. If we choose the normalisation
constant C(n) = %wn, then H" = L™ where L™ is the n-dimensional Lebesgue measure.

1.22 Lemma. Let X, Y be metric spaces and f: X — Y a Lipschitz map with diletation
< C. Then H(f(X)) < C"H™(X).

Proof. 1f {S;} is a covering of X with diam S; < € Vi, then {f(S;)}: is a covering of f(X
with diamy(g,) < Cdiamg,. Indeed, we first have that diamyg,) < Ce. If f(z), f(y)
f(S;) such that |f(z)f(y)| > diamy(g,) —d for § > 0 arbitrarily small, then diamgg,) —d
[f(@)f(y)] < |oy| < diamg,.

Hence it follows that w, ({f(S;)}) < C"w,({S;}). Consequently we have H, ce(X)
C"Hye(X). Letting € | 0 we also get H"(f(X)) < C"H™(X).

~—

IA M

LTIA

1.23 Theorem. For every metric space X there exists a ng € [0,00] such that H"(X) =0
for alln > ng and H"(X) = oo for all n < ny.

Proof. Define ng = inf{n > 0 : H"(X) # oo}. By definition H"(X) = oo Vn < ng. If
n > ng, there exists n’ € (ng,n) such that " (X) = M < co. Hence, for € > 0 there
exists a covering {S;} of X such that diam S; < € Vi and 3, (diam S;)™ < 2M. Tt follows

Z(diam S = Z(diam S (diam S;)" < " Z(diam SO < 2Mem

Hence H(X) < 2"~ M. Since n > n’ and since € > 0 was arbitrary, it follows H"(X) =
0. O

1.24 Definition. The number ng € [0,00] in the previous theorem is called Hausdorff
dimension of X and denoted with dimy X.

10



1.25 Proposition. Let X be a metric space. Then
1. Y C X, then dimy Y < dimy X.

2. If X is covered by a finite or countable collection {X;}; of subsets in X, then
dimy; X = sup; dimy Xj;.

3. If f: X =Y is a Lipschitz map, then dimy f(X) < dimy X.

Proof. Exercise O

11
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2 Length Spaces

2.1 Length structures

Let X be a topological space.
A path v in X is a continuous map v : I — X where [ is interval in R that may be open,
closed, finite or infinite. A single point is counted as an interval.

2.1 Remark. Two paths v; : I; — X, ¢ =0, 1, are equivalent or reparametrizations of each
other if there exists an interval I C R, a path v : I — X and continuous nondecreasing
functions ; : I; — I such that v; = voy;, i =0,1.

An (unparametrized) curve is an equivalence class of paths.

If g, ¢1 are homeomorphisms (i.e. strictly increasing), then y9 = v20¢ with ¢ = @] opy.

2.2 Definition. A length structure on a Hausdorff space X is a family A of admissible
paths together with a map L : A — [0, 00|, the length of paths in A such that the class A
satisfies the following properties:

(i) A is closed under restrictions: If v : I — X is an admissible path and J C I an
interval, then also «y|; is an admissible path.

(ii) A is closed under concatenations of paths: If v : [a,b] — X is a path and ¢ € [a, b]
such that 7 : [a,c] = X and 77 : [¢,b] — X are admissible paths, then also v is an
admissible path. v the concatenation of vg and ~;.

2.3 Remark. Given two paths 7o : [a,0] = X,7 : [¢,d] — X the concatenation
between g and ; is defined by

Yo(t) t € [a,b],
*v1:|la,d—c+bl = X, yox71(t) =
noxm | ] o * () {vl(t—lﬂ—c) tefbd—ctbl.

(iii) A is closed under (at least) affine reparametrizations: For v : [a,b] — X in A and
¢ [e,d] — [a,b] with ¢(t) = at + (3, the composition yo ¢ : [¢,d] — X is also a path
in A.

2.4 Remark. Every natural class of paths comes ususally with its own class of
reparametrizations. For instance continuous paths and homeomorphisms, or C-
curves and diffeomorphisms. (iii) therefore requires that this class of natural reparametriza-
tions includes all linear maps.

The length L has to satisfy the following properties:
L. Additivity: L(v|jap) = L(V]ja,q) + L(V]je,y for any c € [a, b].

2. Given a path v : [a,b] — X of finite length we define L(vy,a,t) = L(7]jayq). We
require that L(v,a,-) is a continuous function.

12



3. The length is invariant under affine reparametrizations: L(y o ¢) = L(v) for any
affine homomorphism ¢.

4. The length structure agrees with the topology of X: for any neighborhood U, of x

we have
inf {L(7) : v(a) = z,~v(b) € X\U,} > 0.
2.5 Examples. 1. Let (V,|-|) be a finite dimensional normed vector space. Let A be
the class of piecewise differentiable paths v : [a,b] — V. A length structure on V is
given via

b
vedn )= [ ol
For instance V = R? with | - |eya-

2. Let (V,]|-|), A and L as before. And let W C V be a subset with the induced
topology. Let B C A the paths v in A such that Im(y) C W and let L' = L|p.
This is a length structure on B.

For instance, let (V)| -|) = (R",| - |euct) and let W = M be an m-dimensional
submanifold.

3. Driving in Manhatten. Consider (R™, |- |eue), A and L as before. We restrict L to
the class of paths that are broken lines that are parallel to the coordinate axes.

4. Let (M,g) be a Riemannian manifold, i.e. p € M +— g, smooth with g, is an
Euclidean inner product on 7, M, and let A be the family of piecewise differentiable
curves in M. Then

b
vedn L) = [ \faw @ @)

2.6 Definition. Let X be a Hausdorff space and L : A — [0, 00] a length structure on X.
For two points z,y € X we set

dr(z,y) =inf{L(y) : v : [a,b] = X,v € A,v(a) = z,7(b) = y}.

A metric d on a Hausdorff space X that is obtained by a length structure is called a length
metric or intrinsic metric. A metric space (X, d) whose metric is a length (intrinsic) metric
is called length (intrinsic) space.

2.7 Example. 1. Let X = R? and let L be the length induced by the Euclidean norm on
the family of piecewise differentiable curves. Then dr(z,y) = |* — y|eua V2,9 € R2.

2. ("Metric on an island”) Let X C R? be conencted. Admissible paths are all piecwise
differentiable paths with image in X and the length of paths is the Euclidean length.
If X is convex, the induced distance of this length structure on X coincides with
|+ — - leuct- But in general this is not the case.
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2.8 Remark. The pair (X,dr) is a co-metric space (Exercise).

The metric dy, is not necessarily finite. For instance, if X is a union of two disconnected
components, there is no continuous path from one component to the other. Hence, dr,(x,y)
for points in different components is infinite. On the othere hand there may be points
such that continuous path between them exist, but all have infinite length. We say two
points belong to the same accessibility component if they can be connected by a path of
finite length.

2.9 Remark. The topology of dr, can only be finer than the topology of X: any open set
of X is an open set w.r.t. (X,dr).

2.10 Definition. A length structure (A, L) is said to be complete if for every two points
x,y there exists an admissible path v € A joining them such that L(v) = dp(z,y).

An intrinsic metric that is associated to a complete length structure is called strictly
intrinsic.

2.11 Example. 1. ("crossing the swamp”) Consider R? and let f : R? — (0,00) be
continuous. We define the length of a piecewise differentiable path + : [a, b] — R? by

b
L(y) = / SO @)t

We interpret L as a weighted Euclidean length. Where f assigns big values it is
more difficult to traverse (for instance, a swamp or a mountain trail).

2. ("Finslerian length”) We consider f : R? x R? — (0,00) and the same class of
admissible paths as before. and define length by

b
L(y) = / S, (2)).

In order for this expression to be invariant under reparameterizations of path one
has to require that f(z, kv) = |k|f(x,v) for k € R and Vz € R

Examples of this type of length is the length structure associated to normed spaces
where f(z,v) = |v|.
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2.12 Definition. Let (X, d) be a metric space and let «y : [a,b] — X be a path. Consider
a partition Z = (tg,...,tn) of [a,b],1.e. a =1ty <t; <--- <ty =b. We define

N

L7 (y) = Z d(y(ti—1),v(t:))-

i=1
We can see L? () as the length of the polygon induced by Z. The length of 7 is
L(7) := Lyg(v) = sup{L? () : Z is a partition of [a,b]} € [0, oc].

A path v : [a,b] — X is said to be rectifiable if Ly(7y) < oo.

The class of paths v : [a,b] — X for a <b e R with L;: A — [0,00] is a length structure.
We call L, the induced length.

Remark. Let Z,Z' partitions of [a,b]. Z' is called a refinement of Z if Z/ C Z. By A-
inequality it follows L?' () > LZ(v) for 7 : [a,b] — X.
We define the mesh size of a partition Z = (o, ..., tn) of [a,b] as

|Z| :max{|ti_1 —ti‘ 1= 1,,N}
2.13 Lemma. L% (y) 1 L(v) if | Z;| | 0.
Proof. Exercise. O

2.14 Lemma. Let (V,|-]|) be a finite dimensional normed vector space and v : [a,b] =V
s a differentiable map. Then

b
L(y) = / /(1) .

2.15 Proposition (Properties of the induced length). Let v : [a,b] — X be a path. The
length L = Lg induced by a metric d possesses the following properties.

(i) Generalized A-inequality: L(y) > d(v(a),v(b)).

(ii) Additivity: if a < ¢ <b, then L(vy,a,c)+ L(v,¢,b) = L(7). In particular L(7,a,t) is
a nondecreasing function in t € [a,b].

(iii) If v : [a,b] — X is rectifiable, then L(v,c,d) is a continuous function in c,d € [a,b].

(iv) L is lower semi-continuous on the space of continuous paths ~y : [a,b] — X with
respect to point-wise convergence, and hence w.r.t. uniform convergence.

Remark. In general then induced length is not continuous.

Proof. (i) By A-inequality it is clear that LZ(y) > d(vy(b),v(a)) for any partition Z of
[a,b]. Hence L(y) = supy L”(v) = d(y(a),(b)).

(ii) Given a partition Y = (to,...,tny) and ¢ € (a,b), Ji € {1,...,N} such that ¢ €
[ti_1,t]. Then Y’ = (to,...,ti_1,¢ 1, ..., tx) is also a partition and L? (y) > L%(v) by
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the A-inequality. Moreover Zy = (to,...,ti,c) and Z1 = (¢, t;,...,t,) are partitions of
[a,¢] and [c,b] respectively and L% (y) = L% (Mia.) + L (V) If we choose Z such
that LZ(y) 4+ € > L(v), then it follows L(y) < L(v,a,c) + L(7, ¢, b).

On the other hand, given two partitions of Zy, Z; of [a,c| and [c,b], then Z = Zy U Z; is
a partition of [a, b]. Similarly we get then that L(v,a,c) + L(vy,¢,b) < L(7).

(iii) We prove continuity in d € (a,b] from the left. The other case works analogously.
Since L(7) is finite, for € > 0 we may choose a partition Z = (to,...,txN) of [a, ] such that

L(y) € L?(7) + €. By adding another point in Z (which preserves the inequality) we can
assume that d =t; for j € {1,..., N}. Since L(v,ti—1,t;) > d(v(ti—1),7(t:)) Vi by (i),

Ly, tj-1,d) = d(y(tj-1),7(d)) < L(7) = L?(7) < e.
This estimate holds now for any Z with ¢;_; = c that is arbitrarily close to d. Hence
L(v,a,d) = L(y,a,c) = L(y, ¢, d) < d(v(c),7(d)) + €.

Since € > 0 was arbitrary, this yields continuity from the left.

(iv) Let v; be paths that converge pointwise to v, both defined on [a,b]. Choose € > 0
and let Z be a partition of [a,b] as in (iii) for 7. Consider now LZ(v;) and choose j large
enough such that d(v;(z),v(z)) < € for all z € Z. Then it follows

L(y) < L?(7) + € < L? () + € + 2(N + 1)e < L(7;) + (2N + 3)e.
Since € > 0 was arbitrary, we get L(v) < L(v;) and hence L(~) < liminf L(;). O

2.16 Definition. Let (X, d) be a metric space and let Ly be the induced length structure
on continuous paths. We call d := dr, the induced intrinsic metric.

2.17 Evample. 1. Consider S! = {(x,y) : 22 +y? = 1} with the restricted metric of R2.
The induced intrinsic metric is the angular metric d(v, w) = arccos(v, w)eyel-

2. Consider X = R" with d(z,y) = /| — y|. d is a finite metric on R™ (check). But
d(z,y) = oo for all z,y € R™. Indeed, if 7 : [0,1] — is a path, then

>Zd —nZ /) — (&)

Jensen Ine ualit
e \/Z (ki) — ()]
- \/ﬁ\/z (t-1) = 2(6)] 2 VAV — 0] - oo

2.18 Proposition. Let (X,d) be a metric space.
(1) If v is a rectifiable curve in (X,d), then Lj(7y) = La(7).

(2) The intrinsic metric induced by d coincides with d, i.e. d = d.
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Proof. (1) By definition of Ly it follows Lg(y) > d(+y(a),y(b)) for every curve v : [a,b] — X.
This implies d > d. It follows that L i = La-

For the inverse inequality we pick 7 : [a,b] — X that is rectifiable and a partition
Z = (to, ..., ty) of [a,b]. By definition of d it follows that d(y(ti—1), v(t:)) < La(7,ti—1, )
Vi. Hence

L%(7) < La(7).

Since Z was an arbitrary partition we get the desired inequality L;(vy) < Lg(v). This
proves (1).
(2) This follows trivially from (1). O

Remark. The assumption that the curve ~ is rectifiable w.r.t. Ly is essential because
otherwise the curve v may not be continuous w.r.t. (X,d).

2.19 Proposition. Let (A, L) be a length structure and (X,dr) the associated length
space. Let d be the intrinsic metric induced by d = dy, (or more precisely by Lq, ). Then
d=dp.

Proof. We repeat the argument from the previous proposition. Let 7 : [a,b] — X be
an admissible curve and Z = (tg,...,tx) a partition of [a,b]. By definition of d we
have dr(y(ti—1),v(t:)) < L(7,ti—1,t;). As before it follows that Ly, () < L(7) and hence
d(v(a),v(b)) = dr(v(a),v(D)).

On the other hand we have dr,(y(a), (b)) < Lg, () by construction of Ly, and hence
dp <d. O

Remark. Note that given a metric d such that d = d where d is the induced intrinsic metric
automatically implies that d was already intrinsic. We now can say (X, d) is a length space
if and only if d = d.
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Remark. If vy and ~; are two equivalent paths (a curve), then it is easy to see they have
the same induced length L.

2.20 Definition. We say a path v : I — X is parametrized with constant speed ¢ € [0, c0)
if L(Yljap) = c(b—a) V[a,b] C I. If ¢ = 1 we say v has unit speed or we say 7 is
parametrized by arc length. Equivalently, v is parametrized by arc length if and only if ¥
a € I and t € I we have

d

—L t)y=1.

dt (’Y? a‘? )

2.21 Proposition. Every rectifiable curve v : [a,b] — X can be represented in the form
v = 7oy wherey :[0,L(y)] = X is parametrized by arc length. and ¢ is a nondecreasing
continuous map from [a,b] to [0, L(y)].

Proof. Define ¢(t) = L(vy,a,t) ¥Vt € [a,b] and (1) = inf{t € [a,b] : ¢(t) = 7} for
T € [0, L(7y)]. We then define J(7) =~y o ¢(7).

First we check that yop(t) = v(t). Indeed, by definition we have that o op(t) = p(t)
and hence L(v,a,t) = L(,a,1 o p(t)) that implies y(t) = vy o1 o p(t) =7 o p(t).

It remains to verify that 4 : [0, L(y)] — X is continuous and parametrized by arc
length. We pick 79, 71 € [0, L(7)] and to,t1 € [a,b] such that ¢(t;) = 7;. Then L(v,to,t1) =
o(t1) — p(to) = 11 — 10. Moreover d(7(19),7(m1)) < |11 — 70| Hence ¥ is continuous. It
also holds L(¥,79,71) = L(7,to,t1) = 71 — 79. Thus 7 is parametrized by arc length. [

2.2 Existence of shortest paths

2.22 Definition. A sequence of curves uniformly converges to a curve « if they admit
parametrizations with the same domain that uniformly converge to a parametrization of

.

2.23 Theorem (Arzela-Ascoli Theorem). In a compact metric space any sequence of
curves with uniformly bounded lengths has a uniformly converging subsequence.

Proof. Let (v;) be the sequence in the theorem. Each ~; admits a parametrization on
[0,1] with constant speed. Uniformly bounded lengths means that the speeds of these
parametrizations are uniformily bounded. Hence

d(vi(t),vi(t)) < L(v,t,t') < Clt — /| Vt, ¢’ €[0,1] and Vi € N. (%)

Let S = {t;} be a countable dense subset of [0,1]. Using a diagonal argument one can
construct a subsequence 7y, of 7; such that v,,(t;) converges for i — oo and for every
jeN.

We will show that (7,,) converges pointwise. W.lo.g. (or by renaming the subse-
quence) we assume Y, = ;.

For this one shows that 7;(¢) is a Cauchy sequence (Exercise) and we can define () :=
lim; o0 i (t) for t € [0,1]. Then we can pass to the limit in (%) and get that v : [0,1] — X
is a continuous map.

Finally we have to show that the convergence of +; to v is uniform. Let € > 0, pick
N > %, N € Nand let M > 0, such that d(y(k/N),vi(k/N)) <e/2forallk =0,1,...,N
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for all « > M. Then it follows for ¢ € [k/N, (k + 1)/N] that

d(vi(t), (1)) < d(7i(t),7i(k/N)) + d(vi(k/N),v(k/N)) + d(v(k/N),~(t))

SC!t—kz/N|+e/2+C’\t—k:/N|S%—Fe/Qﬁe.

Since M and e don’t depend on t, we get uniform convergence. O

2.24 Definition. Let (X, d) be a metric space. A curve 7 : [a,b] — X is a shortest path
if its length is minimal w.r.t. all curves with the same endpoints.

If (X,d) is a length space a path ~ : [a,b] — X is a shortes path if and only if
L(y) = d(v(a),~(b)).

2.25 Proposition. Let (X,d) be a length space and let ~; be shortest paths that converge
to a path v as i — oco. Then ~y is also shortest path.

Proof. Uniform convergence of ~; : [a,b] — X to 7 implies in particular that v;(a),vi(b) —
~v(a),~v(b). Since X is a length space, we have L(v;) = d(vi(a),~i(b)), and consequently
L(v;) — d(y(a),~(b)). But by lower semi-continuity of L it then follows L(~y) < d(v(a),y(b)).
Hence 7 is a shortest path. O

2.26 Proposition. Let (X,d) be a compact metric space and let xz,y € X such that there
erists at least one rectifiable curve that connects them. Then there exists a shortest path
between x and y.

Proof. Consider cZ(x, y) that is the infimum of lengths of rectifiable curves between x and
y. Hence 3 (v;) such that L(v;) — d(z,y). According to the Arzela-Ascoli theorem there
exists a subsequence of (v;) that converges to a curve . The path « has the same endpoints
2 and y and by lower semicontinuity of L we have L(y) < d(z,y). Thus L(y) = d(z,y). O

2.27 Definition. A metric space (X,d) is called locally compact if every point z € X
has a pre-compact neighborhood.

2.28 Proposition. If (X,d) is a complete locally compact length space, then every closed
ball in X is compact.

Proof. Let x € X be arbitrary. If B.(x) = {y € Y : |z,y| < r} is compact for some r > 0,
then B,(z) is compact for any p < r. Define R := sup{r > 0: B,.(z) is compact}. Since z
has pre-compact neighborhood, we have R > 0. We set Br(z) =: B.

We prove B is compact. B is closed set in a complete space. Hence, it suffices to prove
that B is totally bounded, i.e. for any € > 0 B contains a finite e-net (Theorem .

