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1 Metric Spaces

1.1 Definition. Let X be a set. A function d : X ×X → R≥0 is a pseudo-metric (also
semi-metric) if

1. d(x, x) = 0 ∀x ∈ X,

2. d(x, y) = d(y, x) ∀x, y ∈ X, (Symmetry)

3. d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X. (∆-inequality)

The pair (X, d) is a pseudo-metric space.

If the first property is replaced with

4. d(x, y) = 0 ⇔ x = y ∀x, y ∈ X,

we call (X, d) a metric space.

Notation. Unless different metrics on the same setX are considerd we will omit an explicite
reference to the metric d and we will just say ”a metric space X”, and we frequently write
d(x, y) = |xy| for x, y ∈ X.

1.2 Proposition. Let d be a pseudo-metric on X. Consider the equivalence relation x ∼ y
⇔ d(x, y) = 0. If x ∼ x1 and y ∼ y1, then d(x, y) = d(x1, y1). Hence, the projection d̂ of
d onto X/ ∼= X̂ is well-defined and (X̂, d̂) is a metric space.

1.3 Definition. Let X,Y be two metric spaces. A map f : X → Y is called distance
preserving if |f(x)f(y)| = |xy| ∀x, y ∈ X. If f is bijective then f called an isometry. Two
metric spaces are isometric if there exists an isometry from one to the other.

1.4 Examples. (a) Let X be a set and define

d(x, y) = |xy| =

{
0 x = y;

1 x ̸= y.

(X, d) is a metric space.

(b) Let X and Y be metric spaces. A metric on X × Y is defined via

|(x, y), (x′, y′)| =
√
|xx′|2 + |yy′|2.

In particular, if X = Y = R equipped with |xx′| = |x − x′|, then |(x, y), (x′, y′)| =
∥(x, y)− (x′, y′)∥eucl on R× R = R2.

(c) Let X be a metric space and λ > 0. The dilated (or rescaled) metric space λX is
the same set X equipped with the metric dλX(x, y) = λd(x, y).

Let Y ⊂ X be a subset. The restricted metric on Y is defined as dY := dX |Y×Y .
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(d) Let V be a vector space. A function | · | : V → R is called a norm if ∀v, w ∈ V and
∀λ ∈ R it holds

1. |v| = 0 ⇔ v = 0,

2. |λv| = |λ||v|,
3. |v + w| ≤ |v|+ |w|.

Then (V, d) with d(v, w) := |v − w| is a metric space.

Remark. One may also consider (pseudo)-metrics with values in [0,∞]. We call them ∞-
metrics. The following shows how to reduce questions about ∞-metrics to genuine metrics.
Define an equivalence relation x ∼ y via |xy| < ∞. The equivalence class Xx of a point
x ∈ X will be called metric component of x. By the triangle inequality d|Xx×Xx is then
a finite (pseudo)-metric space. On the other, if {Xα} is a collection of (pseudo)-metric
spaces, then the disjoint union X =

⋃
αXα equipped with

|xy| :=

{
dXα(x, y) if x, y ∈ Xα for some α,

∞ otherwise

is an ∞-(pseudo)-metric space.
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1.5 Definition. LetX be a metric space. For r ∈ (0,∞] let Br(x) = {y ∈ X : |xy| < r} be
the ball of radius r with center x and let Br(x) = {y ∈ X : |xy| ≤ r} be the corresponding
closed ball. The topology associated to a metric space is define as follows: U ⊂ X is open
if ∀x ∈ U there exists ϵ > 0 such that Bϵ(x) ⊂ U . A ⊂ X is closed if X\A is open. This
topology is a Hausdorff topology.

The standard definitions of convergence, continuous function, etc. admit straightfor-
ward generalizations.

1.6 Definition. Let X be a metric space. A sequence (xn) is a Cauchy sequence if
|xnxm| → 0 if n,m→ ∞. X is called complete if every Cauchy sequence has a limit.

Remark. Completeness is not a topological property. There exist homeomorphic metric
spaces X and Y such that X is complete but Y is not.

1.7 Definition. Let X and Y be metric spaces. A map f : X → Y is called Lipschitz if
∃C ≥ 0 such that |f(x1)f(x2)| ≤ C|x1x2| ∀x1, x2 ∈ X. C is called a Lipschitz constant of
f and the minimal C is called dilatation of f and denoted with dil f .

A Lipschitz function with Lipschitz constant less than 1 is called non-expanding.

1.8 Proposition. Let X,Y be metric spaces such that Y is complete, let X ′ ⊂ X be dense
in X and let f : X ′ → Y be a Lipschitz map. Then there exists a unique continuous map
f̃ : X → Y such that f̃ |X′ = f , f̃ is Lipschitz and dil f = dil f̃ .

Proof. Consider x ∈ X and (xi) ⊂ X ′ → x ∈ X. We define f̃(x) := limi→∞ f(xi).
Observe that (f(xi))i∈N is a Cauchy sequence and therefore indeed convergent in Y because
|f(xi)f(xj)| ≤ dil f |xixj | for all i, j ∈ N and |xixj | → 0 for i, j → ∞ since the sequence
(xi) converges.

Hence we have a map f̃ : X → Y . We have the inequality

|f̃(x)f̃(x′)| = lim
i→

|f(xi)f(x′i)| ≤ lim
i→∞

dil f |xix′i| = dil f |xix′i|.

Hence f̃ is Lipschitz with Lipschitz constant dil f and dil f̃ ≤ dil f . Moreover dil f̃ = dil f .
Otherwise this would contradict the definition of dil f .

The uniqueness of f̃ is easily verified.

1.9 Theorem. Let X be a metric space. ∃ a complete metric space X̃, such that X is
dense subset of X. X̃ is unique in the following sense: If X̃ ′ is another metric space with
these properties, then there exists a unique isometry f : X̃ → X̃ ′ such that f |X = id.

Proof. We consider the set X of all Cauchy sequences (xn). A function on X2 is given by

d((xn), (yn)) = lim
n→∞

|xnyn|.

The limit always exists in [0,∞). It is elementary to check that d is a pseudo-metric on
X. We define X̃ = X/∞ where (xn) ∼ (yn) if and only if d((xn), (yn)) = 0.

A natural map from X to X̃ is given by x 7→ (xn) with xn = x ∀n ∈ N. This map
is distance preserving and we can identify X with its image in X̃. X is also dense in X̃
since every element [(xn)] ∈ X̃ is the limit of squence ([(xin)])i∈N ⊂ X̃ where (xin) is the
sequence w.r.t. n given by xin = xi for all n ∈ N.

The uniqueness follows from Proposition 1.8: The inclusion map i : X ⊂ X̃ → X̃ ′ has
unique extension to X̃.
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1.1 Compact spaces

Recall that a topological space X is called compact if any open covering of X has a finite
sub-collection that still covers X.

1.10 Fact. Let X be a Hausdorff topological space.

1. If S ⊂ X is compact, then S is closed in X.

2. if X is compact and S ⊂ X is closed, then S is compact.

3. A subset S ⊂ Rn is compact if and only if S is closed and bounded.

4. If X is compact and f : X → Y is continuous, then f(X) is compact.

5. If X is compact and f : X → Y is continuous and bijective, then f is a homeomor-
phism.

1.11 Definition. � Let X be a metric space and ϵ > 0. A set S ⊂ X is called an
ϵ-net if ∀x ∈ X ∃y ∈ S such that |xy| ≤ ϵ.

� The metric space X is called totally bounded if ∀ϵ > 0 there is a finite ϵ-net in X.

� A set S in a metric space X is called ϵ-separated for ϵ > 0, if |xy| ≥ ϵ for any two
points x, y ∈ S.

� A set S ⊂ X is called maximal ϵ-separated in X, if S ∪ {x} is not ϵ-separated for
every x ∈ X\S.

1.12 Lemma. A maximal ϵ-separated set S ⊂ X is an ϵ-net.

Proof. Assume S is not an ϵ-net. Then ∃x ∈ X such that Bϵ(x)∩S = ∅. This contradicts
with S being maximal ϵ-separated.