We may assume ¢ < R. Let B’ := BR,E/g(m). This ball is compact and therefore
contains a finite €¢/3-net. Let y € B. Assume y ¢ B’. Since X is a length space, we have
d(y,B') = d(x,y) — (r — €/3) < ¢/3 (see Corollary below). Hence 3y’ € B’ such that
d(y,y’) < €/2. On the other hand d(y',S) < €/2, and hence d(y, S) < e. It follows that S
is an e-net for B, and B is therefore compact.

Each y € B has a precompact neightborhood U,. We pick a finite collection {Uy }yey
of such neighborhoods that cover B. The union of U := Uer U, is precompact. There
exists € > 0 such that B.(B) C U (argue by contradiction). Since X is a length space,
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we also have B¢(B) = Bric(z) (indeed, if z € B.(B)\B, then € > d(z,B) = d(z,z) — R
and hence z € Bric(z). Bpric(r) C Be(B) holds in any case). Moreover the closure
Brye(z) C U is compact. This is a contradiction with the definition of R > 0 and R < cc.
Hence R = oo. O
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2.29 Corollary. Let (X,d) be complete locally compact length space. Then (X,d) is
strictly intrinsic.

Proof. We have to show that that for every z,y € X such that d(z,y) = R < oo J a
shortes path 7 connection  and y. By the previous proposition Bog(z) is compact, and
since X is a length space there exists a rectifiable curve 5 between z,y with L(7) < R+e.
The Proposition yields the existence of a shortest path v w.r.t. paths in Bag(z).
Since 7 is such a path, since L(¥) < 2R and since paths that start in = and leave Bag(z)
at least have length 2R, it follows that ~y satisfies L(y) = d(z, ). O

Question: Given an intrinsic metric d induced by a length structure L, what is the
relation between L and L,?

2.30 Theorem. If L is a lower semi-continuous length structure, i.e. lower semi-continuous
w.r.t. pointwise convergence of paths in X, L coincides with the length structure induced
by its intrinsic metric dr, = d on all curves that are admissible for L.

Proof. The inequality Lg(vy) < L(7) for an admissible path 7 holds for any length structure
(see Proposition [2.19)).

Consider L(t) = L(v,a,t) for an admissible path ~ : [a,b] — X with finit length. By
the second property 2. of length structures L(t) is uniformily continuous. Hence for any
€ > 0 there exists a partition Z = (o, ...,tn) of [a, b] such that dp (y(ti—1),7(t;)) < e Vi =
1,..., N. According to the definition of dy, for each i = 1,..., N there exists an admissible
curve o; : [ti—1,t;] — X with endpoints o;(t;—1) = y(ti—1) and o;(¢;) = v(t;) such that
L(o;) < dp(y(ti—1),7(ti)) + ¢/N. We can consider the concatenation ¢ : [a,b] — X of the
curves o; and ¢, we have

N N

L(c) = L(o3) <> dr(y(tia),¥(t:) + € < La(y) + .
=1

i=1

From the triangle inequality we see that dp(v(t),ce(t)) < 3e for all ¢ € [a,b]. Hence c.
converges pointwise to v for € | 0 w.r.t. dy. But the topology of dy, is always finer than
the original topology of X. So by lower semi-continuity of L we obtain

L(vy) < liminf L(ce) < Lg(y)
e—0

which is the desired inequality. O

In the following we will only consider lower continuous length structures L (defined on
admissible paths). Hence d;, = d;, =: d and L = Ly (on admissible paths). In particular
CZL = (i L =dL.

W.l.o.g. if we consider an intrinsic metric space (X, d) we mean that d = d and L = Lg
on continuous paths.

2.81 Example. Let (M, g) be a Riemannian manifold, L the induced length structure on
piecewise differentiable curves, and d = d;, the induced Riemannian distance. (M, cf) is
locally compact length space and L is also lower semi-continuous. Hence the induced
length L; coincides with L on piecewise differentiable curves. If (M, d) is complete as
metric space, then Vz,y € M 3 a minimal geodesic between = and y (Hopf-Rinow).
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We consider a metric space (X, d) as before.

2.32 Definition. (i) A point z € X is called a midpoint between z,y € X if d(x, z) =
d(z,y) = 3d(z,y).

(ii) Given € > 0 a point z € X is called an e-midpoint between z,y € X if

max{d(z, z),d(z,y)} < %d(l‘,y) +e.

2.33 Lemma. 1. If d is strictly intrinsic, then for every two points x,y € X there
exists a midpoint z.

2. If d is intrinsic, then Ye > 0 and for every two points x,y € X there exists an
e-midpoint z between them.

Proof. We first prove 2. Let v : [a,b] — X be a path between z,y € X such that
L(vy) = d(z,y) + 2¢. Since t € [a,b] — L(7v,a,t) is continuous, there exists ty € [a, b] such
that L(v,a,to) = $L(y). Hence d(v(a),(to)) < L(v,a,to) < 3d(z,y) + €. Similarly one
can prove 1. ]

2.34 Theorem. Let (X,d) be a complete metric space.
1. If for every x,y € X there exists a midpoint, then d is strictly intrinsic.

2. If for every x,y € X and for every e > 0 there exists an e-midpoint, then d is
mtrinsic.

Proof. We only prove 1. and 2. is left as an exercise.

We construct a path v : [0,1] — X between z,y such that v(0) = z,v(1) = y and
L(y) = d(v(0),7(1)). First we assign the values of ~ for all dyadic rationals 2%’ k €
{1,...,2™} and m € N. This is done by successively picking midpoints. The map that we
obtain by such a contruction satisfies

d(y(t),7(t) = (' = t)d(, y) (1)

where t',t are dyadic and ¢t < t'. Hence v is defined on a dense subset of [0,1] and
1-Lipschitz continuous. Since (X, d) we can extend v to the entire interval [0,1] as a 1-
Lipschitz map using Proposition Thus we obtain a path between z and y, and
holds for all s,¢ € [0, 1] with s < ¢. It also follows that L(vy) = d(z,y). O

2.35 Corollary. Let (X,d) be a length space, v,y € X and r € (0,d(z,y)). Then
d(y7 BT(J:)) = d(:ﬂ, y) —-T.

2.36 Corollary. A complete length space X is a length space iff given € > 0 and 2 points
x,y € X there exists a finite sequence x = x1,...,Tr =y such that every two neighboring
points in this sequence are e-close (i.e. d(x;,xiy1) < € Vi) and S 71 d(wi, xi1) < d(z,y)+
€.
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2.37 Definition. Let I C R be an interval. A path v: 1 — X is a shortest path if 7|44
is a shortest path for any interval [a,b] C I.

A path v : I — X is called a geodesic if Vt € I there exists [a, b] such that t € (a,b) C I
and 7|, is a shortest path.

Remark. In general geodesic are not shortest path. Moreover shortest paths between
points are not unique in general.

2.38 Theorem (Hopf-Rinow-Cohn-Vossen). Let (X, d) be a locally compact length space.
The following statements are equivalent:

(i) X is boundedly compact, i.e. every closed metric ball in X is compact.
(i) X is complete.
(iii) Every geodesic 7 : [0,a) — X can be extended to a continuous path 7 : [0,a] — X.

(iv) There is a point p € X such that every shortest path v : [0,a) — X with v(0) = p
can be extended to a continuous path 7 : [0,a] — X.

By Corollary[2.29 each of the conditions imply that all points in X can be connected by a
shortest path.

Proof. The implications (i) = (ii) = (iii) = (iv) are straightforwart and left as an exercise.

We will show that (iv) implies (i). The proof is similar to the one of Proposition [2.28]
The difference is that for Proposition [2.28] we were allowed to use completeness where in
this case we only can use property (iv).

We fix p € X and we define again R = sup{r : B,(p) is compact} where R > 0 by
local compactness. Our goal is to show that R = co.

We assume R < oo and first show that Bg(p) is precompact. For this we pick a
sequence (z;) C Bgr(p) and set d(p,x;) = ;. We will show that (z;) has a converging
subsequence. We can assume r; — R. Otherwise x; € B,(p) Vi for some r € (0, R) and by
compactness of B, (p) we find a converging subsequence.

Let ; : [0,7;] — X be a sequence of shortest paths between p and z; that is parametrized
by arc length. These paths exit because every x; belongs to a compact ball centered at
p- We can choose a subseqence such that the restriction ;|| ) converges to a curve
! 1 [0,71] — X. From this subsequence we can choose another subsequence such that
Yiljo,ry) CONVerges to 72 :[0,73] — X. We continue this iteration and then pick a diagonal
sequence 7; that converges on [0, ;] for every j.

We can then define v(¢) = lim~;(¢) for ¢ € [0, R). The curves 7; where nonexpanding,
i.e. 1-Lipschitz,

A((t),7i(5)) < It — 5]

and hence by continuity of this inequality also v is 1-Lipschitz. Moreover « is also a shortest
path on each subinterval [0,7;] by Proposition By (iv) there exists a continuous
extension 7 : [0, R] — X. Moreover ~;(r;) = z; converges 7(R) (Exercise). Hence Bg(p)
is precompact.

Therefore Br(p) is compact and we can proceed like in the proof of Proposition m
the end up with a contradiction. ]
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2.3 Metric speed

2.39 Definition. Let (X, d) be a metric space and v : I — X a curve. The speed of v at
t € I denoted by vy(t) is defined by

() e i OB (E £ €))

if the limit exists.

Remark. The notation |¥(¢)| is justified by the following observation. Let 7 : [a,b] —
(R™,| - |euct) be a differentiabl curve, then v (t) exists Vt € [a,b] and v, (t) = |V (t)]euci-

2.40 Theorem. Let (X,d) be a metric space and let 7 : [a,b] — X be a rectifiable curve.
Then for L'-a.e. t € [a,b] it holds either

L _ /
lim M =0
€,e’ 10 €e+¢€

or

d(y(t —€),7y(t +¢€))

=1.
€,e' 10 L(’Y|[t—e,t+e’])

2.41 Theorem (Vitali’s Covering Theorem for R™). Let X C R™ be bounded and let B be
a collection of closed balls in R™ such that for every x € X there exists € > 0 and B € B
with x € B and diamp < €. The there exists a countable subcollection {B;}icr in B of
disjoint balls the still cover X up to a set of Lebesque measure 0.

Proof. We argue by contradiction and suppose the contrary. For every a > 0 let Z,, denote
the set of all ¢ € [a, b] such that
L(7|[t—67t+e’})

L0l ere)
i inf —— a (1)

and
d(y(t —€),7(t +¢))
€¢'J0 L(’Y’[t—e,t—&—e’})

By assumption £(Z,) > 0 for all o > 0 sufficiently small. Otherwise J,-q Za would
have 0 measure which is equivalent to the statement of the theorem.

We fix o > 0 with £1(Z,) > 0 and set Z, =: Z as well L(Z) = p.

We choose €y > 0 so small, such that for any partition {y;}i—o,.. ~ of [a,b] with
maxi—1,. ~N(yi — ¥i—1) < €0, one has

—1-a (}).

N
L(y) = > d(v(yi1), 7)) < pa’/2.
=1

(We find such ¢y by Problem 1 on problem sheet 4.)
Consider now the set B of all intervals of the form [t — €,¢ + €'] such that t € Z and
€, ¢ > 0 satisfy € + ¢’ < g, and
L(7|[t76,t+6’])

e+¢€ =@
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and
d(y(t —€),v(t+¢€)

L(’Y‘[tfe,tJre/])
By the definition of Z every ¢t € Z is contained in arbitrarily short element of 8. Applying
Vitali’s covering theorem (Theorem we can find a countable subfamily {[t; — €;,t; +
€]}, in B of dijoint intervals that cover Z up to a set of zero measure. In particular

<1-—oq.

o
Dotz
i=1

Hence for M € N sufficiently large we have

M

S (e + ) > /2.

=1

Since the intervals from this subfamily are disjoint, we can find a partition {y;};—0,. ~
such that max;(y; — yi—1) < €o such that Vi we have that [t; — €, t; + €] C [yj—1,y;] for
some j. In particular, since the length of [y;_1,y;] is smaller than e, if ¢; € [y;—1,y;],
then [y;_1,y;] € B.

We denote L; = L(~| j and dj = d(v(y;j—1),7(y;)). By the choice of €y, we have

yj 1 y
N N
> (Lj—dj)=L(y) = > _dj < po?/2.
j=1 j=1
If [yj—1,y;] is in B (i.e. [yj_1,y;] = [ti — &, t; + €] for some 4, then

Lj—dj>Lj— (1-a)L; = aL; > o®(yj—1 — yj) = o*(& + &).

Hence
N M M 1
Z(LJ —dj) = o’ Z(a +€) > o’ Z(El +€) > i,uoﬂ.
Jj=1 i=1 i=1
This is a contradiction. O

Proof of Vitali’s Theorem. We may assume that every ball in 8 contains a least one z € X
and that every ball in B has radius not greater than 1. Then all the balls are contained in
the 2-neighborhood By (X') which is bounded and hence has finite volume. We construct a
sequence of balls {B; }ien by induction. Assume By, ..., By, are already constructed. Let
B,,, be the collection of balls in 8 that do not intersect with By, ..., By,. If 98B,, is empty,
then {B;}i=1,..m covers the entire set X and the proof is finished. If B,, is not empty, we
choose B,,+1 to be any element of 5,, with

1
diam By, 41 > 3 sup{diam B : B € B, }.

The sequence of balls { B; };en is disjoint by construction. We have to show that they cover
X up to a set of measure 0. We have

D LM(By) < o0
=1
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since the union of these balls has finite volume. Hence 3m € Nsuch that Y72 | L™(B;) <
e. Let x € X\ |J; Bi and let B be any ball in 98 that contains z and does not intersect the
balls By, ..., By,. Note that B must intersect with |J, B; because otherwise B € B, for
all m € N which contradicts that £"(B;) — 0 (since 2£(B;) > diam B VB € B;_1).

Let k € N be minimal such that BN By # (). Then B € B;_1 and hence diam By, >
%diam B. It follows that the distance between x and the center of By is not greater as
5 times the radius of Bj. Hence x belongs to the ball with the same center as By and 5
times its radius. We denote this ball with 5B;,.

We have proved that x € X\ |J; B; is contained in 5B;, for some k£ > m and therefore
X\ L_JZ B; C U;’im+1 5B;. Hence

oo o0
rx\UB) < D LGB =5" > pn(Bi) <5
i i=m+1 i=m+1
Since € > 0 is arbitrary, we showed that X\ |J; B; has measure 0. O
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In the proof of Theorem it is possible to set € = 0. Then we obtain the following
corollary.

2.42 Corollary. Let (X,d) be a metric space and let 7y : [a,b] — X be a rectifiable curve.
Then for L'-a.e. t € [a,b] it holds either

L
i (Yt t44) —0 or Lm d(y(t),y(t +€))

€l0 € 0 L(Y|it+e)

=1

2.43 Corollary. Let X be a metric space, 7 : [a,b] — X a Lipschitz curve. Then the
speed v (t) exists for L'-almost every t € [a,b] and L(v) = f; vy (t)dt.

Proof. Recall the following fact. If f : [a,b] — R is Lipschitz, f’(t) exists £!-almost
everywhere, and f; f(t)dt = f(b) — f(a).

If we define f(t) = L(Vljay) for t € [a,b], then f is a Lipschitz function. For a.e.
t € [a,b] we write

o v LOVlpera) . LOVeerq)  d(y(®),y(t+€) d(y(t),7(t + ¢))
OB = ™aawat+a W 2P g
>1

Then we have either f/(t) = 0, or the first term in the last product goes to 1. In the first

case we have At .
e—0 |€|

In the second cases we have

o) — 1 4002+ )
v el0 |6‘

= f'(®).

Thus v, (t) exists and equals f/(t) in both cases (for £!-almost every t).
The theorem follows by integrating v (t) = f/(¢). O
The last corollary actually holds for bigger class of paths.

2.44 Definition. Consider a metric space (X, d). A path~ : [a,b] — X is called absolutely
continuous if for any € > 0 there exists § > 0 such that for any sequence of disjoint intervals
lai,bi], i =1,..., N with 31 (b — a;) < & we have S | d(v(ti—1),v(t;)) < e.

Remark. Let ~y : [a,b] — X be a path. If ~ is Lipschitz, then it is absolutely continuous.

Recall the following. If f : [a,b] — R is absolutely continuous, then f is differentiable
almost everywhere, f’ is integrable and

b
/ (bt = £(b) — f(a).

2.45 Lemma. If a path v : [a,b] — X is absolutely continuous, then it is rectifiable.
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Proof. Let ¢ = 1 and pick § > 0 like in the definition of an absolutely continuous path,
and let M € N be such that ¢ < 4.

Let Z = (to,...,tpr) is be the partition of [a,b] given by ¢; = a + i%. Let Z' be any
partition with mesh size smaller than ﬁ W.l.o.g. we can assume that Z C 7'. Hence,
for every i there exist yg,...,yr € Z' such that a;_1 = yo < --- < yp = a;. Moreover, it

holds 3% (y; — yj—1) < 6. Hence
k

Zd(V(yi—l>77<yi>) <1
i=1

Hence L7 (y) < M. Since Z' was any partition with mesh size smaller than b_wa, we have
v is rectifiable. O

2.46 Theorem. Let (X,d) be a metric space and let v : [a,b] — X be an absolutely
continuous path. Then the speed v.(t) exists L'-a.e., is integrable and

b
L) = [ o (bt

Proof. 1f we show that f(t) = L(v,a,t) is absolutely continuous, we can finish the proof
exactly like for the case of Lipschitz curves.
Let € > 0 and pick § > 0 as before. Hence, if (a;,b;), i = 1,...,k, are intervals such

that S0 (b — a;) < 4, then S8 d(v(a;), (b)) < e.
This estimate stays true, if pick any family of finer intervals that come from partitions

of the intervals [a;, b;]. Hence, it follows Zle L(v,ai,b;) = Zle f(bi) — fla;) <e. O

2.4 Length and Hausdorff measure

Let (X, d) be a metric space. Recall the definition of the 1-dimensional Hausdorff measure.
For a countable family of sets {S;} in X, the 1-weight is defined as

wi({Si}) ZdlamS

Given A C X for any € > 0 we set
Hi,e(A) = inf{w({S;}) : diam S; <€, Vi e I}

where the infimum runs over all countable coverings of A with +oo if no such covering
exists. The 1-dimensional Hausdorff measure is then

HY (A) =C lim Hre(A)

for a constant C > 0.

2.47 Lemma. For any connected metric space X, it holds H'(X) > diam X.
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Proof. First we note the in the definition of H! it suffices to consider only coverings with
open sets. Indeed, if {S;} C X, with i € N, we define

S! = B;s(S;) = {y € X : d(S;,y) < 6/2}.

Then diam S} < diam S; + 2§/2% and therefore wq ({S!}) < w1 ({S;}) + 2J. Since § > 0 is
arbitrarily small, the claim follows.

Let {S;} be an open cover of X. Let x,y € X. There exist a finite sequence of
Siys---»Si, such that x € S;; and y € S;, and S;, N S;, ., #0 VEk=1,...,n — 1. Indeed,
fixing € X let Y be the set of all points y such that such a sequence exists. Then any
open set U C X must be either in Y or in X\Y. Hence Y and X\Y are open. Since X is
connected we have Y = X.

Now let {S;} be an arbitrary countable covering of X, x,y € X and {S;, } a sequence
as before. It follows there exist z; € S;, NS;, ., for all k =1,...,n — 1 such that ro = x

and x, = y. Clearly then d(xy, 1) < diam S;, . Therefore

Zdiam S; > Zdiam Siy. > Zd(azk,ka) > d(z,y).
i k k

Since {S;} and z,y € X are arbitrary, it follwos H!(X) > diam X. O

2.48 Theorem. Let (X, d) be a metric space and let 7y : [a,b] — X be a rectifiable simple
curve. Then L(v) = H(v([a,b])).