Let X be a metric space. We define

1. The diameter diamX := supx,y∈X |xy| of X,

2. The radius radX := infx∈X supy∈X |xy| of X.

Remark. It holds radX = inf{r > 0 : Br(x) ⊃ X,x ∈ X} (Exercise).
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1.13 Theorem. Let X be a metric space. Then the following statements are equivalent:

1. X is compact.

2. Any sequence in X has a converging subsequence.

3. Any infinite subset of X has an accumulation point.

4. X is complete and totally bounded.

In particular, if X is compact, then diamX <∞ (Exercise).

Proof (Sketch). 1. ⇒ 2. (Exercise), 2. ⇒ 3. (easy)

3. ⇒ 4. We show that for every ϵ > 0 there exists a finite ϵ-net.
Assume this is not true. Then we construct a sequence of points (xi) ⊂ X such that

|xixi+1| ≥ ϵ ∀i ∈ N. But this will contradict 3.
The sequence (xi) is constructed inductively. Assume we have already found points

(xi)i=1,...,n with |xixj | ≥ ϵ. Since {x1, . . . , xn} cannot be a ϵ-net, there exists a point
xn+1 ∈ X such that d(x, xi) > ϵ ∀i = 1, . . . , n.

Hence, ∀ϵ > 0 we find a finite ϵ-net in X and therefore X is totally bounded. Moreover,
given a Cauchy sequence 3. implies that there exists a converging subsequence. But since
the original sequence was Cauchy it already converges.

4. ⇒ 1. Assume X is not compact. Hence there exists an open cover {Uα} of X
without a finite subcover.

We define a sequence (xn) as follows. For ϵ =
1
2 ∃ a finite ϵ-net S1. Hence there exists

a least one point x1 ∈ S such that no finite subset of {Uα} covers B 1
2
(x1).

In the next step, for ϵ = 1
22

= 1
4 there exists a finite ϵ-net S2. We can find a least

one point x2 ∈ S2 such that B 1
4
(x2) ∩ B 1

2
(x1) ̸= ∅ and there is no finite subset of {Uα}

covering B 1
4
(x2).

Iteratively we find a sequence (xn) such that B 1
2n+1

(xn+1)∩B 1
2n
(xn) ̸= ∅ for all n ∈ N.

Hence |xn, xn + 1| ≤ 1
2n + 1

2n+1 ≤ 1
2n−1 and therefore

|xn, xm| ≤
m∑

k=n

1

2k−1
=

1

2n−1

m∑
k=0

1

2k
≤ 1

2n−1
∀m > n.

It follows (xn) is a Cauchysequence. Thus (xn) → a ∈ X.
∃α such that a ∈ Uα. We choose ϵ > 0 such that Bϵ(a) ⊂ Uα. Now we choose n ∈ N

big enough such that 4 1
2n−1 ≤ ϵ and |xn, a| ≤ 1

2n−1 . It follows for y ∈ B 1
2n
(xn) that

|y, a| ≤ |y, xn|+ |xn, a| ≤ 2
1

2n−1
< ϵ.

Hence B 1
2n
(xn) ⊂ Bϵ(a) ⊂ Uα in contradiction to the choice of xn.

Remark. The theorem remains true for ∞-metric spaces. One can show that a compact
∞-metric space is the finite union of compact metric spaces.
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1.14 Theorem (Lebesgue’s Lemma). Let X be a compact metric space, and let {Uα}α∈a
be an open covering of X. Then ∃δ > 0 such that any ball of radius δ > 0 in X is contained
in Uα for some α ∈ A.

Proof. We assume X\Uα ̸= ∅ ∀α ∈ A. Otherwise we are done. We define

f(x) = sup{r ∈ R : ∃α ∈ A s.t. Br(x) ⊂ Uα} ∈ [0,∞].

Claim: f(x) ∈ (0,∞) ∀x ∈ X. If f(x) = ∞, then ∀ n ∈ N ∃ an index αn such that
Bn(x) ⊂ Uα. On the other hand ∃yn /∈ Uαn . Hence |ynx| ≥ n ∀n ∈ N. This contradicts
diamX <∞. For all x ∈ X ∃r > 0 sucht that Br(x) ⊂ Uα for some α. Hence f(x) > 0.

Claim: The function f is continuous. In fact we show that f is nonexpanding. We
notice that for all x ∈ X it holds Bf(x)(x) ⊂ Uα for some α. Let x, y ∈ X.