Remark. A path « is simple if it is an injective map.

Proof. Let L = L(v) < oo and S = v([a,b]). Assume  is parametrized by arc length, in
particular [a,b] = [0, L] w.l.o.g.

Consider the partitioin t; = i&, i = 0,... N, of [0, L]. It follows that d(v(s),v(t)) <
L(’}/,S,,t) < L(’y, tifl,ti) for all s,t € [tiflyti]- Hence diam*y([ti,l,ti]) < L(’}/,tifl,ti) =
L/N. Hence, the sum of these diameter is smaller or equal than L. Since these diameter
also go to 0 as N — oo, it follows that H!(S) < L.

On the other hand let a = tp < ...ty = b be a partition of [a,b], and set S; =
v([tiytix1]), ¢ = 0,..., N — 1. Since + is simple, the S; are disjoint, up to finitely many
points v(¢;). The unition of these points has H!-measure 0. Thus H!(S) = Y, H'(S;).
The previous lemma implies

HI(S;) > diam S; > d(y(t;),Y(tiv1))-

Since the partition was arbitrary, it follows that H!'(S) > L(7y). O
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3 Constructions

3.1 Locality of length spaces

3.1 Lemma. Let X be a topological space that is covered by a collection of open sets
{Xotaen. Assume each X, is equipped with a length structure Lo and such that the
following holds: if v is a path that maps to the intersection of X, and Xg then Lo(v) =
Ls(v).

Then there exists a unique length structure L on X whose restriction to every X, is
L. Moreover, if X is connected and all intrinsic metrics induced by Lo, on X, are finite,
then so is L.

Proof. Consider a path 7 : [a,b] — X. The inverse images 7~ !(X,) are an open covering
[a,b]. The compactness of [a, b] implies that there is a finite partition a = tp <¢; <--- <
t, = b such that every segment [t;,t;11] is contained in one of the sets X, and the length
of V[t 4:4,) 18 given by L,. By additivity of length, the length of v must be equal to the
sum of lengths of its restricted intervals [¢;,¢;11]. This proves the uniquness part of the
lemma. Moreover this gives a way to define a length L on X. To complete the proof
one has to check that L defined this way is independent of the choice of a partition and
satisfies the properties of a length structure. (Exercise).

To prove the statement about finiteness we fix a point x € X and define Y as the set
of all points such that the length distance between z and a point y € Y is finite. Every
set X, is either contained in Y or in X\Y by the triangle inequality. It follows that Y
and X'\Y are both open. But since X is connected we have ¥ = X. O

3.2 Corollary. Consider two intrinsic metrics di and ds defined on the same set X and
inducing the same topology. Assume every point x € X has a neighborhood U, such that
di(p,q) = da(p,q) Vp,q € Uy. Then dy = da.

Proof. Exercise . O

Give an example that demonstrates that the corollary fails without the assumption that
the metrics in quesiton are intrinsic.

3.3 Proposition. If a complete metric d on a set X is not intrinsic, then there exists
another metric di on X such that d # dy but every point has a neighborhood where d and
dy1 coincide.

Proof. For every € > 0 define d¢(x,y) = inf Ef:o d(pi, pi+1) where the infimum is taken
over all finite sequences of points pg,p1,...,Prr1 such that pg = =z, prr1 = y and
d(pi,pit1) < e for all i = 0,1,...,k. Clearly dc(z,y) = d(z,y) if d(z,y) < € and thus
d. and d coincide on every ball of radius €/2. On the other, if d. = d for all € > 0, then d
is intrinsic. ]
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3.2 Glued spaces

3.4 Example. 1. Consider the strip R x [0,1] and for every x € R identify (x,1) with
(z +100,0). This is a topological cylinder. What is the distance between (0, ) and
(1000, %) in this quotient? We can estimate the distance as follows. A sequence of
sgements that connects the two points is

(0, %) L (0,1) = % (0,1) = (100,0) = 0,

(100,0) — (100,1) =1, (100,1) — (200,0) = 0,

(900,0) — (900,1) = 1, (900, 1) — (1000,0) = 0,

1
(1000,0) —+ (1000, 3) = 1.

Hence the distance should be less than 11.

2. Consider R? and identify (z,y) with the point given by (—%,2x). Then distance
between the origin and any other point is 0, since (x,y) is identified with (%y, —)
that is identified with (—3z, —3y) that is identified with (—%y, 3x) etc. The distance
between these points is set to 0 and the sequence converges to (0,0).

These examples suggest a general strategy for defining a metric on a space that results
from identifying certain points

3.5 Definition. Let (X, d) be an co-metric space and let R be an equivalence relation on
X. The quotient semi-metric dgr is defined as

N
dR(x7y) = lnf{zd(pw(h) ‘pP1=%,9gN :y7NE N and Pi+1 ~R QlVl = 1a"'7N_ 1} .

=1

We associate to the semi-metric (X, dg) a metric space (X,dg) where X := X/dp is the
quotient space that arises from the equivalence relation p ~4,, ¢ < dr(p,q). (X,dr) is the

quotient metric space associated to ~g. One also says that (X, dg) results from gluing
(X,d) along R.

Remark. It is possible that the relation dg = 0 is stronger than R, i.e. more points get
identified in X/dp than in X/R. As example consider [0,1] and glue together all the
rational points.

3.6 Remark. Gluing a length space yields a length space. To see this we first observe
that dr < d, i.e. dr([z],]y]) < d(x,y) Yo,y € X. Hence every d-continuous curve is also
dg-continuous and Lg, < Lg. If (p;) and (g;) are points as in the definition of dr we can
construct a curve between z and y in (X, dg) whose length is almost equal to dg(z,y).
For this we concatenate almost shortest path between p; and ¢; for i = 1,..., N. Since g;
and py41 are identified in X this curve is continuous w.r.t. dg. Hence (X ,dR) is length
space.
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3.7 Definition (Gluing along subsets). Let (Xq,dq) be a collection of length spaces and
consider the disjoint union X := (J,X,. We introduce a length co-metric on X by the
following rule

00 otherwise.

do(z,y) ifxy € X,
d(x,w::{ (=.9)

Assume @ = 0,1 and let 7 : Yy C Xg — Y7 C X; be a bijection. We introduce the
equivalence relation R on X = XoUX; generated by the relation z ~ y & f(z) = y. We
denote the resulting glued space Xg Uz X;.

3.8 Examples. 1. Consider a segement [0, 1] with the metric | - — - |. We introduce the
equivalence relation R generated by 0 ~ 1. The glued space ([0,1]/R,dg) is a circle
of length 1.

2. Begin with a square [0,1] x [0,1] = @ with the Euclidean metric. An equivalence
relation R is induced from (0,x) ~ (1,2) and (x,0) ~ (x,1). The quotient space is
a torus.
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3.9 Lemma. Let b : X x X — Ry U {oo} be an arbitrary function, and consider the
class D of all semi-metrics d on X such that d < b. Then D contains a unique mazximal
semi-metric dpar Such that dpes > d Vd € D.

Proof. For xz,y € X we define
dmam(xay) = Sup{d($7y) rde D}

The function d,4; is non-negative, symmetric and satisfies dpqae < 0. We only need to
prove the triangle inequality for di,q.. Let z,y,2 € X. Then

ez (7,y) = sup d(z,y) < sup{d(z, z) + d(z,y)}

deD deD
< supd(z,z) +supd(z,y) = dmaz (T, 2) + dimaz (2, y).
deD deD

O]

3.10 Corollary. Let X be a set that is covered by a collection of subsets {X4}o and each
X, carries a semi-metric d,. Consider the class D of all semi-metric d < d, whenever
x,y € Xo. Then D contains a unique mazimal semi-metric dpmqy such that dpgq(x,y) >
d(z,y) Yd € D and x,y € X. If all dy are intrinsic, then so is dpqy-

Proof. We assume d,, is defined on X by setting d(z,y) = oo if x ¢ X, or y ¢ X,. Then
dpaz 1s defined as in the previous Lemma where b(x,y) = inf,, d,(z, y).

Let szaa: be the intrinsic metric induced by dqz. If dy, is intrinsic, it follows a?mw <d,
on X,. So cham belongs to D and hence cham = dmaz- O

3.11 Theorem. Let (X,d) be a metric space and R an equivalence relation on X. Con-
sider
0 if x is R-equivalent to v,
br(z,y) = ,
d(z,y) otherwise.

Then the mazimal semi-metric among those not exceeding br coincides with the semi-
metric dg obtained by gluing (X, d) along R.

Proof. Let D denote the class of semi-metric not exceeding bgr. Clearly we have dr € D.
We show dg > d’' for any semi-metric d’ € D.

If 2,y € X and {p;}%_;,{g;}*_, as in the definition of the gluing metric, then by the
triangle inequality we have

k k k
d(z,y) <Y d(piqg)+ "(qi> piv1) pz,qz + br(qi, Piy1) -
<d(pzv‘h) SbR(Ch szrl) 0
Hence d'(z,y) < dr(z,y). O
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3.3 Products and Cones

3.12 Definition (Direct product). Let X and Y be length spaces. The product Z = X xY
is equipped with the metric

A1, 90), (22,92)) = | Be(wr, 22) + (91, 10) (2)

where x1,22 € X and y1,y2 € Y. It is easy to check that d is metric. d is called product
metric, and the metric space (Z,d) is called direct product of X and Y.

3.13 Proposition. The direct product of (strictly) intrinsic metric spaces is a (strictly)
ntrinsic metric space.

Proof. We prove the statement regarding (Z,d) being instrinsic. We fix € > 0, let z; =
(x4,yi) € Z. Since X and Y are intrinsic, we can find curves o and £ such that dx (z1,x2) >
L(a) — e and dy (y1,y2) > L() — €. In particular, o and 3 are rectifiable. Then, there are
reparametrizations & and 3 proportional to arc length, defined on [0, 1] and with constant
speed L(a) and L(B) respectively. Moreover, @ and 3 are Lipschitz and vz = L(a) and
v = L(B) a.e. B

We define v = (@, 3) that is also Lipschitz. Hence v, exists a.e. and from the definition
it follows that v (t) = \/va(t)? + vg(t)2 = /L(a)? + L(B)%. Henc

1
L(y) = /O vy (t)dt = V/L(@)? + L(B)? < V/dx(1,22)? + dy (y1,42)? + Ce

for a constant C' > 0 independent of o and 5 but dependent on L(«) and L(3). Hence d
is intrinsic. [

8.1/ Remark. There are other possible definitions for a product metric on Z. For instance,
we can define d((x1,y1), (22, y2)) = dx(z1,22) + dy (y1, y2). More general, we can consider
any norm ||-|| on R? such that the restrictions to the rays {zo,y > 0} and {z > 0,10} are
monotone. Then d(z1, z2) = ||dx (z1, 22), dy (y1,y2)|| a product metric.

The formula is motivated by the Pythagorean theorem:.

3.15 Fact. A constant speed path in Z is a shortest path (a geodesic) if and only if it is the
product of two shortest paths (geodesics) in X andY with constant speed parametrizations.

3.16 Definition (Topological cone). A cone over a topological space X is the quotient of
the product X x [0, 00) w.r.t. the equivalence relation ~ that is given by (r,z) ~ (s,y) <
r=s=0Vr,y€ X. Le. we identify all points in {0} x X as a single point that is called
the origin (or apex, or tip) of the cone.

Question: How should we equip a cone with a metric?

Consider a subset X of §? = {v € R3: ||v]|,,, = 1} equipped wiht the angular metric
d(z,y) := Z(z,y). To built a cone over X we take all the rays from the origin 0 € R?
through a point £ € X. A point v in the union of all these rays can be described as a tuple
(r,x) with x € X and r = deye(0,v). By the cosine formula we can write the distance

between two vectors v = (r,z) and w = (s,y) as

[0 = Wy = dewct(v,w) = /12 + s — 2rscos Z(z, y).

This motivates the following definition.
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3.17 Definition. Let X be a metric space with diam(X) < 7. The cone metric dc on
[0,00) x X is given by the formula

do((r,z), (s,y)) = \/7’2 + 52 — 2rscosd(x,y)

Y(r,x),(s,y) € [0,00) x X.
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3.18 Definition. A subset A in a metric space (X, d) is said to be convex if the restriction
of d to A is strictly intrinsic and finite.

A is said locally convex if every point x € A has a neighborhood U such that U is
convex.

Remark. A submanifold N in a Riemannian manifold M is locally convex if and only if it
is totally geodesic (all geodesics of N are geodesic of M).

3.19 Lemma. If (X,d) is strictly intrinsic and finite and F : X — 'Y distance preserving,
then F(X) is conver in'Y .

3.20 Proposition. Let X and Y be length spaces, and « : [a,b] = X, 5 : [e,d] = Y
shortest paths. Then the product of their images R = Ima x Imf is convexr in X XY and
isometric to an FEuclidean rectangle.

Proof. The map F : [a,b] X [c,d] — X X Y given by F(t,s) = («a(t),5(s)). This map is
distance preserving. Then we apply the previous Lemma. O

3.21 Proposition. If X is a metric space X with diamx < m, then d¢ is a (semi)-metric.

Proof. Positiveness and symmetry are clear. We prove the triangle inequality.

Consider p; = (r;,z;),i = 1,2,3in C(X) and let o = d(z1,x2) and 8 = d(x2,z3). Now
construct 3 points p; in R? such that |pilewes = i and Z(p1p2) = a and Z(p2, p3) = B,
and also the rays going through 0 and p; and ps are in different half-planes w.r.t. the ray
through 0 and ps. By definition of the cone metric and our choice of p;, i = 1,2, 3, we get
|D1 — D2|ewct = dc(p1, p2) and |p2 — p3| = dc(p2, p3)-

We have two cases: a+ 8 <7 and a + 3 > 7. In the first case we have

Z(p1,p3) = a+ > d(x1, x3)

by the triangle inequality in X. Hence, by the properties of cos (and since o + 5 < 7),
we have |p1 — P3leuct = do(p1,p3). Then the triangle inequality for de follows from the
triangle inequality in R?:

dc(p1,p2) + do(p2,p3) = |D1 — D2leuct + [P2 — P3leuct > |D1 — D3leuat > de(p1,p3).

In the second case we argue as follows. Since a4+ § > 7, the broken line between p1, pa
and p3 lies outside the sector formed by the ray through 0 and p; and 0 and ps. Hence,
this broken path is longer than the path from p; to ps through 0. Hence

dc(p1,p2) +de(p2,p3) > 11+ 13 > /(11 +713)2 = \/7“% + 72 — 2ryr3 cosd(x1, x3).
O

3.22 Lemma. If X is a length space with diamx < m, and v is a shortest segment in X,
then the cone over the image of v is a convex flat surface in the cone C(X) over X.

Proof. Let~ : [0, L] — X be ashortest path in X parametrized by arclength. We introduce
polar coordinates (r, @) on the Euclidean plane. More precisely, if (z,y) are the standard
coordinates of R2, then (x(r, ), y(r,p)) = (rcosp,rsiny). We denote by @ the set of
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points in the plane whose ¢ coordinate is between 0 and L. Recall the Euclidean distance
between two points (x1,%1) and (x2,y2) in R? is

dewet((T1,y1), (T2,92)) = \/(951 — )2+ (y1 — )% = \/7“% + 7“% — 271712 cos(|p2 — w1).

The map F': Q — C(X) is given via F(r,¢) = (r,7(¢)). The image of F' is the cone over
~. The map F is also distance preserving. Indeed

dg(F(r, ), F(r',¢)) = r? + (") = 21" cos dx (7(¢), 7(¢"))
r? = (") = 2rr’ cos(p — ') = dgua((r, ), (', ¢")).

This implies F'(Q) is flat and convex. O

3.23 Example. Let X = S? with the angular metric. Then C(X) = R2. A shortest path
~ in X then is an arc contained in a great circle of X, and so the cone over ~ is a planar
sector. Any point in this sector has cone coordinates (r,v(t)). If v is parametrized by arc
length, r and t are precisely the polar coordinates in this planar sector.

Remark. The cone metric on [0,00) x X is first a semi-metric. The equivalence relation
dc((r,z), (s,y)) = 0 coincides with the relation ~ from before. [0,00) x X/d¢ = [0,00) X
X/ ~ and d¢ is a metric on [0,00) X X/ ~. We write C'(X) for the metric cone over (X, d).

3.24 Remark. Let 7 : [a,b] — C(X) be a shortest path not passing through 0. We can
write J(t) = (r(t),v(t)) where r(t) is a curve in (0,00) and ~(¢) is a curve in X. From
the proof of the triangle inequality in C(X) we see that the triangle inequality between
any three points (1), v(t2) and y(t3) in X for ¢; < t3 < t3 turns into an equality. This
implies L(7y) = d(v(a),y(b), hence 7 is a shortest path.

Hence there is an injective correspondence between shortest paths in X of lenght
strictly less than 7 and shortest paths in C'(X) not passing through 0. As for shortest
paths passing through the origin, it is easy to see the following. Every point (z,7) € C'(X)
is connected to the origin by a unique shortest path (z,t),co,- The concatenation of
two such segments with endpoints (z1,71) and (z2,72) is a shortest path if and only if
d(zy,x9) = .

How can we define the cone over larger spaces. The previous formula does not work
since, for instance, the triangle inequality may fail. We have the following guidelines: the
previous formula shall hold for small distances < 7 and the resulting cone shall be a length
space. Existence and uniqueness of such a metric is guaranteed by Lemma

3.25 Definition (Cone over a larger space). Let X be a metric space. The cone distance
dc(a,b) between points a = (t,z) and b = (s,y) in C(X) is defined as

V2 + 82 —2tscosdy (z,y) dx(z,y)
t+s dx(z,y)

IN

T,

deo(a,b) = {

A\

.

Remark. Alternatively, one can define d(z,y) = min{d(z, y), 7} that is a metric on X, and

define C'(X) := C(X,d) where the metric of C(X,d) is given by the previous formula.
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3.26 Theorem. The metric dc on C(X) is intrinsic (resp. striclty intrinsic) if and only
if the metric d is intrinsic (resp. strictly intrinsic) at distances less than w. The latter
means for any two points x,y € X such that d(x,y) < 7 there is a curve in X connection
x and y whose length is arbitrarily close (resp. equal) to d(x,y).

Proof. Assume first d < w. Let z,y € X and a = (t,z),b = (s,y) € C(X). If yis a
shortest path between x,y then we apply the previous Lemma, and we know that the
cone over 7 is a flat surface that embeds into C'(X). It follows there exists a curve of
length dc(a,b) connecting a and b. If d(x,y) > 7, then d¢(a,b) =t + s and there are two
segments connecting a and b with the origin and the union of this segments is shortest
path between a and b. Thus d¢ is strictly intrinsic.

Conversely, if d¢ is striclty intrinsic, for any two points z,y € X with d(z,y) < 7, we
apply the result of Problem 3 on Problem Sheet 7 to a shortes path 5 between a = (1, x)
and b = (1,y). Since L(¥) = dc(a,b) < 2, 7 does not pass through the origin and hence
has a well defined projection v in X that is a geodesic in X by the previous Remark. [

3.27 Remark (Warped products and spherical suspensions). 1. Let (X, d) be a metric
space with diamyx < 7 and consider [0,7] x X. We can identify the points (0, x)
Vx € X, and the points (7,y) Yy € X. On the corresponding quotient X/ ~ space
we introduce a metric ds: as follows:

cosdx((s,z), (t,y)) = cosscost + sinssintcosd(z,y).
The space (X/ ~,dy) = 3(X) is called spherical suspension of X.

2. Let X and Y be two complete length spaces and f : X — [0,00) continuous. For a
Lipschitz curve v = (a, ) : [a,0] & X x Y in X x Y we can define a length by the
following formula

b
L) = [ \foultf? + (£ o a2(00s(e)2at.

The intrinsic metric induced by this length structure on X x Y is called warped
product metric. The warped product is denoted with X x ;Y.