1st case: If y /∈ Bf(x)(x) and x /∈ Bf(y)(y), then |f(x)−f(y)| ≤ max{f(x), f(y)} ≤ |xy|.
2nd case: If x ∈ Bf(y)(y) and Bf(x)(x) ⊂ Bf(y)(y), then f(x) = sup{r > 0 : Br(x) ⊂

Bf(y)(y)} and hence f(x) = f(y)− |xy|. Since f(x) < f(y), we have

|f(y)− f(x)| = f(y)− f(x) = |xy|.

3rd case: If x ∈ Bf(y)(y), Bf(x)(x)\Bf(y)(y) ̸= ∅ and |xy| ≥ f(x). Then f(x) ≥
sup{r > 0 : Br(x) ⊂ Bf(y)(y)} = f(y)− |xy| > 0 and hence

|xy| ≥ f(y)− f(x) ≥ |xy| − f(x) ≥ 0 since |xy| ≥ f(x).

Hence |xy| ≥ |f(x)− f(y)|.
4th case: If x ∈ Bf(y)(y), Bf(x)(x)\Bf(y)(y) and |xy| < f(x), then y ∈ Bf(x)(x). From

the 2nd and 3rd step we get |xy| ≥ f(y)− f(x). Since y ∈ Bf(x)(x) we can also apply the
2nd and 3rd step with x and y in reversed roles to obtain |xy| ≥ f(x) − f(y), and hence
|xy| ≥ |f(x)− f(y)|.

Since f is continuous on a compact space, there exists δ > 0 such that f(x) ≥ δ
∀x ∈ X. This is the statement.

1.15 Corollary. Let X and Y be metric spacces and let X be compact. If f : X → Y
is continuous, then ∀ϵ > 0 ∃δ > 0 such that |f(x1)f(x2)| < ϵ for all x1, x2 ∈ X with
|x1x2| < δ.

Proof. Continuity implies that for all x ∈ X there exists an open neighborhood Ux of x
such that f(Ux) ⊂ Bϵ(f(x)). By Lebesgue’s covering lemma there exists δ > 0 such that
Bδ(x) ⊂ Ux ∀x ∈ X. Hence, if x, y ∈ X such that |x, y| < δ then |f(x)f(y)| < ϵ.

1.16 Theorem. A compact metric space X cannot be isometric to a proper subset of
itself, i.e. if f : X → X is distance preserving, then f(X) = X.

Proof. We argue by contradiction. Let p ∈ X\f(X). Since f(X) is compact and hence
closed, there exists ϵ > 0 such that Bϵ(p) ∩ f(X) = ∅. Let n be the maximal cardinality
of an ϵ-separated set in X and let S ⊂ X be an ϵ-separated set of cardinality n. Since
f is distance preserving f(S) is also ϵ-separated. But d(p, f(S)) ≥ d(p, f(X)) ≥ ϵ and
therefore f(S)∪{p} is an ϵ-separated set of cardinality n+1. This is a contradiction.
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1.17 Theorem. Let X be a compact metric space. Then

1. Any nonexpanding surjective map f : X → X is an isometry.

2. If a map f : X → X is such that |f(x)f(y)| ≥ |xy| ∀x, y ∈ X, then f is an isometry.

Proof. 1. We show that f is distance preserving and apply the previous theorem. Assume
this is not the case. Then ∃p, q ∈ X such that |f(p)f(q)| < |pq|. Then we can pick ϵ > 0
such that |f(p)f(q)| < |pq| − 5ϵ.

Let n be a natural number such that ∃ an ϵ-net in X of cardinality n, and consider
the set N ⊂ Xn of all n-tuples of points in X that form an ϵ-net in X. This is a closed
set in Xn and therefore also compact. Define D : Xn → R by

D(x1, . . . , xn) =

n∑
i,j=1

|xixj |.

This function is continuous and therefore attains a minimum on N. Let (x1, . . . , xn) be
such a minimum. Since f is nonexpanding and surjective also (f(x1), . . . , f(xn)) is in N.
Moreover D(f(x1), . . . , f(xn)) ≤ D(x1, . . . , xn) and since (x1, . . . , xn) is a minimum of D
on N, it holds D(f(x1), . . . , f(xn)) = D(x1, . . . , xn), and in fact |f(xi)f(xj)| = |xixj | since
f is nonexpanding.