If X =[0,00) and f(r) = r, then [0,00) x, Y = C(Y) (Exercise).

3.4 Angles

Question: How can we measure angles in a metric space?

For this first we consider two rays a, 3 : [0,00) — R? emanating from the same point
a = «(0) = 5(0). We can pick ¢t,s > 0 and apply to the cosine rule to the triangle
A(a,a(t),5(s)). That is

a—at)?+la—B80s)2 = |a(t) — B(s)|?
| <t>\227; o a@(\yl‘? 5|<s>(f) B _ o wypacs).

This expression gives the angle between a and S at a.

We can now mimic this definition in a general length space. Let «, 8 be geodesic rays
in a metric space (X,d) and replace | - — - |2 with d. But in general the expression above
will depend on t and s.

arccos
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3.28 Definition. Let (X,d) be a metric space and let x,y,z € X be 3 distinct points.
We define the comparison angle Zzyz of xyz at y by
d($a y)2 + d(ya Z)2 — d(.fL', z)Q

2w p)d(ys)

The geometric meaning of this definition is as follows. We pick a triangle AZyz in R?
whose sides correspond to d(zx,y), d(y,z) and d(z,z). Then Lxyz = LZyz.

Zxyz = arccos

3.29 Definition. Let «,8 : [0,¢) — X be two paths in a length space (X,d) with
a(0) = p = B(0). We define the angle Z(«, ) between a and [ as
L(e, f) = lim Zo(s)pB(t)

if the limit exists.
If & and f are shortest paths parametrized by arc length, then d(p,a(s)) = s and

d(p,5(t)) =t, and

52+ 12 —d(a(s), 5(t))2.

Za(s)pp(t) = arccos 5st

3.30 Fact. 1. Every shortest path forms zero angle with itself.

2. Let oz [a,b] — X and B : [b,c] = X be two shortest segments with a(b) = p = 5(b),
such that their concatenation is also a shortest path, then the angle between a and
B atp is .

Remark. We will mainly deal with length spaces that admit curvature bounds. In such
spaces the angle between shortest paths is always defined. For more general metric spaces
one may also consider so-called upper angles, defined as

Zy(a, B) = limsup Za(s)pB(t).

s,t—0
3.31 Theorem. Let (X,d) be a metric space. Consider 8 paths v1,72 and 3 starting at
the same point p € X. Assume the angle Z(y1,72) = a3, Z(7v2,7v3) = a1 and Z(y1,73) = o

exist. Then
a3z < ap + as.

Proof. The statement is trivial if a; + ae > 7. So suppose this is not the case.
Given € > 0 there exist a = y(s), b = 72(t) and ¢ = y3(r) such that for each angle we
have
lag — 0(b, ¢)|, e — O(a, )], |as — 0(a,b)| < e

where in this situation we define
d(p7 CL)2 + d(pa b)2 - d(aa b)2
2d(p, a)d(p,b)

We pick 4 points p, @, b, ¢ in the Euclidean plan R? such that Aapé and Aépb are comparison
triangles for Aapc and Acpb.

0(a,b) =
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We fix a,b and move ¢ towards p. Formally this means we fix s and ¢t and decrease
r > 0. For ¢ close enough to p, we have that p and ¢ are situated on one side of the line
that goes through @ and b. On the other hand fixing ¢ and moving a and b towards p we
obtain a configuration with p and ¢ on opposite sides of the line through @ and b.

By continuity we can finde s,t,7 > 0 such that ¢ belongs to the segment [a,b]. Here
[@,b] is a notation for the set {(1 —t)a +tb € R? : ¢t € [0,1]}.

For this configuration (¢ € [a,b]) we have

la —b| = |a—¢| +|¢—b| = d(a,c) +d(c,b) > d(a,b).
We now add a point b to this configuration in R? such that
P =8l = |p—b| = d(p,b), |a—b|=d(ab)

and such that b lies on the same side of the line through p and a as b.
Recall 9(a b) is equal to the angle of the triangle Aapb in p, that is Lapb Similarly
f(a,c) = Zabé and O(b,c) = Lbpe. Hence

0(a,c)+ 0(c,a) = Labb.

Comparing the triangles A(bpa) and Abpa we see that they have two equal sides, and
la —b| > |a — b|. Thus Zapb > Zapb. It follows

0(a,c) 4+ 0(b,c) > 6(a,b).
Combining this with the estimate at the beginning we get
ag < aj +ag+ 3e Ve > 0.

This finishes the proof. O

3.32 Definition. A curve 7 (starting in p) has a direction a p if the angle Z(v,~) exists.
We say two curves « and f3 starting in p have the same direction at p if Z(a, 3) exists and
is 0.

The equivalence class of curves starting in p with the same direction is called a direction
in p.
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4 Metric spaces with curvature bounds

4.1 Definition. Let (X, d) be a length space and let p € X. The distance to p is the real
valued function d,, on X defined by

dp(x) = d(p, aj)

Let 7 : [0, L] — X be a shortest path parametrized by arc lenght between points z,y. We
also write Im~y =: [z, y]. Then the 1-dimensional distance function is defined by

g(t) = d(p,¥(t)) = dp(v(1)).

4.2 Remark (Comparison configuration in the Euclidean plane). Let x,y € X, v and g be
as in the previous definition.

Consider R? with d = deyyy = |- — - |. We choose Z,9 € R? such that |z — g| =
d(x,y) = L and let 7 : [0, L] — R? the segment that is the shortest path between z, § € R?
parametrized by arclength. More precisely v(t) = Z + té%;.

Next we choose a reference point p € R such that [p — Z| = dp(z) = d(p,x) and
|p — 9| = dp(y)the = d(b,y). (Why is this possible?)

This comparison configuration is unique up to rigid motions.

We call g(t) := |p — ()| the comparison function for g.

We are going to define spaces with nonpositive (nonnegative) curvature by saying
that distance functions g are more convex (concave) than the corresponding comparison
function, i.e. go(t) > g(t) (go(t) < g(t)). Since we also want our definition to be local we
formulate it as follows.

4.3 Definition (Distance condition). We say that a length space (X, d) is nonpositively
curved (nonnegatively curved) if every point x € X has a neighborhood U = U, such that
the following holds: Vp € U and V~ that is a shortest path in U the comparison function
go for the corresponding g = d,, o 7y satisfies

go(t) > g(t) (go(t) < g(t)) Vt € [0, L].

We will use the name Alexandrov space for spaces with curvature bounded from above
or below, and in particular for spaces with nonpositive or nonnegative curvature.

4.4 Example. The space (R, |- |) has nonpositive and nonnegative curvature, because R
embeds distance preserving into R2,

4.5 Exzample. We glue together 3 copies of [0,00) C R by gluing at the point 0. The
resulting glued space R3 has nonpositive curvature.

Indeed, we can argue as follows. Denote O the common point of the three rays. Every
shortest path in Rjs is eigher a segment in one the 3 rays, or a concatenation of two
segments in two different rays that meet at O.

Let 7 : [0,L] — Rs be any shortest path and let p € Rs. If two of the three points
~(0),v(L) and p belong to the sam ray, then the statement is trivial because v and p are
contained in union of two rays, and such subset of Rj3 is isometric to R.

So we consider the case when all 3 points 7(0) = a,v(L) = b and p belong two different
rays. For every x € [O, a] one has d(p, x) = d(p, a) — d(a, z). For the function g this means

9(t) = dp(7(t)) = d(p,7(t)) = g(0) =t if y(t) € [0, a].
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On the other, for the function gy one has

g0(t) = lp =) > |p — a| = |a = F(t)| = go(0) — t = g(0) —t = g(1).

The case (t) € [O,b] works similar.

Consider a metric space X from now on we often write |zy| for the distance between
two points in X and [zy] for a shortes segment between x,y. Note that [ry] may not
be unique. A triangle in X is collection of 3 points x,y,z € X connected by shortest
segments. Zabce denotes the angle between [ba] and [be] (if the angle is welldefined).

4.6 Example. Let K be the cone over a circle of length . > 0. Then K is a space of
nonnegative curvature if L < 27 and K is a space of nonpositive curvature if L > 27.
Indeed we can argue as follows. First note that the cone over a circle is (locally) flat
outside of the vertex: Every subcone over segment with length v < max{L/2, 7} is convex
and isometric to a planar sector with angle a.
Pick a shortest path 7 : [0,L] — K and a point p € K, and consider the triangle A
composed of the three shortest paths between p,v(0) and y(L). There are two possibilities:

1. A bounds a region not containing O or one of the points a, b, p coincide with O.
2. A bounds a region containing O, or some of its sides pass through O.

More precisely, the first case means that one of the points a, b, p is contained the planar
sector that is the cone over Imf where v = («, 3) is the shortest path that connects the
other two points. In this case the triangle composed of the 3 points is isometric to a flat
triangle in Euclidean space and therefore the distance function g coincides with gg.

The second case we treat for L < 27 and L > 27 separately. The case L = 27 is
trivial, because then K is isometric to R2.

L < 27. We cut R? along the segments [0, a] and [0, ] and [0, p]. Each of the ensuing
sectors is isometric to a planar sector since L < 2m. Since the sum of the angles is bounded
from above by 27 we may put together these sectors in R? to form a wedge with vertices
a,b,p and 0. The surface of this wedge with the gluing metric is isometric to K.

The triangle Aabp lies in the plane spanned by @, b and p in R3, and is also a comparison
configuration for a,b and p. Since the intrinsic distances in K are bigger than in the
ambient space R3, we have go(t) < g(t) where the later comes from the intrinsic distance
in K. Hence K is nonnegatively curved.

Now suppose L > 2. The triangles AabO, AapO and AbpO are flat, i.e. isometric to
Euclidean ones. Consider the first and last of these triangles and place isometric copies
AabO and AbpO in the plane at different sides of the common side Ob (if a shortest path
[ab] and [bp] passes through O its isometric copy degenerates to a segment.) Observe
Zb0a + £bOp > 7 and ZaOp < ZaOp (since L > 27); hence |ap| < |ap|. Let us rotate
the trianglel AbpO around b until |ap| is equal to |ap|. This shows that isometric copies of
triangles AabO and AbpO lie without overlapping in a planar triangle Aabp whose sides
are equal to Aabp. This argument works for any pair of triangles. Hence isomtric copies
of all triangles lie without overlapping in the planar triangle Aabp. Hence all distances
between points in the sides of Aabp are less or equal to distances between corresponding
points on the sides of the comparison triangle Aabp, i.e. g < go.
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Remark. From the above proof one can see that the converse statement is also true, i.e.
a cone over a circle is nonnegatively (nonpositively) curved only if the length of the circle
is not greater (not smaller) than 27.

Given a triangle Aabc in a metric space X a triangle Aabé in R? with
|abl = |ab|, [be| = [be], |ac| = |ac]

is called a comparison triangle for Aabc.

Remark. It is clear that a comparison triangle in R? is unique up to rigid motions.

4.7 Definition (Triangle comparison condition). A length space X is a space of nonpos-
itive (nonnegative) curvature if in some neighborhood of each point the following holds:
For every Aabc and every point d € [ac|, on has |db| < |db| (>) where d is the point on
the side [a¢] of a comparison triangle Aabé such that |ad| = |ad|.

Such a neighborhood is called a normal region.

One can always choose a normal region U, so small such that all shortest path with
endpoints in U, are still contained in a possibly larger normal region V,.. For instance, one
can pick a normal region V, and then let U, be a ball around z in V, sufficiently small.

4.8 Remark. For nonpositively curved spaces, if one can choose the whole space X as a
normal neighborhood, one calls X a CAT(0) space. Here CAT stands for comparison
of Cartan-Alexandrov-Toponogov and (0) indicates that we compare with flat space, i.e.,
that we impose a zero upper curvature bound.

Spaces with nonnegative or nonpositive curvature are also called Alexandrov spaces.

Roughly speaking, all sufficiently small triangles in a space of nonposi- tive (resp.
nonnegative) curvature are not thicker (resp. not thinner) than corresponding Euclidean
triangles.
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Let X be a length space. Recall that a triangle in a length space is a collection of
3 points and a choice of shortest paths between these points. Let a,b and ¢ points and

consider shortest paths «, 8 and v between b and a, b and ¢, and ¢ and a. We assume
a(0) = 5(0) = b. The definition of angle between « and 8 at b is

5?17 — Ia(S)ﬁ(t)|>
2ts

Z(af) = lim arccos <
s,t—0

if the limit exists. In this case we also write Z(a3) = Zabc, the angle at b of the triangle
formed by a,b and c and the shortest paths a, 8 and v.

Recall that Zabc denotes the comparison angle, i.e. Zabc = Zabé for a comparison
triangle Aabé in R? associated to Aabc.

Also note that, given two points a,b € X, after we picked a shortest path + between a
and b we write [ab] = Im-y.

4.9 Definition (Angle comparison condition). A length space X is a space of nonpositive
curvature if every point of X has a neighborhood such that for every triangle Aabc con-
tained in this neighborhood, the angles Zabe, Zbac and Zcba are well defined and satisfy
the inequalities

Zabe < Zabc, Lbea < Zbca, Zeab < Zcab.

For nonnegative curvature the inequalities < are replaced with >, and we add the
following condition: For any two shortest paths [pg] and [zy] where x is an inner point of
[gp], one has that Zpzy + Lyxq = 7.

Let «, 8 be two shortest paths parametrized by arclength starting at the same point
p. We refer to such a configuration as ”a hinge”. We introduce 0(s,t) = Za(s)pB(t), i.e.
6(s,t) is the angle at p in a comparison triangle Aa(s)pB(t).
4.10 Definition (Monotonicity condition). A length space X is a space of nonpositive
(nonnegative) curvature if it can be covered by neighborhoods such that for any two
shortest segments o and 8 contained in such a neighborhood and starting from the same
point p, the correspondingn function 6(s,t) is nondecreasing, i.e. "0(s,t) 1T if s,t 1”
(nonincreasing) in each variable s and ¢ when the other one is fixed.

From the definition directly follows that:
4.11 Proposition. If X has nonpositive (nonnegative) curvature then the angle between
any two shortest paths in X is well-defined.
4.1 Equivalence of definitions

We first prove an elementary fact in Euclidean geometry. We consider R? with the Eu-
clidean distance |ry| = | — y|ewe, T,y € R2.

4.12 Lemma (Alexandrov’s Lemma). Let a,b,c and d be points in R? such that a and ¢
are in different halfplanes w.r.t. the line that goes through b and d. Consider a triangle
Ad't'd in R? such that

jabl = [a't'|, |bc| = [b'c'|, |ad| + |de| = |a’c|
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and let d' be a point in the side [a’'c'] such that |ad| = |a'd'|. Note that in particular
lad| + |dc| = |a'd| < |ab| + |be| by the A-inequality.

Then Zadb + Zbde < 7 if and only if |'d'| < |bd|. In this case, one also has Zb'd'd <
Zbad and £V dd < Zbed.

And Zadb + Zbdc > 7 if and only if |b'd'| > |bd|. In this case, one also has Zb'a'd >
Zbad and 2V dd > Zbed.

Proof. We use the following fact. If two sides of a planar triangle are fixed, then the
angle between these two sides is a monotone increasing function of the third side. More
precisely, if Azyz, Ax'y’z" are Euclidean triangles such that |zy| = |2'y/| and |yz| = |¢/7/],
then Zzyz > Za'y'2 if and only if |xz| > |2'2/|, and vice versa.

Take a point ¢; on the ray formed by a and d such that d is between a and c¢q, and such
that |dc| = |deq|. Suppose Zadb+Zbdc > 7; then Zbde; < Zbde. Hence |beq| < |be| = |V

Now we apply the observation for the triangles Aabe; and Ad’t/c’ for which |ab| = |a'V/|
and |aci| = |a’d|. Since |bey| < |V, it follows Zbacy < Zb'd'd.

Hence, considering the triangle Abad and Ab'd’d’, we get |bd| < |b'd’.

The case Zadb + Zbdc < w works the same way, up to reversing the inequalities. [

4.13 Theorem. All the definitions for nonpositive (nonnegative) curvature are equivalent.

Proof. The proofs for spaces of nonpositive and nonnegative curvature are similar up to
reversing the inequalities. We prove the case of nonpositively curved spaces and indicate
necessary modifications for the case of nonnegative curvature.

1. The distance condition and the triangle condition are equivalent.

It is clear that the distance condition implies the triangle condition. Assume the
triangle condition. Given p € X let U, be the corresponding normal region. We can choose
€ > 0 small enough such that B.(p) C U, and Vz,y, z we have that every Azyz C U,.
Then it follows that B(p) satisfies the required properties.

2. Assume the triangle condition. Let us show the monotonicity condition.

Consider a hinge of two shortes paths «, § with Ima = [pa] and Imj = [pb], and a
point a; on [p,a]. Let Apab and Apa;b be comparison triangles for Apab and Apaib.
Let a be a point on [pa] such that [pa| = [pai|. Then the triangle condition implies that
|ba| > |bai| = |ba1|. This means that Zapb > Za;pb. This is the angle monotonicity.

3. The monotonicity condition implies the angle condition.

Let dabc be a triangle. The side [ba] and [bc]| are given by shortest paths a and 8 with
a(0) = (0) = b. By the monotonicity of angles we have

Zabe = Z(af) = %in{l)@(t, t) < 6(|abl, |be|)
—

where 6 as before. Since 0(|abl, |bc|) = Zabe, this is the angle condition.
4. The Angle condition implies the triangle condition.

Consider a triangle Aabc and a point d in the side [ac]. Note that

Zbda + Zbdc > Zade = (3)
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by the angle triangle inequality. We place comparison triangle Aabd and Aébd in different
half planes w.r.t. the line bd in R?. By the angle condition it follows for the comparison
angles

Zadb + ZLedb > .

Now we apply Alexandrov’s Lemma. Let Aa1bé be a comparison triangle for Aabe

and let d; be the point on [@;¢1] such that |aidi| = |ad|. Alexandrov’s Lemma yields
|bd| = |bd| < |b1dy|. This is the triangle condition for dabc and d € [ac].
This finishes the proof of the equivalences. O

Remark. For the proof in the case of nonnegative curvature we can just reverse all the
inequalities.

However we use the triangle inequality for angle for the inequality . This inequality
cannot be reversed.

However this property was included in the definition of the angle condition for non-
negative curvature.

Hence, to finish the proof on the equivalence of the definitions we only need to show
the following lemma.

4.14 Lemma. If a space X has nonnegative curvature in the sense of the monotonicity
condition, then for any shortest path, the sum of adjacent angles is equal to w. In other
words, if do is an inner point of a shortest path [agbg] and [docy] is a shortes path, then
ZLagdoco + ZLegdgby = 7.

46



153.12.2023

Proof. By the triangle inequality for angles we always have Zagdyco + Zcodgby > .

To prove the opposite inequality let a,b and ¢ be arbitrary points in the shortest paths
[aodo], [dobo] and [doco] respectively. We place comparison triangles Aadoé and Aédgb on
different sides of the line [éafg] in R%. Let Aa¢1b; be a comparison triangle for the triangle
Aabe and let dy be on [a1b1] such that |adg| = |a1d1|. The monotonicity condition implies
that Zeady > Zé1aiby. Hence |doé| > |dié1]. By Alexandrov’s Lemma it follows that
Zado¢ + Zédyb < w. Passing to the limit in this inequality as a,b and ¢ approach dy, we
get Lagdpcg + ZLepdoby < . ]

4.2 Analysis of the distance function

Recall the distance condition. A length space (X, d) is nonpositively curved (nonnegatively
curved) if every point € X has a neighborhood U = U, such that the following holds:
Vp € U and V+ that is a shortest path in U the comparison function gg for the corresponding
g = dj, oy satisfies

90(t) = g(t) (g9o(t) < g(t)) Vt € [0, L].

The comparison function is given by go(t) = |p — 7¥(t)| where 7 is a shortest segment in
R? and Ap¥(0)7(1) is a comparison triangle for Apy(0)y(1). Notice that even without
curvature restrictions not every continuous functions can arise as a 1-dimensional distance
function. g must be nonnegative and nonexpanding, since d,, is 1-Lipschitz because of the
A-inequality.

We want a complete list of all possible functions gg that can arise as comparsion
function. If 4 is a straight line in R? and p € R? is a point, then go(t) = [p — F(t)| =

(t + ¢)? + h? where c is the parameter such that J(—c) is the orthogonal projection of

ptoyand h=|p-— 7(—20)|

Observe now that %(go(t))2 =2. If o(t) = tL, then f(t) = (go(c(t)))? satisfies

f"=2L%( f0)=[p—(0) =d® f(1)=1|p—-5(1)*="0" (4)
Hence
f(t) = (1 —t)a® +tb* +2(1 — t)tL>.

Note that a = [py(0)[, b = [py(L)| and L = |v(0)(L)|-

The function f indeed has this form, since (1 — t)a? + tb?> + 2(1 — ¢)tL? is the unique
solution of .

It follows

g(t) = go(t) (<) Vt €0, L]
& g(sL)’ = f(s) () vt e [0,1]
& d(p.A()* = (1= 8)d(p,7(0))* + sd(p, A(1))* — (1 = 5)sL(%) (<) ¥s € [0,1]

where 4 : [0,1] — X is the constant speed reparameterization of v, i.e. J(s) = v oo(s)
with o(s) = sL.
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Similar, we can choose o(s) = (1 — s)tg + st; and consider 4 = vy o o and (gg 0 0)%. 4
is then the constant speed reparameterization of 7|, ;- Then we also get

dp(7())? 2 (2)(1 = 5)dp(3(0))* + sdp(7(1))* = (1 — s)s(t1 — to) L7
It follows that u(t) = g(t)? satisfies
u” > 2 (<) in the distributional sense on (0, L)
& / ugp” +2¢) dt > 0(<)Vyp € C*((0, L))

u(t) — t% is convex (concave)
if X is a Riemannian manifold . . . .
& V2d12, < 2gx where gx is the Riemannian metric.

4.15 Corollary. A length space X has nonpositive (nonnegative) curvature iff Vo € X
JU neighborhood of z s.t. Vp € U and ¥y : [0, L] — U shortest path uody,(t) —t? is convex
(concave).

4.16 Ezample. Consider X = (R?|-||;) where |z||, = |z1| + |22| (1-Norm).
X is a complete, locally compact length space. Straight lines are shortest paths because
LI((1 —t)z+ty) = ||x — y||,. But there are more shortest paths other than straight lines.
Claim: X is not a space of nonpositive, or nonnegative curvature.
Consider y(t) = (1 —t,t), t € [0,1]. Then g(t) = 1 ¥t € [0,1]. We have LlI'li(y) = 2.
We have

f) =1 —-)12+t12 — (1 —t)t22 =1 —4(1 — t)t = 1 — 4t + 44>

(What is the comparison distance function go?)

Henc g(t2)2 = 1 > f(t) = go(t2)?. Hence X is not of nonpositive curvature.

On the other hand, we consider y(t) = (1 — )3 +t1,(1— )3 —td) = (3,5 —¢) for
t €[0,1].

It follows that LI'li(y) = 1 and g(t)? = do(7(t)) = |7 ()|} = (3+13— t])Q. We have
g(0)? = 1= g(1)? and g(1)? = L.

The distance comparison function is

1
gt =1-t)12+t12 -1 -t)t12 = 90(5)2 =1--=ZI
Hence go(4) = ¥ > 1 = g(1).
Therefore X is not nonnegatively curved.

4.17 Theorem. Let X be a length space of nonpositive (nonnegative) curvature. Suppose
sequences of shortest paths [a;b;lien and [a;c;lien converge uniformly to shortest paths [ab]
and [ac| respectively. Then

1. Zbac > limsup,_, ., Zb;a;c; for nonpositive curvature,

2. Zbac < liminf; o Zbsa;c; for nonnegative curvature.
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Proof. For r > 0 let b’ € [ab], ¢ € [ac] and V] € [a;bi], ¢, € [aic;] points at distance r > 0
from a and a; respectively. N B
We denote with 6(r) and 6;(r) the comparison angles Zb'ac’ and Zbia;c;]. We have
la;bi| = |ab'| = |a;c;| = |ac’| = r and |bic;| — |bec| (where 7 is fixed). Hence
lim 6;(r) = 6(r) Vr > 0.
1—00
If the curvature is nonpositive, then 6,6; are nondecreasing functions. Hence 60;(r) > «;
and consequently
f(r) > limsup o; Vr > 0.
1—+00
Thus o > limsup;_, . ;.
If the curvature is nonnegative, then 6, 6; is nonincreasing. Hence 6;(r) < ;. So

O(r) < liminf oy Vr > 0.

1—00

Thus o < liminf;_, ;. ]
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4.3 First variation formula

Consider 7 : [0, L] — R? and p € R? and let I(t) = |p — ¥(¢t)|. Then the following first
variation formula holds

% = —cos Z(p—7(t),7 (1)) = —(p — (1), (£)).

We show that a similar formula holds in spaces of nonpositive or nonnegative curvature.

Let X be a length space, v : [0,7] — X a unit speed shortest path, a = ~(0) and
¥(T) =d, and p € X\{a}. For every t € [0,T] we set [(t) = |py(t)| and we fix a shortest
path oy between (t) and p.

4.18 Proposition. If the angle o = Zpad between v and [ap] = o¢ exists, then

1)~ 1(0) _

lim sup < —cosa.

t10

4.19 Remark. The left hand side of the previous inequality does not depend on ¢g. Hence

we get
() -1
lim sup M <
10 t

— COS Qimin

where oy, is the infimum of angles between « and all possible shortest paths from a = (0)
to p.

4.20 Lemma. Let Aabe be a triangle in R%, a = Zbac, t = |ac|. Then

|ab| — |bc| t
cosq — —— | < —.
t |ab|

Proof. Denote |ab| =y and |bec| = z. The cosine rule gives

P22 PPt y—zytz

cosa = 2ty - 2ty + 2t 2 2y
Then
—z Yy—zy+=2 t Yy—z
cos a — = — —
t t 2y 2y t
S e | | R A P A A S
t 2y 2y 2y 2y "y
The last inequality follows by the triangle inequality. Indeed |“%| < 1 and ‘y;;/ z _ 1’ =
|z—y| < t ]

2y — 2y°

Proof of the proposition. We consider two variable points b on [ap] = 0¢ and ¢ on Im-, i.e.
¢ = 7(t). The triangle inequality implies

|ab] — |be| = lap| — (|bp| + [be]) < 1(0) —I(2).
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Then we apply the previous lemma to the comparison triangle Aabc. This yields

-~ bl — b t 1(t) —1 t
cosébac§M|t|C|+< M

jabl =t Jab|

We let the points b and ¢ converge to a so fast such that ﬁ — 0. The the statement

follows by passing to the limit in the last inequality. O

4.21 Theorem. Let X be a space of nonpositive (nonnegative) curvature, let v, op and l(t)
be as above ,and assume that a sequence oy converges to og for some sequence {t;}ieny — 0
as i — 0o. Then there exists a limit

lim M = —cos«
t;—0 tz

where « is the angle at a between g and 7.

Proof. We only need to show that
U(t) ~100) _

lim inf
1—+00 i

— COSs (.

We fix r > 0 such that |ap| > 5r and Bs,(a) is a normal region for the triangle condition
for nonpositive or nonnegative curvature. We may also assume that v(¢;) € B,(a) for all
i € N. We set ¢; = 7(t;) Vi, and let b; be the point on the shortest path [¢;p] = oy, such
that |b;c;| = r. We will prove that

lim sup Zacibi <m-a.
1—00

This implies the theorem. Indeed, applying the previous lemma it holds

~ 2
1(0) = |pa| < |pbi| + |bia| < |pbi| + |bici| — t; cos Lac;b; + ﬁ
-1
Since |pb;| + |bic;i| = I(t;), it follows that
M > cos Zacl-bi - ti = Cos Zacibi — E
ti |bzcz|
It follows that
1(t;) — (0 ~
lim inf i{t:) — 10) > liminf cos Zac;b; > cos(m — a)) = — cos a.
1—+00 i i—»00

Hence the theorem follows.
The proof of the missing inequality is different for nonpositively and nonnegatively
curved spaces.

1. Let X be a space of nonnegative curvature. Then
Zacibi < Aacibz- =T — Zbicid
by the angle condition. Then, by semi-continuity of angles we have

lim inf /b;c;d > «.

1—00
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2. Let X be of nonpositive curvature. Denote b the point in [ap] = og such that |ab| = r.
Then Zbab; < Zbab; and Zbab; — 0 as ¢ — oo because |b;b| — 0 while |ab| and |ab;|
stay bounded away from zero. Hence, we also have Zbab; — 0 for i — co.

Byt the triangle inequality ofr angles it follows
|Zciab; — Zejab| < Zbab; — 0 for i — oo.
Hence Zc;ab; — a as 1 — 0o. Then

lim inf Zciabi > liminf Zc;ab; = «
71— 00 1— 00

by the angle condition.
On tlie other hand Zciabi—l—Zacibi — 7 as i — 00 because Zciabi+2acibi+2abici =7
and Zab;c; — 0. Thus
lim sup Zacibi = m — lim inf Zciabi <7mT-a.
1—00 100
This finishes the proof.
O

4.22 Corollary. Let X be nonpositively or nonnegatively curved complete locally compact
space, v : [0,T] = X a geodesic p.b.a.l. p € X with p # v(0). Then the function t — I(t)
has the right derivative and

lim M = — COS Omyin
t}0 t

where Qi 1 the minimum of angles between v and shortest paths connecting v(0) and p.

Proof. Choose a sequence {t;} such that

M — lim inf
t; t}0

[(t) — 1(0)
—

Fix shortest paths oy, between p and «y(¢;). By the Arzela-Ascoli Theorem oy, subconverges
to a shortest path og. Then by the previous Theorem we have

lim M = —cosa
i—o00 t;

where « is the angle between v and 0. Thus

lim inf M

= —COSQ > — COS Qpin-
tJ0 t

Note that in this last inequality we actually have equality, so e = @iy, and this minimal
angle is indeed attained (by op). O
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4.4 Nonzero curvature bounds

4.23 Definition. Let £ € R. The k-plane M, is one of the following spaces.
1. R? if k = 0;

2. Si, the Euclidean sphere of radius ik, if k> 0;
Vk

3. H?, , the hyperbolic plane of curvature k < 0.

=k

Remark. Recall that S?, = {v € R3: [v]?, , = (v})? + (v?)%2 + (v3)2 = 1}, the sphere of
vk

eucl — Kk

radius ﬁ in R3. The shortest paths are segment of great circles

cos(t)v + sin(t)w = v(t),v L w e $% .
v
The —1-plane can be defined as the —1-ball in the 3-dimensional Minkowski space
(R3, (-,-)1) where (v,w); = —(v')? + (v?)? + (v®)? = —1. Other models of the hyperbolic
plane are the half-space and the Poincaré model. The k-plane for k < 0 is then obtained
by rescaling M_1 with —k.

Remark. The k-plane is bounded if and only if £ > 0. We denote the diameter of the

k-plane by 7y, i.e.
/Vk if k> 0;
T =
00 if £ <0;

We need the following elementary property of the k-plane. For a,b,¢ > 0 such that
a+b+c < 2w, there exists a unique triangle in the k-plane with the sides a, b and ¢, up to
rigid motions, i.e. an isometry of the k-plane to itself. Hence for every sufficiently small
triangle in a length space, there is a unique (up to rigid motions) comparison triangle in
the k-plane. For & < 0 we can drop the word ”sufficiently small”.

4.24 Remark (Comparison configuration in the k-plane). Let X be a length space and let
p,x,y € X, v:[0,L] = X a shortest path between z,y and g(t) = d, o y(t). We assume
that |pz| + |py| + |zy| < 2my.

Consider the k-plane M, with the induced Riemannian distance |-, -|. We choose z,y €
M, such that |zy| = L and let 4 : [0, L] — M}, be a shortest path between z,y € My, with
constant speed.

We choose a reference point p € My such that |pz| = |pz| and |py| = |py|. This
comparison configuration is unique up to isometries of M.

We call gi(t) := [py(t)| the comparison function for g in the k-plane.

Similarly, for a triangle Azyz C X with |zy| + |yz| + |22| < 27, we can choose points
Z,y and Z in M, such that |Zy| = |zy|, etc. and shortest paths [Zy], etc. The collection of
these shortest paths in M, is called a comparison triangle AZyZ in k-plane for Azyz.

4.25 Definition. Let X be a length space and k£ € R. The following statements are
equivalent.
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(i) Triangle condition.

For every point x € X 3 a neighborhood U, C X such that for any triangle Aabc
with |ab| + |bc| + |ca| < 2, contained in U, and for any point d € [ac] the inequality
|bd| > |bd| (|bd| < |bd]) holds where Aabc is a comparison triangle in the k-plane and

d € [ag] is the point such that |ad| = |ad]|.

(ii) Distance condition.

Every point ¢ € X has a neighborhood U such that the following holds: Vp € U and
Vv : [0, L] — X that is a shortest path in U such that |py(0)|+|py(L)|+|v(0)y(L)| <
27y, the comparison function g in k-plane for the corresponding g = d,, o v satisfies

ge(t) > g(t) (gr(t) < g(t)) Vt € [0, L].

4.26 Definition (Generalized trigonometric functions). We define cosy, sing, : [0,00) — R

for k£ € R as the solutions of

' +ku=0 wW+ku=0

u(0) =1 u(0) =0
W'(0)=0 w'(0)=1
More precisely
cos(Vkt) ﬁ sin(Vkt) k>0
cos(t) = ¢ 1 sing(t) = ¢ ¢ k=0

cosh(v/—kt) ﬁ sin(v—kt) k<0

4.27 Remark. Consider a triangle Azyz in My, for k£ > 0 with sides a = |yz|, b = |zz| and

¢ = |xy|. Then the following cosine rule hold. For k > 0 we have

COSj, ¢ = COSE a cosy b + k sing a sing bcos Zrxzy

where Zpxzy = Zogoy is the angle at z of two shortest paths og and o1 between z and z,
and z and y. In particular, if Zyxzy = 7/2 the spherical Theorem of Pythagoras holds

COSj, C = COSE @ COSE b.

4.28 Remark. Alexandrov’s lemma is still true in M} (and has the same proof) if the

0-plane is replaced with the k-plane.

4.29 Lemma. Consider the k-plane My, k > 0, and gx(t) = |[py(t)| for a shortest path 75

in M. Then cosg gr(t)) = u(t) satisfies

u” + ku = 0,u(0) = cosg gx(0), u(L) = cos, gx(L).

Proof. By the law of Pythagoras we have cosy(t — to) = cosy a cosg gx(t) where ¥(tg) = q
is the point on 7 closest to p, and a = gi(tp). Note that for v(¢y) that is closest to p, by
the first variation formula in My, we have 0 = %to [py(t)] = — cos Zip7(to)¥(L). Hence u

satisfies the desired ODE with u(0) = cosy, g(0) and u(L) = cosy g(L).
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4.30 Corollary. The inequality gr, > g (<) in the distance conditions holds if and only if
cosy, g < cosp g (>).
By similar arguments as for the case k = 0 this holds if and only if cosy g = v satisfies
v +kg <0 (=), v(0)=cosgg(0), v(L) = cosgg(L) in the distributional sense.

4.31 Definition. We define mdy, : [0,00) — R for k£ € R as the solutions of

u +ku=1
u(0) =0
u'(0) =0

More precisely

$(1—cosg(t)) k>0
t2 k=0
F(cosp(t)—1) k<0

mdk(t) =

N[

4.32 Fact. A length space X has curvature bounded from above (below) by k iff the follow-
ing holds: Every point ¢ € X has a neighborhood U such that the following holds: ¥Yp € U
and ¥~y : [0, L] — X that is a shortest path in U such that |py(0)| + |py(L)| + |v(0)y(L)| <
2my, the function g = dp o v satisfies

md; og + kmdog >0 (<0).

4.5 Globalisation theorems

4.33 Theorem. 1. Globalisation for nonpositive curvature: FEvery complete simply
connected space of curvature < k < 0 is a space of curvature < k in the large.

2. Toponogov’s globalization theorem. For any k € R, every complete space of curvature
> k is a space of curvature > k in the large.
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5 The Gromov-Hausdorff topology

5.1 Uniform convergence

Recall that a sequence of real-valued functions (f,),en on a set X is said to converge
uniformly to a function f if

sup | fn(z) — f(z)| = 0 as n — oc.
reX

A metric on X can be considered a a real-valued function on X x X. Hence, we say that
a sequence of metrics d,, on X converges uniformily to a metric d on X if

sup |dp(z,2") —d(z,2")| — 0 as n — oo.
z,x'eX

=:[ldn—=dll

Let X be a topological space and let (Y,dy) be a metric space. If f : X — Y is a
homoeomorphism, then he pull-back metric f*dy on X is defined via

(f*dy)(z1,22) = dy (f(21), f(22)).

f*dy is indeed a metric on X and the induced toplogy coincides with the topology of X.
Indeed, f is an isometry w.r.t. f*dy and dy. In particular, f is an homeomorphism w.r.t.
to the induced topologies.

5.1 Definition. A sequence of metric spaces (X,,dy), n € N, converges uniformly to a
metric space (X, d) if

sup sup |frd(z,y) — dp(z,y)| — 0 as n — oc.
fn:Xn—X homeomorphism .y€Xn

5.2 Hausdorff distance

Let X be a metric space. Consider two subsets A, B C X.
Question: How can we compare A and B? What is a distance between A and B?
Consider S C X. The r-neighborhood of S in X is defined as

B,(S)= | Bi(z) ={y €Y :d(y,5) <r}
z€eS

where d(z, S) := infyex |2x|.

5.2 Definition. The Hausdorff distance between subsets A and B in X, denoted dy (A, B),
is defined by
d(A,B) =inf{r >0: A C B.(B) and B C B,(A)}.

We call 7 € (0, 00] in the infimum on the RHS an Hausdorff bound for A and B.

5.3 Fact. Let A and B be subsets of a metric space and r > 0. The following holds.

1. di(A, B) = max{sup,c 4 d(a, B),supycp d(b, A)}.
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2. dy(A,B) <rif and only if d(a,B) < r Va € A and d(b, A) < r Vb € B. This fails
if one replaces < with <.

Proof. Exercise. O
5.4 Proposition. Let X be a metric space. Then

1. dp is a semi-metric on 2%, the set of all subsets in X.

2. dy(A, A) =0 for any A C X where A is the closure of A.

3. If A and B are closed subsets in X, then dg(A, B) =0 if and only if A = B.

Proof. 1. The triangle inequality follows from the following observation: for A C X and
r1,72 > 0 one has that By, (By,(A)) C By, 4r,(A) by the triangle inequality in X.

2. d(z,A) =0 if z € A since A C A. For x € A we have d(z, A) = 0 by the definition
of closure. Hence dy(A, A) = 0.

3. Assume this is not true. Then 3z € A\ B. Since B is closed there is r > 0 such that
B, (x) does not intersect with B. Hence x ¢ B,.(B) and therefore dg(A,B) >r >0. 0O

We denote with 9(X) the set of closed subsets in X equipped with the Hausdorff
distance. Hence (MM(X),dp) is a co-metric space.

5.5 Proposition. If X is a complete metric space, then IM(X) (equipped with dg) is
complete.

Proof. Let {Sy,}nen be a Cauchy sequence in 9(X). Let S be the set of all points x € X
such that for any neighborhood U of x one has U N S,, # () for infinitely many n.
Claim: S, 3 .

We fix € > 0 and let ng be such that dg(Sy, Sm) < € Vn,m > ng. If suffices to show
that dg (S, Sy) < 2¢ for any n > ny.