On the other hand ∃i, j ∈ {1, . . . , n} such that |xip| ≤ ϵ and |xjq| ≤ ϵ. Hence

|pq| ≤ |pxi|+ |xixj |+ |xjq| ≤ |xixj |+ 2ϵ

and

|f(xi)f(xj)| ≤ |f(p)f(q)|+ |f(p)f(xi)|+ |f(q)f(xj)|
≤ |pq| − 5ϵ+ |pxi|+ |qxj | ≤ |pq| − 3ϵ ≤ |xixj | − ϵ.

Hence |f(xi)f(xj)| < |xixj | − ϵ. This is a contradiction with what we just proved.

2. Define Y = f(X). Then Y is dense in X. Assume this would not be true. Then there
exists p ∈ X and ϵ > 0 such that Bϵ(p)∩Y = ∅. Let S be a maximal ϵ-separating set in X.
Since |f(x)f(y)| ≥ |xy| ∀x, y ∈ X, it follows that also f(S) is maximal ϵ-separating, and
hence f(S) ⊂ Y is an ϵ-net in X. Therefore d(p, F (S)) ≤ ϵ, or in other words ∃y ∈ f(S)
such that d(p, y) ≤ ϵ. This is a contradiction.

Consider now the map g = f−1 : Y → X. g is nonexpanding and defined on a dense
subset in X. Hence g there exists a unique nonexpanding map g̃ : X → X. By 1. we have
that g̃ is an isometry, and in particular f is distance preserving. By 1. again f itself is an
isometry.
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1.2 Hausdorff measure and Hausdorff dimension

1.18 Definition (Hausdorff measure). Let X be a metric space and let n be a nonnegative
real number. Let {Si}i∈I be a finite or countable family of sets in X. The n-weight of this
family is defined as

wn({Si}i∈I) =
∑
i∈I

(diamSi)
n.

If n = 0, substitute any term 00 in the formula by 1.
Given ϵ > 0 and a subset A ⊂ X define

Hn,ϵ(A) = inf{wn({Si})i∈I : A ⊂
⋃
i∈I

and diam(Si) < ϵ ∀i}.

The infimum is taken over all finite or countable coverings of A by sets of diameter If there
is no such covering we set Hn,ϵ(A) = ∞.

The n-dimensional Hausdorff measure of A is defined by the formula

Hn(A) = C(n) lim
ϵ→0

Hn,ϵ(A)

where C(n) is a positive normalisation constant.
Moreover we define Hn(∅) = 0.

Remark. � The value Hn,ϵ is nonincreasing in ϵ (Hd,ϵ ↑ for ϵ ↓ 0). Hence Hn(A) is
well-defined for any subset A ⊂ X and any metric space X. It may be either a
nonnegative real number or +∞.

� The constant C(n) is introduced for one reason only: if n is an integer, one chooses
C(n) such that the n-dimensional Hausdorff measure of sets in Rn has the property
Hn([0, 1]n) = 1.

1.19 Proposition. Let X be a metric space and A,B ⊂ X as well as {Ai}i∈I ⊂ 2X .

1. A ⊂ B, then Hn(A) ≤ Hn(B),

2. Hn(
⋃

i∈I Ai) ⊂
∑

i∈I Hn(Ai) for any finite or countable collection of sets Ai ⊂ X,

3. d(A,B) > 0, then Hn(A ∪B) = Hn(A) +Hn(B).

Proof. 1. A cover {Si}i of B is always also a cover of A. Hence Hn,ϵ(A) ≤ Hn,ϵ(A) ∀ϵ > 0
and consequently Hn(A) ≤ Hn(B).

2. Let {Si
j}j be a cover of Ai, i ∈ I = N, such that Hn,ϵ(Ai) ≥ wn({Si

j})− ϵ
2i

. Hence

{Si
j}i,j is a cover of

⋃
i∈NAi = A. Hence

Hn,ϵ(A) ≤
∑
i

wn({Si
j}) =

∑
i

wn({Si
j}) ≤

∑
i

Hn,ϵ(Ai)) + ϵ
∑
i

1

2i
.