1. We have d(z,S,) < 2¢ Vx € S and Vn > ng. Indeed: Im > ng such that
Be(z) NS, # 0. In other words Jy € S, such that |zy| < e. Since dy(Sm,Sn) < €, one
has d(y, Sp) < € and therefore d(z, S,) < |ry| + d(y, Sn) < 2e.

2. Moreover d(z,S) < 2 Vo € S,. Let ny = n and for any k& > 1 choose n
such that ng > ngy1 and dy(Sp, Sq) < o7 for all p,q > ng. Then define a sequence
(z1) where xj, € Sy, as follows. Let x; = z and xp4q is a point in Sy, , such that
|zk2iy1] < €/2% for all k. Such a point can be found because df7(Sn,, Sn,,,) < €/2F. Since
Y rey lzkzis1| < € < oo the sequence (xy) is a Cauchy sequence and hence it converges to
a point y € X. Then |zy| = lim |xz,| < > p_; |xrxri1] < €. Since y € S by construction,
it follows that |zS| < 2e.

With 1. and 2. it follows that dg(S,S,) < 2¢ ¥n > ng. O

5.6 Theorem (Blaschke). If X is compact, then M(X) is compact.

Proof. Since we already know that 9t(X) is complete, it suffices to show that 9%(X) is
totally bounded. Let S be a finite e-net in X. We will show that 2° is an e-net in 9(X).
Let A € M(X). Consider

Spa={xeS:d(z,A) <e}.
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Since S is an e-net in X, for every y € A there exists x € S such that |ry| < e. Since
d(xz,A) < |zy| < €, this point = € S belongs to Sa, hence d(y,S4) < e for y € A. Since
d(xz,A) < € for any x € Sy (by the definition of Sy), it follows that dy (A, S4) < e. Since
A is arbitrary, this proves 2° is an e-net in (). O

Remark. The set of compact convex subsets in any fixed ball in R™ is compact w.r.t. dg.

5.3 Gromov-Hausdorfl distance

Idea: We want to compare metric spaces by introducing a distance dgg on the family of
all metric spaces. We require

1. If X and Y are metric spaces that are are subsets in a metric space Z, then
dan(X,Y) <d%(X,Y).

2. If X and Y are isometric metric spaces, then dgy(X,Y) = 0.

The Gromov-Hausdorff distance dgpy is defined as the maximal metric on the class of
metric spaces satisfying these properties.

5.7 Definition. Let X and Y be metric spaces. The Gromov-Hausdorff distance between
X and Y, denoted by dgy(X,Y), is defined as follows. For r > 0, we require that
day(X,Y) < r iff there exists a metric space Z and subspaces X’ and Y’ of Z that are
isometric, w.r.t. to the restriction of the metric of the ambient space Z, to X and Y such
that d% (X', Y') < r.

In other words, dgg(X,Y) is the infimum of all » > 0 such that there exists a
metric space Z and distance preserving maps tx : X — Z, vy : Y — Z such that
dZ(tx(X),ty (Y)) <.

Remark. If X and Y are isometric, then dgr(X,Y) = 0. Indeed, let f be an isometry.
Choose Z = X and 1x = idyx and vy = f.

5.8 Remark. Note that X’ and Y’ are not equipped with the induced intrinsic metric in
Z, but with the induced metric. If X is a sphere with the Standard Riemannian metric,
one cannot choose Z = R? and X’ ~ S? C R3 in the definition of dgy. X', with the
restricted metric of R3, is not isometric to X!

Remark. In general, it is a hard problem to compute the GH distance between explicitly
given metric spaces.

5.9 FExample. Recall: an e-net Y in a metric space X is defined by the property that
Vr € X Jy € Y such that |zy| < e. Hence dx(X,Y) < € and therefore dgu(X,Y) < e.
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5.10 Remark. The definition of dgpy deals with a huge classs of metric spaces, namely
all Z that contain isometric copies of X and Y. It is possible to reduce this class. It is
enough to consider the infimum of r > 0 such that there exists a semi-metric d on the
disjoint union XUY such that d|xxx = dx and dyxy = dy and dg(X,Y) < r in the
space (XUY,d).

Proof. Let Z, X', Y’ be an admissible triple in the infimum of the definition of dgy (X,Y).
We fix isometries tx : X — X" and vy : Y — Y’. Then we define a distance d’ on XUY
as follows. For z,7 € X define d'(z,Z) = dx(x,Z). Analogously for y,y € Y. If x € X
and y € Y, we set d'(z,y) = dz(tx(x),ty(y)). This yields a semi-metric on XUY such
that dg(X,Y) < r (if X'NY’ # 0, it may happen that d'(z,y) = 0). The quotient metric
space XUY/d' is isometric to X' UY” (in Z) equipped with dz|xyuy xxuy -

To obtain a metric on XUY, define d(z,y) = dz(tx(z),ty(y)) + 6 where & > 0 is
arbitrary. Then dy(X,Y) <r+ ¢ in (XUY,d). O

5.11 Proposition. dgy satisfies the triangle inequality, i.e.
don (X1, X3) < dgu(X1, X2) +dor(Xz, X3)
for any metric spaces X1, Xo, X3.

Proof. Let di2 and do3 be metrics on X1UX5 and on XoUXj3 respectively, extending the
metrics on X1, Xo and X3. We define a distance between z; € X; and z3 € X3 by

diz(x1,23) = Ig( {di2(z1, 2) + daz(x2, x3)}.
T2 2

One can check that di3 is a metric on X;UX3 that extends the metrics on X; and X3.

Consider 71,79 such that dg (X1, X2) < r; and dg(Xe, X3) < ro. Hence, Va; € X
dxs € X5 such that dlg(.rl,xg) < r1 and dz3z € X3 such that d23($2,x3) < ry. Together
with the definition of dy3 it follows that Va1 € Xy Jrg € X3 such that dy3(z1,z3) <71 +72
and the same statement for X; and X3 in reversed roles. From the definition of the
Hausdorff distance we get dg (X7, X3) < 1472, and since 71 and ry are arbitrary numbers
larger than dp (X1, X2) and dg (X2, X3), it follows

di (X1, X3) < dp (X1, Xo) + dp(Xa, X3).
If we take the infimum over all di2 and do3 we obtain the desired inequality. ]

5.12 Definition. Let X and Y be two sets. A correspondence between X and Y is a set
R C X XY satisfying the following. Vo € X Jy € Y such that (z,y) € R, and Vy € Y
dr € X such that (z,y) € R.

5.13 Example. A surjective map f : X — Y defines a correspondence SR between X and
Y via
% = {(z, f(z)) : @ € X}.

Remark. Not every correspondence is associated to a map.

5.14 Definition.
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1. Let X and Y be metric spaces and f : X — Y a map. The distortion of f is defined
by

diStf = SupX ‘dy(f(.%’),f(.%/)) - dx(x,l‘,)| :
z,x’ €

2. Let R be a correspondence between metric spaces X and Y. The distortion of fR is
defined by

dist R = Sup{’dX(xax/) - dY(yay/)‘ : (.f,y), (I'I,y/) € 9{}

5.15 Remark. e The definition of distortion of map resembles the one dilatation of a
Lipschitz map. The difference is that the latter measures relative changes while the
former measures absolute changes.

e For the correspondence fR associated to a map f, one has dist R = dist f.

e [f R is a distortion between metric spaces X and Y, then dist R = 0 if and only if
fR is induced by an isometry from X to Y.

5.16 Theorem. For any two metric spaces X and Y it holds that
don(X,Y) = ~ inf dist R
cu(X,Y) = 5 infdis

where the infimum is taken over all correspondences R between X and Y .

Proof. 1. We show: Vr > 0 with dgy(X,Y) < r IR correspondence with dist R < 2r.

Since dgi(X,Y) < r, we may assume that X and Y are subspaces of some metric space
(Z,d) and dg(X,Y) < rin Z. Define

R={(zr,y) e X xY :d(x,y) <r}.

That R is a correspondence follows from dg(X,Y) < r. Then we have for (z,y), (2/,y') €
R, that
|d(z,2") — d(y,y")| < d(z,y) +d(,y) < 2r.
2. We show that dgp(X,Y) < 3 dist R for any correspondence R.
Pick a correspondence R and let dist R = 2r. We show there exists a semimetric d on

XUY such that d|xxx = dx and d|yxy = dy, and dyg(X,Y) < r in (XUY,d). For this
we define for xr € X and fory € Y

d(z,y) = inf{dx (x,2") +d(y,y)} +r

where the infimum is w.r.t. all (z/,3y') € R. On X and Y we set the distance d as dx and
dy, respectively. d is a semi-metric. In particular the triangle inequality is easy to check.
Note that the choice of the constant r in the definition of d as % of the distortion of R is
necessary for the triangle inequality.

For € X there exists y € Y such that (z,y) € R. Hence d(z,y) = r and it follows
that dg(X,Y) <r w.r.t. d. O
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5.17 Definition. Let X and Y be metric spaces and € > 0. A map f: X — Y is called
e-isometry if dist f < e and f(X) C Y is an enet in Y.

Remark. 1. Recall that an isometry between metric spaces X and Y is a map that
is distance preserving (dist f = 0) and surjective. In this sense we have that an
e-isometry generalizes the concept of isometry.

2. Recall that an e-net S in Y is a family of points such that dy (y, S) < e forall y € Y.
5.18 Corollary. Let X and Y be metric spaces and € > 0. Then

1. If dau(X,Y) < €, then there exists a 2e-isometry from X to Y.

2. If there exists an e-isometry from X toY, then dgu(X,Y) < 2e.

Proof. 1. Let R be a correspondence between X and Y with distR < 2¢. Vo € X we
choose f(z) € Y such that (z, f(x)) € R. This defines a map f : X — Y. Then
dist f < dist R < 2e. Hence we only need to show that f(X) is an 2e-net. For y € Y
we consider z € X such that (x,y) € R. Since both y and f(x) are in correspondence
with z it follows
dy (y, f(z)) < d(xz,x) + dist R < 2e.

Hence d(y, f(X)) < 2e.
2. Let f be an e-isometry. We define SR C X x Y by
R={(z,y) € X xY :d(y, f(z)) < e}.

Then fR is a correspondence because f(X) is an e-net in Y. Moreover, if (z,y) € R
and (z/,y) € R, one has

|dy (y,y) — dx(@,2")| < [dy (f(2), f(2)) = dx (2, 2")| + |dy (y,) — dy (f (), f(z))]

dist f + dY(ya f(x)) + dY(y/’ f(xl)) < 3e.

Hence dist R < 3¢ and therefore dgy (X,Y) < 3r < 2r.

<
<

O]

5.19 Theorem. The Gromov-Hausdorff distance defines a finite metric on the space of
isometry classes of compact metric spaces, i.e. it is nonnegative, symmetric, satisfies the
triangle inequality and dgp(X,Y) =0 if and only if X and Y are isometric.

Proof. We only need the check the very last statement. Let X and Y be compact metric
spaces such that dgg(X,Y) = 0. Hence, given a sequence (€,)nen With €, | 0 for every
n € N there exists an €,-isometry f, : X — Y. Let S C X be a countable dense set in X.
Using the Cantor diagonal procedure, we can choose a subsequence (fy, )ren of (fn) such
that fp, (z) converges in Y as k — oo Vo € §. W.l.o.g. we assume that this holds already
for (f,). Then we can define a limit map f : S — Y by setting f(z) = limy— o0 fn(z)
Vo € S. Since

|dy (fa(@), fa(y)) — dx (z,y)] < dist fn < en =0 Va,y € X
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it follows that dy (f(z), f(y)) = dx(z,y) for all z,y € S. Hence f : S — Y is distance
preserving from the entire X to Y. Similar, we can construct a distance preserving map
from Y to X. Hence, we have that the composition f o g is distance preserving from Y to
itself. Since Y is compact, the map f o g is bijective. Hence f is surjective and therefore
an isometry. ]
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5.20 Remark. A sequence {X,}nen of compact metric spaces converges to a compact
metric space X in Gromov-Hausdorff sense if dgp(X,, X) — 0 as n — oco. Since dgp is
a metric the limit X is unique. We write X, A x

We have X, G—I>{ X if there are numbers {¢,} and €,-isometries f,, : X — X, such that
€n 4 0.

5.21 FErxample. The Hausdorff convergence of compact subsets A, to A in a metric space X
implies Gromov-Hausdorff convergence of these subsets A,, A equipped with the induced
metric they inherit from X. The converse is in general false.

If a sequence { X, }nen converges uniformly to X then X, i x. Indeed, by uniform
convergence there exist homoemorphisms f, : X,, — X such that

sup |ffdx(z,y) —dx, (z,y)| = dist f, = 0 as n — oc.
z,yeXn

Since f, is a surjective map, it gives a correspondence such that the distortion vanishes.

5.22 Example. Let {d,} be a sequence of metrics on a fixed set X which converges uni-
formly to some function d : X x X — R. Then d is obviously a semi-metric, and the
quotient metric space X/d is the Gromov-Hausdorff limit of the spaces (X, d,,). Not that
if X is a finite set, it suffices to require d,(z,y) — d(x,y) for every pair z,y € X.

5.28 Example. Every compact metric space X is a limit of finite spaces. To see this, take
a sequence €, J 0 of positive numbers and choose a finite €,-net S, in X for every n.
Since Vy € X 3z € S, such that d(z,y) < e, it follows that dx(X,S,) < €, and hence
dar(X,S,) < e where S, is equipped with the induced metric.

Remark. Recall that X is compact iff X is complete and totally bounded, i.e. Ve > 0 there
exists a finite e-net.

By taking appropriate e-nets one can essentially reduce GH convergence of compact
metric spaces to convergence of finite subsets.

5.24 Definition. Let X,Y be two compact metric spacees, and let ¢,0 > 0. X and Y
are (e, d)-approximations of each other if there exist finite collections of points {x;}i—1 . N
and {y;}i=1,.. ~ in X and Y, respectively, such that

1. Theset {z;:1<i< N}isanenetin X, and {y;: 1 <i < N} isan enet in Y.
2. |dx (@i, y;) — d(yi, y;)| <6 Vi,j=1,...,N.
If 6 = ¢, we call an (€, §)-approximations and e-approximation.
5.25 Proposition. Let X,Y be compact metric spaces.
1. If Y is an (e,0)-approzimations of X, then dgy(X,Y) < 2¢ + 4.
2. If deu(X,Y) <, then Y is a 5e-approximation of X.

Proof. 1. Let Xo = {zi}i=1,..~v and Yy = {y;}i=1,.. ~ be as in the previous definition.
The second point in the definition means that the correspondence {(x;,y;):i=1,...,N}
between these two finte sets has distortion less than d. If follows that dgg(Xo, Yo) < 6/2.
Moreover since Xy and Yj are e-nets in X and Y, respectively, we have that dgp (X, Xo)
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and dgg(Y,Yp) are less than e. The claim follows from the triangle inequality.

2. By assumption there is a 2e-isometry f between X and Y. Let Xo = {z;}i=1,.. n be a
finite e-net in X and define y; = f(z;),i =1,..., N. Then it follows that

|d(zs, 25) — d(yi,y;)| < 2e < 5e

for all 4, j. We have to show that Yy = {y;}i=1,..n is a Se-net in Y. We have f(X) is
2e-net in Y. Hence, for y € Y there exists € X such that dy (y, f(z)) < 2e. Since Xy is
an e-net, there exists x; € Xy such that dx(z,z;) <e. Then

dy (y, f(z:) < d(y, f(x)) + d(f(2), f(2:)) < 2€ + d(x, ;) + dist f < 5e.
Hence dy (y, Yy) < 5e. O

5.26 Corollary. Let X, X,, be compact metric spaces. X, i x if and only if the following

holds. Ye > 0 there exists a finite e-net S in X and e-net S, in each X,, such that Sy, G—I;I S.
Moreover, we can choose Sy, and S to have the same cardinality.

Proof. If such e-nets exists, then X, is an e-approximation of X for n sufficiently small.

Then X, ol x by the previous Proposition. For the other implication we pick a €/2-net
S in X and construct corresponding nets S, in X,. For this we pick a sequence of €,-

approximations f, : X — X,, with €, | 0 and define S,, = f,,(S). Then S, Gl ¢ and S
are e-nets as in the previous proof. ]

Remark. Let finite metric spaces S,, converge in GH sense to a finite metric space S,
i.e. the distances between points in S, converge to distances between points in S. It
follows that all geometric characteristics of the set S, converge to those of S, for instance
diameter.

5.4 Compactness Theorem

Since the GH topology is very weak, we expect that there are many compact sets.

The results of the previous propositions imply that if a sequence of compact metric
spaces X, converges in GH sense, the spaces must contain e-nets of uniformily bounded
cardinality for every e > 0. It follows that if a family of compact metric spaces X is pre-
compact w.r.t. GH convergence, then the sizie of a minimal e-net is uniformily bounded
over all elements of X. In fact, together with a uniform diameter bound for elements in X
this is sufficients for precompactness.

5.27 Definition. We say a family of X of compact metric spaces is uniformly totally
bounded if

1. There is a constant D > 0 such that diamy < D for all X € X.

2. For every € > 0 there exists a natural number N = N(e) such that every X € X
contains an e-net consisting of no more than N points.

5.28 Theorem. Any class X of uniformly totally bounded compact metric spaces is pre-
compact in the GH topology. That is, any sequence of elements of X contains a converging
subsequence.

64



Proof. Let D and N (e) as in the previous definition. Define inductively Ny = N1+ N (%)
for all £ > 2 and N; = N(1). Let {X,,}nen be a sequence of metric space in X. In every
X,, we consider the union of all %-nets with £ € N. This is a countable, dense subset
Sy = {Zni}ien in X, such that Vk € N the first N points of S,, form an %—net in X,,.
The distances |z, ;2 j| do not exceed D, i.e. belong to the interval [0, D]. By the Cantor
diagonal procedure we can extract a subsequence of n such that |z, jz, ;| converge for all
1,7 € N. We assume n € N is already this subsequence.
We constrcut a limit space X for {X,,} as follows. Consider N =: X and define

d(i,j) = nh—>n<}o |zp iz | Vi,j e X.

d is a semi-metric on X and the quotient X/d is a metric space. Let i € X/d be the point
obtained from i. This quotient space may not be complete, so let X be the completion of
X/d.

We have to show that {X,,} converges in GH sense to X, and that X is compact. For
this consider the set S*) = {i:1<i< Ny} CX.

Claim: S®) is an %—net in X. Indeed S}Lk) ={zp; 11 <i < N}isan %—net in the
respective space X,,. Hence, for every z,; there exists j < Nj such that |xmwnj| < %
Since Vi is finite and does not depend on n, for every i € N fixed there is j < Ny such
that |2 njn| < % for infinitely many indices n. Hence, since |z, ;z,,j| converges to d(i, j),
we have d(i,j) < . Thus S®) is an 1-net in X/d and hence in X. Since X is complete
and has an %—net for every k € N, X is compact.

Futhermore, by construction S*) is the uniform (hence GH) limit of the finite sets S

as n — 0o. Thus, for every k € N we have an %—net in X which is a Gromov-Hausdorff

limit of some %—nets in X,,. Hence X, G—f{ X. ]
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5.5 Convergence of length spaces

5.29 Theorem. Let {X,}nen be a sequence of length spaces, X a complete metric space,
and X, X, Then X is a length space.

Remark. Compare the theorem with the fact that convexity is preserved w.r.t. Hausdorff
convergence.

Proof. By Theorem [2.34] it suffices to prove that any two points z,y € X possess an
e-midpoint Ve > 0.

Let n € N be such that dgg(X,, X) < ﬁ. Then there exists a correspondence R
between X and X, such that dist R < £. Take points Z and y in X, that correspond to z
and y. Since X, is a length space there exists and £-midpoint 2 for 7 and y. Let z € X
be a point that corresponds to Zz. then

1 SO SN . 2
|xz| — §]azy| < |zz| — §|xy] + 2dist R < g + gﬁ <e.
Similar for y in place of z. Hence max{|zz|,|zy|} < 3|2y| + €. Hence z is a 2e-midpoint
for x,y. O

5.30 Examples. e Let X, be the sphere S? with a geodesic ball of radius % removed
and equipped with the induced intrinsic metric. The sequence { X, },en converges
to S2.

e Let X, be obtained the same way from the circle S'. Then {Xn}nen does not
converge to S'.

e Let X be a straight line segment in R?, such as [0,1] x {0} x {0}, and let X,, be the
boundary of its %—neighborhood equipped with the induced length metric from R3.

TheanCi{X as n — oo.

e Let X be a planar disc in R?,i.e. X ~ B1(0)x {0}, and again let X,, be the boundary
of its %—neighborhood as before. The sequence { X, },en converges in GH sense, but
the limit is not X.

Metric Graphs A metric segment of length a is a metric space isometric to the segment
[0,a] CR.

5.31 Definition. A metric graph is the result of gluing a disjoint collection of metric
segments {F;} and points {v;} (both regarded with the length metric of the disjoint
union) along an equivalence relation R defined on the union of the set {v;} and the set of
endpoints of the segments. The segments {F;} are called edges and the equivalence classe
of the endpoints are called vertices of the graph. The length of an edge is the length of
the corresponding sement.

5.32 Proposition. Fvery compact length space can be obtained as a GH limit of finite
graphs.
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Proof. Pick € > 0 and § > 0 small, such that § < €. Let S be a finite d-net in X. We
define a graph G a follows. The set of vertices of G is S, and two points z,y € S are
connected by an edge if and only if |xy| < e. The length of this edge is |zy|.

We show that the graph G is an e-approximation of X if § > 0 is small enough, say
0 < idi;%. We consider S as a subset of S and of X. Obviously S is an e-net in both
spaces, and |zy|g > |zy| for all x,y € S where | - |¢ denotes the distance in G.

It remains to show that |zy|c < |zy| + €.

Let v be a shortest path in X between = and y. We choose n points z1,...,z, with n <
2L(7)/e, deviding v into n intervals of lengths not greater than §. Let 2 = xo,y = Zpy1.
For every i = 1,...,n there exists y; € S such that |z;y;| < . Moreover we set x = ¥

and y = yp+1. Note that |y;yir1] < |xixiy1| + 20 < e for all i =0,...,n. In particular, y;
and y; 41 are connected by edge in G. Then

n n
eyle <D lyin| <D lwiwin| + 200 = |ay| + 20n.
=0 =0

Recall n < 2L()/e < 2diam X/e. Hence

4 diam X
el < oyl + 6= < fay| +e
if § < 22/ diam X.
Thus we have a finite graph that is an e-approximation of X. Passing € to zero yields
a sequence of graphs converging to X in GH sense. ]

5.6 Pointed Gromov-Hausdorff convergence

5.33 Definition. A pointed metric space is a pair (X, 0) consisting of a metric space X
and a point 0 € X.

A sequence {(X,,, o) tnen of pointed metric spaces converges in the Gromov-Hausdorff
sense to a pointed metric space (X, o) if the following holds. Vr > 0 and Ve > 0 there exists
n(r,€) € N such that for every natural n > n(r,¢) there is a map f := ' : Br(0,) — X
(not necessarily continuous or measurable) such that the following hold:

1. f(on) = o,

2. dist f <e,
3. Be(f(Br(on)) D Br—c(p).
We write (X, 0n) it (X,0).

5.34 Remark. The first two requirements in the definition imply that f(B,(0,)) C Bytc(0).
Hence, together with third condition, one has that the ball B,(o0,) in X, lies within GH
distance of order € > 0 from a subset K C X such that B,_(0) C K C Byic(0). If X

is a length space, this is true for K = B,.(0). In other words, (X, 0,) i (X,0) then

By (on) ol By(0) Vr > 0, provided X is a length sapce (exercise). This may fail if X is
not a length space. To see this, construct a sequence of compact metric spaces { X, }nen
that converges to X, but no sequence of closed unit balls in X,, converges to a closed ball
in X.
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5.35 Remark. The property that the balls B,(0,) converge to B, (o) does not yet imply
pointed GH convergence. The first requirement puts the points o, and o into a special
position. To illustrate this consider the following that is left as an exercise: Construct
a compact metric space X with two points p,q € X such that for every » > 0 the balls
B, (p) and B,(q) are isometric in X (hence B,(p) converges to B,(q) Vr > 0), but there
is no isometry from X to itself that maps p to ¢. The latter statement means that (X, p)
does not converge in pointed GH sense to (X, q).

5.36 Fact. Let X,,, X be compact metric spaces. Then

e (Xp,0n) o (X, 0) implies X, “x.

o If X, U X ando e X, then one can choose o, € X,, such that (X, o0,) g (X,0).
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GH . .
Remark. If (X, pn) b=y (X,p), then the same sequence also converges in pointed GH
sense to the completion.

5.37 Definition. We say that 2 pointed compact metric spaces (X,p) and (X', p’) are
isometric if there is an isometry f : X — X’ such that f(p) = p’. Such a map is called a
pointed isometry from (X, p) to (X,p).

5.38 Theorem. Let (X,p),(X',p’) be two complete pointed Gromov-Hausdorff limits of
a sequence {(Xyn,pn)}o2 and assume that X is boundedly compact (i.e. every closed and
bounded set is compact). Then (X,p) and (X', p) are isometric.

Proof. Let » > 0 and € > 0. From the definition of pointed GH convergence we can
construct a correspondence between sets V.. C X and Y,/, C X' such that Y, . and Y,/
contain the balls of radius r — € and are contained in the balls of radius r + € centered at
p and p’ respectively. We have that p and p’ are in correspondence to each other and the
distortion dist R, < e.

Choosing one point corresponding to a point in Y;.. yields a map f,.: Y, — YT”6 that
maps p to p’ and has distortion < e. By a Cantor diagonal argument, first for € | 0, then
for r 1 0o, we can construct a distance preserving map f from a dense subset S in X to
X' with f(p) = p/. Hence f extends to a distance preserving map on X. It maps every
ball of radius B,(p) in X to the corresponding ball in B, (p’).

Because of compactness of the closure of the balls we can procede with the same
argument as in Theorem and we obtain f is surjective, hence an isometry. O

5.39 Remark. Assume {(X,,pn)}nen is boundedly compact and (X,,, p,) o (X, p) where
(X, p) is complete. Then (X, p) is boundedly compact.
In the following we usually consider spaces that are boundedly compact.

Like for GH convergence one can prove the following theorems.

5.40 Theorem. Let (X,,p,) cl (X,p) where X, are length spaces and X is complete.
Then X is a length space.

5.41 Theorem. Let X be the class of pointed metric spaces with the following property.
Vr > 0 and Ve > 0 there exists N(r,€) such that for (X,p) € X the ball B,(p) in X admits
an e-net of no more than N(r,€) points. Then the class X is precompact in the sense that
any sequence of spaces in X contains a converging subsequence in pointed GH sense.
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6 Alexandrov spaces with curvature bounded from below

Throughout this section Alexandrov spaces are complete, connected, strictly intrinsic
spaces with curvature bounded from below by & for k € R.

In the case of positive k we exclude the following exceptional 1-dimensional spaces: R,
[0,00) as well as segments and circles with diameter larger than 7/v/k.

Recall Toponogov’s Globalization Theorem:

Theorem. Any Alexandrov space with curvature bounded from below by k is an Alexan-
drov space with curvature bounded from below by k in the large.

Remark. ”In the large” means that the curvature comparison conditions are satisfied for all
triangles for which comparison triangles exists and is unique (uniqueness is understood
up to rigid motions of the k-plane). The latter requirement is essential only for the case
of curvature > k > 0, i.e. we have the following cases

e if the the perimeter of the triangle Aabc is strictly smaller than 27 /v/k, then there
exists a unique comparison triangle.

e if the perimeter is equal to 27 /v/k and each side is strictly smaller than 7/+/k, then
there exists a unique comparison triangle. More precisely the comparison triangle is
given by a great circle in the k-plane.

Otherwise, we have |ac| = 7/vk or |ab| + |bc| = 7/v/k and in this case comparison
triangles are not unique in the k-plane.

Recall: If a, b, ¢ are different points in a length space, then we denote with Adlié the
comparison triangle in the k-plane if it exists and is unique. The comparison angle Zjabc
is the angle /abé of the comparison triangle Aabé in b in the k-plane. The angle /abé
is a function of the 3 distances |ab|, |bc| and |cal. It is well defined if |ab| + |be| + |ca| < 7y
where 7, is the diameter of the k-plane.

6.1 Quadruple Condition

6.1 Proposition. A locally compact length space X is a space of curvatre > k iff Vo € X
dU C X a neighborhood of x such that every collection of 4 different points a,b,c,d € U
the following condition is satisfied:

Zkbac + chad + deab < 2m.

We call this inequality the quadruple condition for the quadruple (a;b,c,d). Note that a is
i a special position.

Remark. Note that this condition does not rely on the existence of shortest paths, so it
can be used unmodified for not strictly intrinsic metric spaces.

Proof. 1. Assume the quadruple condition holds for all quadruples. Pick a triangle Aabc
and d € X on the shortest path [ac] between a and c. Apply the quadruple condition for
(d;a,b,c). Since ZLiade = m, it follows Zibdc + Zbda < 7. By Alexandrov’s Lemma (for
the k-plane) it follows that

|bd| < |bd|
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where @, b, ¢ is a comparison triangle in the k-plane and d is point on [a¢] with |ad| = |ad|.
This is exaclty the distance condition for curvature > k.

2. Let X be a space with curvature > k, let (a;b, ¢, d) be a quadruple and let o’ be a
point in a shortest path [ab] between a and b. Then

Zkba'd + dea’c + cha’b < Zba'd + Zda'c + Zca'b
< (4Lpbd'd + Zpdd'a) + (Zpad’c + Zyca'b) = 27

where we used the angle condition, the triangle inequality for angles and the fact that the
sum for adjacent angle equals 7 in spaces with curvature > k.
Now let @’ converge to a. Continuity of comparison angles implies the statement. []

6.2 Corollary. Shortest paths in a space of curvature bounded from below by k do not
branch. Namely, if two shortest paths v : [0, L] — X and v : [0,L'] = X with L' < L and

7(0) = +/(0) satisfy vljo. = V'ljo,g then 7'([0,L']) € ([0, L]).

Proof. Assume w.l.o.g. that v and 7/ are parametrized by arc length and L = L'. Assume
further that v(L) = b # +'(L) = ¢, ¥(0) = 7/(0) = d and ~[jo,q = 7'ljo,q With v(e) =
v'(€) = a for some € > 0. From the quadruple condition it follows that Zxbac = 0. Hence
|bc| = 0. O

6.3 Theorem (Bonnet’s Theorem for Alexandrov spaces). Let X be an Alexandrov space
with curvature > k > 0. Then diamyx < W/\/E

Proof. Assume Ja,b € X such that |ab| > 7/vk. We may assume there exists ¢ € (0, 7/4)
such that |ab| = (7 + €)/Vk. Let ¢ be the midpoint on the shortest path [a,b] and let
U= BE/(S\/E)(C)

1. Claim. U contains a point which does not belong to [ab].

Otherwise: Vx € X let v be a shortes path from x to ¢. Hence the image of v has
nonempty intersection with U. Hence, a subsegment of ~ coincides with [ab] close to
c. Since geodesics do not branch, it follows that x belongs to the unique geodesics that
contains the segment [ab]. Hence, all of X is covered by two shortes paths starting in ¢
and passing through a and b. We conclude that X would be one of the one-dimensional
exceptional spaces.

2. Choose z € U\Jab] and let y be the nearest point to = on [ab]. Then we have
lay| > 7/2Vk and |by| > 7/2Vk. For this note that |zy| < €/(8Vk) (since already
lze| < €/(8Vk)) and

lay| = lac| = [ey| > lac| = (Jex| + |zy|) = (7 + €)/(2VE) = ¢/4Vk = (x/2+ ¢/4) |V

Let v be a parametrization of [ab] (by arclength) and let i(t) = |z(t)|. We showed that [
is differentiable for ¢ € [0, L] and argmini(t) = y. Let v(to) = y. Hence I'(tp) = 0 and by
the first variation formula we have that

Lrxya = Lxyb = /2.

We consider a comparison triangle Azga for Azya in the k-plane. By Toponogov’s theorem
we have /Zja < Zrya = w/2. Since |ga| > 7/(2Vk), it follows that |za| < |ga|. Thus
|za| < |ya|. Similarly we prove |zb| < |yb|. Hence

lyal + [yb] > |zal + [xb] > |ab].
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But since y belongs to the geodesic path [ab], we have a contradiction.
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6.4 Corollary. Let X be an Alexandrov space with curvature > k > 0. Then every
triangle in X has perimeter not greater than 271'/\/E.

Proof. Assume first that diamy < 7/ Vk, and assume there are points z,y, z such that
lzy| + |yz| + |yz| > 27/Vk. Fix shortest paths between these points. By continuity of the
distance function we find points y' € [xy] and 2’ € [xz] such that |zy/| + |z2| + |¢/2/| =
27 /vk. Consider a triangle Azy'z’ (with shortest paths between the points). Since
diamy < m/vk, each side is strictly shorter than 7/vk. Hence a comparison triangle
AZy'Z in the k-plane is defined and unique, and equal to a great circle. It follows that all
comparison angles are equal to 7. Since 3’ and 2’ are points on the shortest path from x
to y, and x to z respectively, it follows by the triangle comparison condition for curvature
> k that Zy'2’z = Z2'y'y = 0. Since shortest paths are nonbranching it follows that
y,z € [y'2'] and in particular |yz| < |y'2/|, as well as the segment [y, z] is contained in
[/2]. Tt follows that the perimeter of Azyz is equal to 27 /v/k. This is a contradiction.
In the general case, we pick € € (0, k). Hence diamy < n/vk < m/vk — €. Moreover,
by monotonictity of condition ”curvature bounded from below by k” in k € R we have
that X has curvature > k — e¢. Then we can apply the previous step and obtain the
every triangle has perimeter bounded from above by 27/v/k — €. Sending € to 0 yields the
result. O

6.5 Remark. The (local) quadruple condition is equivalent to the following modified quadru-
pel condition:

For every x € X there exists an open neighborhood U such that for any quadruple
(a;b,c,d) in U there exists a quadruple (a;b, ¢, d) in the k-plane such that the segments
[@,b], [a,¢] and [a, d] devide the full angle at @ into 3 angles less than or equal to 7 where
|ab| = |ab|, |ac| = |ac|, |ad| = |ad|, and |bé| > |bc|, |éd| > |cd| and |db| > |db|.

6.6 Proposition. Let ' be group that acts by isometries on a metric space (X, d) such that
the orbits O(p) = {f(p) : f € T'} are closed. We consider the quotient QQ = X/T" equipped
with the quotient topology. Let m : X — @ be the projection map that is continuous. A
metric p on Q giwen by p(m(p),n(q)) = inf{d(p,r) : r € 0(q)}.

If (X,d) is a locally compact length space (hence strictly intrinsic) with curvature > k,
then (Q, p) is also a space with curvature > k.

Proof. Let p € X and U = B,(p) a region where the quadruple condition is satisfied for
every quadruple. We show the same is true for Uy = B, 5(7(p)) C Q.

Let (ag;bo, co,dp) be a quadruple in Uy. Since X is locally compact and the orbit
771 (ag) is closed, there exists a point a € 7 !(ag) nearest to p. In particular |pa| =
| (p)ap|. Similarly we can now find points b, ¢,d € U such that |ab| = |apbo|, |ac| = |aoco|
and |ad| = |aogdp|. Note that a,b,c,d € U (by triangle inequality). By the definition of
the quotient metric we also have |bc| > |bocol|, |c,d| > |codp| and |db| > |dobg|. Hence
the quadruple condition in the form of the previous remark on X implies the quadruple
condition on @ (in the form of the remark). O

6.7 Example. Let Zo = {e, g} act on R? by symmetries: g(x) = —z for all x € R®. Then
Q = R3/Zy is a space of nonnegative curvature. @ is isometric to the Euclidean cone
C(P?) over the projective space P? equipped with the metric induced from the canonical
Riemannian metric of constant curvature 1.
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Example: Euclidean cones Recall the Definition for the Euclidean cone over a
metric space X.

6.8 Theorem. Let X be a locally compact, connected length space. The following two
statements are equivalent.

1. X has curvature > 1,

2. C(X) is not a straight line and is a space curvature > 0.

Proof. First we note that if C'(X) is a straight line, then X consists of 2 points at distance
7 and hence X would not be connected.

Consider a triangle Aabc in C'(X) whose sides do not pass through the origin o. Its
projection to X is a triangle Ad’b'c’ in X with side lengths less than . The sides of Aabc
are contained in convex flat sectors, the sub-cones over the sides of Aa'd'c .

1. Claim: Aabc in K satisfies the triangle condition for curvature > 0 iff Aa’t/c’ in X
does so for curvature > 1, provided the perimeter of Aa’b'c’ is not greater than 2.

Let A@’''@ be a comparison triangle for Ad’t/c’ in the 1-plane S? C R3. Place points
a,b,c in the rays through 0 and @, b’ and & € R? such that |0a| = |oal|, |0b] = |ob| and
|0¢| = |oc|. The resulting triangle Aabé is a comparison triangle for Aabe by the definition
of the cone metric.

Pick a point d in [ac] and let d’ € [a’c] be the projection of d to X. Let d and d’
be the corresponding points in the Euclidean segment [ac] and [@’, €] respectively. The
subcone over [a'c/] in C(X) is isometric to the planar sector in R spanned by the spherical
segment [a’'¢’]. An isometry from this sub-cone to this sector sends [ac] isometrically to
[ac], in particular it sends d to d. Furthermore this isometry sends the segment [a/c’] in X
isometrically to the spherical segment in [a’¢], d’ is sent so d’. It follows that d belongs
to the ray through 0 and d’ and |0d| = |od)|.

Assuming the distances |ob| and |od| fixed, the distance |bd| in C'(X) is an increasing
funnction of |V'd'|. If |V'd’| = |b'd|, then |bd| = |bd|, because |0b| = |ob| and |0d| = |od| (for
this recall the formula of distances in the Euclidean metric cone). Hence |V'd'| > |b'd| if
and only if |bd| > |bd|. This proves the desired statement about the distance conditions
for Aabc and Ad'b'c, i.e. the claim.

2. Here we finish the proof.

Every triangle with side lengths less than 7 in X is a projection of some triangle in
C(X). Thus, from the claim we get that, if C'(X) has curvature > 0, then X has curvature
> 1.

Similar, a projection of a sufficiently small region in C(X)\{0} for the triangle condi-
tion (normal region) is a region for the triangle condition in X. Conversely, a sub-cone
over sufficiently small normal region in X is a normal region in C(X)\{0}.

Let us consider triangles Aabc in X such that no side passes through o, but whose
projection to X, Aa'b'¢’ has perimeter L > 27. Then sub-cone over Ad't/¢’ in C(X) is an
image under an arcwise isometry of the cone C(S) over the circle S of length L. Moreover
Aabc is the image of a triangle in C'(S). Since an arcwise isometry is a nonexpanding map
and C(S) has nonpositive curvature, the triangle Aabc satisfies the condition for curvature
<0.

On the other hand, this triangle in C'(S) corresponding to Aabc does not satisfy the
condition for curvature > 0 (because the origin of C(S) is contained in one of the sides
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of this triangle, because L > 27). Hence neither does Aabc. Consequently, if we assume
C(X) has curvature > 0, then X cannot contain a triangle with perimeter > 27.

The case when Ad’b'¢’ in X has sides greater than 7 are considered similarly. Such
triangle correspond to triangle in C'(X) with sides passing through o, and the later is the
image under an arcwise isometry of a triangle in a nonpositively but not nonnegatively
curved cone over a segment L > .

As before we conclude that, assuming C'(X) has curvature > 0, then X cannot contain
triangles with side length greater or equal to 7. O

Example: k-cones Let k£ € R and X be a metric space with diamx < w. The k-cone
over X, denoted by Cy(X) consist of the origin o and pairs (r,z) where x € X and r > 0
(r < n/VkEif k > 0). The distance from (r,z) to the origin is r and the distance between
(ro,xo) = ap and (r1,x1) = ap is defined as the side |apa;| of a triangle Aapoa; in the
k-plane with |oa;| = r;, i = 0,1, and Zapoa; = |xox1].

If k > 0, the point (z,7/vk) should be identified because their distance is 0. In this
case the k-cone is called k-spherical cone or k-suspension.

By the definition one has that Ci(S!) is isometric to k-plane, and similarly C¢(S") is
isometric to the standard (n + 1)-dimensional space of constant curvature k.

Theorem. Let X be a locally compact, connected length space and k € R. The following
statements are equivalent.

1. X has curvature > 1,

2. Cr(X) is not a straight line or a circle and has curvature > k.
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6.2 Strainers

Let X be a complete, connected, strictly intrinsic space with curvature > k

6.9 Definition. Let m € N and fix g = 55— Let € € (0,€9). A point p € X is an
(m, €)-strained point if Im pairs of points (a;, b;) in X such that Vi,j € {1,...,m}

Zaipb,; > T —€,

Zaipaj > /2 — 10¢,
Zagpb; > /2 — 10,
Zbipb; > /2 — 10e.

The collection (a;, b;)i=1,..m is called an (m, €)-strainer. Z denotes the comparison angle
in the k-plane. If € > 0 is given, we call an (m, €)-strained point an m-strained point.

Remark. Given an (m, €)-strainer (a;,b;) the quadruple condition

Zaipaj + Zajpbi + Zbipai <27
for (p; ai,a;,b;) yields Zaipaj <+ 1le and Za,-pbj <m+1leVi,je {1l,...,m}. The set
of points that are (m, €)-strained by (a;, b;),i = 1,...,m, is open.

6.10 Definition. The strainer number of X is the supremum of m € N such that there
exists an (m, €)-strainer for some € € (0,€p). A strainer number at a point p € X is the
supremum of numbers m such that every neighborhood of x contains an m-strained point.

Remark. X admits a (1, €)-strainer for all e > 0 unless X = {pt}. Pick a,b € X and let p
be a d-midpoint for 6 > 0 small enough (a,b) is a (1, €) -strainer of p.

6.11 Proposition. 1. If(a;, b;) is an (m,€)-strainer for p € X and al € [p, a;] and b}, €

[p,bi], i = 1,...,m, where [p,a;], [p,bi] are shortest paths, then (a},bl) is an (m,€)-
strainder for p as well. In particular, there exists an (m, €)-strainder arbitrarily close
to p.

2. If (ai, b;) is an (m,€)-strainer for p then ¥i,j € {1,...,m}

Zaipb; > T — €,

Zagpa; > /2 — 10k,
Zaipb; > /2 — 10¢,
Zbipb; > /2 — 10€.

Conversely, if these inequalities hold for p, (a;,b;) and € € (0,¢€p), then p is (m,€)-
strained.

Proof. The statements are a direct consequence of the comparison angle monotonicty. [
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Coordinates at strainer points. Let (a;,b;) be an (m,e€)-strainer at p. Define f :
U — R™ via

f(.%') = (’$a1|a R ’.%am‘)
where U is a small neighborhood of p. f is a Lipschitz map because = — |za;| are Lipschitz
functions. Since the set S of points that are (m,e€)-strained by (a;,b;), we assume that
Uucs.
6.12 Example. Consider X = R™. Then a family of pairs (a;, b;), 7 = 1,...,m, such that q;
and b; are on the same straight line through 0, and such that (a;, b;) = (a;,a;) = (b;,b;) =
0, is an (m, €)-strainer and 0 € R™ is (m, €)-strained. The level set functions f(z) = |z — a4
in intersect almost orthogonally. Hence, for (ri,...,7,) near (|z — a1|,...,|x — an|) the
level set spheres have a unique intersection point near p.

We omit the proof of the following proposition.

6.13 Proposition. Let p € X be (m,¢)-strained with € € (0,¢9). Then there ezists a
neighborhood U of p such that f : U — R™ from above is an open map.

6.14 Corollary. The strainer number of X is not greater than the Hausdorff dimension.

Proof. Let p be an (m,¢)-strained point as in the previous proposition. It follows that
there exists a map f : U 3 p — R™ that is open and Lipschitz. Assume U is open. Then
f(U) is open. Hence Proposition 1.25 implies

m = dimH f(U) < dimHU < dimHX.

We also omit the proof of the following theorem.

6.15 Theorem. If p € X is an (m,¢)-strained point such that m equals the strainer
number at p. Then p has a neighborhood which is bi-Lipschitz homeomorphic to an open
region in R™. The bi-Lipschitz map is provided by the map f from above.

6.16 Corollary. All finite dimensional Alezandrov spaces with curvature > k (complete,
connected, (strictly) intrinsic) are locally compact.

Remark. Strictly intrinsic is not need for the statement. It follows from the claim and
since X is intrinsic (a length space) by metric Hopf-Rinow theorem.

We need the following lemma

6.17 Lemma. Let X be a complete locally compact Alexandrov space with curvature > k,
pe X, and 0 <A< 1. We define amap f: X — X as follows. Let f(x) be the point in
a shortest path [pz] such that |pf(x)| = A|px|. Then

1. If k>0, then |f(x)f(y)| > A - |zy| for all x,y € X.

2. If k < 0, then for every R > 0 there is a positive number c(k,\, R) such that
[f(@)f(y)| = c(k, A, R)|zy] for all z,y € Br(p).
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Proof of the lemma. Consider comparison triangles Azpy and Af(z)pf(y). By the angle
monotonicity condition for lower curvature it follows that
Zif(@)pf(y) = Zeapy.

In particular, it follows that |f(x)f(y)| = |f(z) f(y)| > |zy| where Z,y are the points on
the segments [pZ] and [py| such that |px| = A|pz| and |py| = A|py|.
For the case k = 0, we have that |2y| = A\|zy| = A|xy|. This is the first claim.

For k = —1 < 0 a straightforward computation on 2-dimensional k-plane (using Jacobi
fields or Fermi coordinates) yields the optimal estimate
75l > sinh()\R)|__| Sinh()\R)| |
T —— 7Yl = —————|zyl.
yI= sin R 4 sin R 4
This proves the second claim. ]

Proof of the corollary. Let m be the strainer number of X: m < dimg X < oco. Let p e X
be m-strained. Hence, 3 U that is homeomorph to an open set in R™. Hence U is locally
compact. In particular, 3r > 0 such that B,(p) C U is pre-compact.

We show that Bg(p) is pre-compact VYR > 0. This implies X is locally compact.

Assume there exists R > 0 such that Br(p) is not pre-compact. Consequently Ve > 0
3 infinite e-separated set S C Bgr(p).

The previous lemma yields a homothety map f : Br(p) — Br(p) for A = 5, i.e.

[f(@)f ()] = (X K, R)|ay|

and for all z,y € S we have

F@) () = P

Hence B, (p) contains an infinite set that is €¢-separated for €’ € (0,C(\, k, R)/2¢), hence
B, (p) is not pre-compact. O

[zyl = C (A k, R)/2€.

6.18 Corollary. Let X be a Alexandrov space with curvature > k (complete, connected,
strictly intrinsic). Then the Hausdorff dimension of X equals the strainer number.
In particular, every Alexandrov space X has integer or infinite Hausdorff dimension.

Proof. Let m € NU{oo} be the strainer number. We know that m < dimyg X. If m = co
we are done.

Assume first that dimg X < oo. Then X is locally compact and 93U C X open bi-
Lipschitz homeomorphic to V' C R™. It follows that m = dimy U, and 3B,(z) C U and
dimg By(z) = dimy U.

Hence, it suffices to show that dimg (B, (z)) = dimg(X). We will show that dim g (B, (x))
dimg (Bg(x)) for all R > r. The theorem then follows because X can be obtained as union
of balls Br(z) with R =r + 1,7 + 2,.... If the Hausdorff dimension of all these balls is
equal to dimg (B, (p)), it follows by Proposition that dimgy(X) = dimg (B, (x)).

For VR > 0 3 a homothety map f : Bgr(z) — B,(x) such that f~' : f(Br(z)) — Br(z)
is Lipschitz.

The Proposition yields

dimp (Br(p)) < dimg (f(Br(p)) < dimg (B, (p)) < dimg Br(p).
This finishes the proof of the Theorem. O
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Recall that a space form is a simply connected complete space of constant curvature,
i.e. a sphere, Euclidean space, or a hyperbolic space. For an integer n > 2 we denote the

n-dimensional space form of curvature k by M. We set M, = R if k¥ <0 and M}, = S} W

For n > 1 fixed let V¥ and S* be the volume of the 7-ball and the (n — 1)-dimensional
area of the r-sphere in M.

6.19 Theorem. Let X be a locally compact Alezandrov space of curvature > k andn € N.
Then for every p € X the ratio
H (Br(p))
V;k
is nonincreasing in v where H' is the n-dimensional Hausdorff measure. In other words,
if R>1r >0 then
Hx (Br(p) _ Hx(B:(p))
v ST

Proof for k =0. Let f : X — X be the (r/R)-homothety map at p. f maps Bgr(p) to
B,(p). f is injective and its inverse f~! is Lipschitz with Lipschitz constant R/r. Hence

Hi(Belw) < (1) Mk (o)

This is the claim. O

Remark. Note that for k # 0 the same argument proves an inequality of the form
Xx(Br(p)) < C(r, R, k,n)H% (B:(p))
for some nonoptimal constant C(r, R, k,n).

6.20 Corollary. The Hausdorff measure of a finite dimensional, bounded Alerandrov
space is positive and finite.

Proof. Let n € N be the dimension of X. Then there exists an n-strained point p and
consequently a bi-Lipschitz map f : U 2 p — V C R" for an open set U. Hence, the
Hausdorff measure of a ball B,(p) C U is finite.

Consider R > 0 such that Br(p) = X. Then the Bishop-Gromov volume monotonicity
implies H'% (X) < co. Moreover 0 < H% (B, (p)) < H%(X). O

For k€ R, D > 0 and n € N we define
M(n,k,D)) ={X : X is n-dimensional Alexandrov space with curv > k, diamy < D}.
In particular, for k > 0 we set M(n, k, 7/VE) = M(n, k).

6.21 Theorem (Gromov’s compactness theorem). The class M(n,k, D) is pre-compact
w.r.t. the GH topology.
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Proof. We fix € > 0. By the Bishop-Gromov inequality there exists c(n, k, D,€) > 0 such
that
Hx (Br(p)) = c(n, k, D, e)HX (Bp(p)) = c(n, k, D, e)Hx (X).

for every p € X. It follows, if B¢(p;) is a finite collection of N disjoint balls, then
N
HY(X) > > H%(Be(pi)) > Ne(n, k, D, ) HY (X).
i=1

Hence, N € N cannot be larger than c(n, k, D, €)~! = Ny, or, in other words, a 2e-separated
set cannot contain more than Ny points. Since a maximal 2e-separated set is an 2e-net,
we have that for every € > 0 we find a finite e-net. Thus M(n, k, D) is uniformly totally
bounded, and hence GH precompact. O

6.22 Proposition. Let {X,} be a sequence of Alexandrov spaces with curvature > k and

assume Xy, ol x for a complete metric space. Assume X is locally compact. Then X
is an Alexandrov space with curvature > k. The same is true for GH limits of pointed
spaces.

Proof. By Theorem [5.29| we have that X is a length space. Since X is locally compact it
is strictly intrinsic. Hence it is enough to show the quadruple condition.

Consider a quadruple (a;b,¢,d) in X. Since X, U there exists a sequence of quadru-
ples (an;bn,cn,dy) in X such that |a,b,| — [ab|, |ac,| — |ac| etc. Then the quadruple
condition in the limit follows since the comparison angles Zi(---) depend only and con-
tinuously on the distance between the involved points. O

6.23 Corollary. A GH limit of compact Alexandrov spaces with curvature > k and di-
mension not greater than n € N is an Alexandrov space with curvature > k and dimension
not greater than n.

The same is true for GH limits of pointed spaces.

Remark. In particular M(n, k, D) is compact w.r.t. the GH distance.

Proof. Let {X;} be a sequence of Alexandrov spaces with curvature > k, dimy(X;) <n

Vi € N such that X; G—}>I X as ¢ — 0o. We have that X is compact and has curvature > k.
Assume that dimpy(X) > n. Since dimy X is equal to the strainer number of X. There
exists an (n + 1)-strained point p € X. We fix an (n + 1,¢)-strainer {(a;,b;)}j=1,..n+1
for p and € € (0, m). If the GH distance between X; and X is small enough, we
can find points p’, a;j,b; in X; whose distances from one another are almost equal to the
respective distances between p, a;, b; in X. In particular the comparison angles involving
these points in X; are almost equal to the corresponding comparison angles in X (because
Z is a continuous function of the distances). Hence, provided i is large enough, X; contains
an (n + 1, €)-strained point for the same € > 0 as above and hence dimpg X; > n + 1 for i
large enough. This is a contradiction. O
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6.3 Space of directions

Let X be an Alexandrov space with curvature > k, kK € R, and dimyg X = n € N, and let
peEeX.

Given two shortest paths v, o, parametrized by arc length and starting in p, we can
define

/o = lim Zoy(t)po(s) = lim Zeyy(t)py(s) < 7
s,t—0 s,t—0
We set v ~ ¢ if and only if Zvo = 0 and define
¥,{[7] :7:[0,¢] = X shortest path, € > 0,7(0) = p}.

Then 2;, equipped with Z is a metric space.
The space of directions ¥, at p is the completion of E; w.r.t. Z.

Remark. There can be x € ¥, that are not represented by a shortest path. For instance, let
X = B1(0) C R%. The space of directions at p = (1,0) € X is ¥, ~ [0, 7] ~ S'N(—o0, 0] xR
but there are no geodesics in derection of (0, 1) or in direction of —(0,1).

We can define exp, : [y] € X}, = 7(1) whenever [7] is represented by a geodesic
v :[0,€] = X for e > 1.

More generally, one can consider the Euclidean cone C(3;,) and define (r, [y]) = ~(r)
whenever [v] is represented by geodesic v : [0,¢] — X such that € > r.

The logarithm map log, : X — C(%,) is define via x +— (|pz], [12]) where v, is a
shortest path between p and z, parametrized by arc length. The logarithm map is in
general multivalued.

Remark. e log, : X — C(X,) is noncontracting if £ > 0. Indeed, let z,y € X, then

jzyl* = |pz|* + |pz|* — 2|pz||py| cos Zzpy
< |pz|® + |pz|* — 2|pz||py| cos Lyayy = |log, zlog, y|*.

e If £ < 0, one defines loglg : X — CF(2,) where C¥(3,) is the k-cone over ¥,. Then

logl; is noncontracting.

6.24 Proposition. Let X be a finite dimensional Alexandrov space with curvature > k.
Then %, is compact Vp € X.

We first prove the following lemma.

6.25 Lemma. Let R > 0 and r € (0,R). 3C = C(n,k,R) > 0 such that the following
holds if X is an n-dimensional Alexandrov space of curvature > k, p € X, ¢,r € (0,1),
then the ball B, (p) cannot contain an er-separated set of more than C/€" points.

Proof. 1. We first consider R™ and a ball B,(0) C R™. Let {p;}i=1,... .~ be an er-separated
set in B,(0). It follows that B, /o(pi) is a family of disjoint balls in Ba.(0). Moreover

H(Boro(pi)) = e(n) (5)" = SeH(By,(0)). Then

1
"(Bar(0 Berya(pi)) = N5 e"H" (B (p))-

HMZ
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Hence N < 6%
2. Let p € X be (n,€)-strained and let f: U = B,(p) — f(U) C R™ be bi-Lipschitz with
dil £,dil f~1 < ¢y

If S C By(p) is er-separated, then f(S) is & -separated in R" in a ball of radius c;7.

1
Hence, by the first step f(.S) cannot have more than 20%"6% points.

3. Finally let p € X be arbitrary. The set of (n, €)-strained points is dense in X. Hence,
we can choose an (n, €)-strained point ¢ arbitrarily close to p.

We apply the previous step for § = r and U = Bs(q) with 6 € (0,7) small. Let
f: Boy(q) = Bs(q) be the 2-homothety map, i.e.

2r"~
sinh( —k%r) sinh(\/—k%)
uwvwﬂz§5H73§7mAz;E;f@5um
—_——
=:C(4,k,R)

If S is er-separated in B,(p) C Ba,(q), then we have that f(S) is ¢(d, k, R)er-separated
2n
in Bs(q). Hence the cardinality of S is not larger than c(icili}%)ein' O

Proof of proposition. Let S = {x;};—1_ N be an e-separated set in ¥, and assume z; = [;]
(recall ¥ is dense in %,).

For ¢t | 0 we have Z’yi(t)p'yj(t) — Ly = |z > e

There exists r > 0 such that for ¢ € (r,2r) we have Z’yi(t)p’yj(t) > § and

~ € .9 €
Iyi (£)y; () > = 26%(1 — cos £ (t)pyj (p)) > 2r*(1 — cos 5) = 2r22sin? T

Hence €

\%@w@ﬂzmmEZra

Consequently {v;(t)}i=1,..,n is 2r§-separated in Ba.(p). By the previous lemma we have
that N < C(k,n,R)/(5)" (for some R > r).

It follows that a maximal e-separated set has finitely many points. Hence we found
finite e-net in ¥,,. O

6.26 Definition. A GH-tangent cone (K, 0) in p € X is the pointed GH limit of (%X, D)
for r | 0 (if the limite exists).

6.27 Theorem. Let X be as before. Then the GH tangent cone exists at every p € X
and is isometric to C(3p).

Proof. Let B be the unit ball in C(X,). We show that (B,(p), 2dx,p) = 1 B,(p) converges
to B in GH sense for r | 0.

It suffices to show that Ve > 0 3 e-nets {z;} in B and {y;} in 1B, (p) and {y;} ol {z;}
as 1 J 0.

We pick an e-net {z;} such that z; = (i, [y]) € Z; such that v; has speed one.

Let 7 > 0 be small enough such that ~;(rr;) = p; is defined Vi. We then have

2 2
|1§in| =Ty + Tj — 27‘1'7‘]‘ COS Z’yi’)/j
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as well as B
|pz-pj\2 = r? (7"12 + T]2~ — 277 cos Apippj) .

Since Zpippj — Lv;7yj for v | 0, it follows that

< & Vr > 0 sufficiently small.

PiDj
" 2l iz

r

Let y; be the points in %Br (p) that correspond to z;. Then

\|lyiy;| — |xizj|| <6 for all r > 0 sufficiently small.

Hence {y;} C 1B, (p) ol {z;} C B what was to prove. O

6.28 Corollary. The space of directions ¥, is an (n — 1)-dimensional Alezandrove space
with curvature > 1.

Proof. The rescaled space %X is an n-dimensional Alexandrov space with curvature > rk.
Hence the pointed limit of (2X,p), i.e. (C(Z,),0) has curvature bouned from below by
rk for every r > 0, and hence has curvature bounded from below by 0. It follows that X,
has curvature > 1.

Moreover dimpy C(¥,) < n. On the other hand log, : B1(p) — B satisfies

|log, xlog, y| > C(k)|zyl.

Hence ndimpg Bi(p) < dimy B. Hence C(3,) has Hausdorff-dimension n and by another
contradiction argument involving strainers we get dimy ¥, = n — 1. O

Remark. The corollary allows to prove statements about finite dimensional Alexandrov
space via induction over the dimension.
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