If ϵ ↓ 0, then Hn(A) ≤
∑

i∈NHn(Ai).

3. Given any cover {Sj} of A and {S̃i} of B, we can intersect every Sj with Bϵ(A) =

{y ∈ X : ∃x ∈ A s.t. |xy| < ϵ} and every S̃i with Bϵ(B) where ϵ ∈ (0, d(A,B)). This
procedure only decreases the diameter. Hence w.l.og. we can assume sets in a covering of
A are disjoint from the sets in a covering of B.
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1.20 Remark. Caratheodory’s theorem yields that by these three properties Hn restricted
to the Borel σ-algebra of X is measure for any n ≥ 0.

We recall some definitions from measure theory.
Let X be a set. A family A ⊂ 2X is called a σ-algebra if

1. ∅, X ∈ A,

2. A,B ∈ A ⇒ A\B ∈ A,

3. {Ai}i∈N ⊂ A ⇒
⋃

i∈NAi ∈ A.

A measure on A is a function µ : A → [0,∞] such that

1. µ(∅) = 0,

2. {Ai}i∈N ⊂ A ⇒ µ(
⋃

i∈NAi) =
∑

i∈N µ(Ai) where {Ai} is a finite or countable family
of disjoint sets (σ-additivity)

If T ⊂ 2X is an arbritrary collection of subsets of X, then there exists a smallest σ-algebra
σ(T) that contains T. We say σ(T) is generated by T. The σ-algebra generated by open
sets in a topological space X is called the Borel σ-algebra of X and the elements of the
Borel σ-algebra are called Borel sets.

1.21 Theorem. Let Hn be the n-dimensional Hausdorff measure on (Rn, deucl). Let ωn be
the volume of the Euclidean, n-dimensional ball of radius 1. If we choose the normalisation
constant C(n) = 1

2ωn, then Hn = Ln where Ln is the n-dimensional Lebesgue measure.

1.22 Lemma. Let X,Y be metric spaces and f : X → Y a Lipschitz map with diletation
≤ C. Then Hn(f(X)) ≤ CnHn(X).

Proof. If {Si} is a covering of X with diamSi ≤ ϵ ∀i, then {f(Si)}i is a covering of f(X)
with diamf(Si) ≤ C diamSi . Indeed, we first have that diamf(Si) ≤ Cϵ. If f(x), f(y) ∈
f(Si) such that |f(x)f(y)| ≥ diamf(Si)−δ for δ > 0 arbitrarily small, then diamf(Si)−δ ≤
|f(x)f(y)| ≤ |xy| ≤ diamSi .

Hence it follows that wn({f(Si)}) ≤ Cnwn({Si}). Consequently we have Hn,Cϵ(X) ≤
CnHn,ϵ(X). Letting ϵ ↓ 0 we also get Hn(f(X)) ≤ CnHn(X).

1.23 Theorem. For every metric space X there exists a n0 ∈ [0,∞] such that Hn(X) = 0
for all n > n0 and Hn(X) = ∞ for all n < n0.

Proof. Define n0 = inf{n ≥ 0 : Hn(X) ̸= ∞}. By definition Hn(X) = ∞ ∀n < n0. If
n > n0, there exists n′ ∈ (n0, n) such that Hn′

(X) = M < ∞. Hence, for ϵ > 0 there
exists a covering {Si} of X such that diamSi < ϵ ∀i and

∑
i(diamSi)

n′
< 2M . It follows∑

(diamSi)
n =

∑
(diamSi)

n−n′
(diamSi)

n′ ≤ ϵn−n′ ∑
(diamSi)

n′ ≤ 2Mϵn−n′
.

Hence Hn
ϵ (X) ≤ 2ϵn−n′

M . Since n > n′ and since ϵ > 0 was arbitrary, it follows Hn(X) =
0.

1.24 Definition. The number n0 ∈ [0,∞] in the previous theorem is called Hausdorff
dimension of X and denoted with dimHX.
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1.25 Proposition. Let X be a metric space. Then

1. Y ⊂ X, then dimH Y ≤ dimHX.

2. If X is covered by a finite or countable collection {Xi}i of subsets in X, then
dimHX = supi dimHXi.

3. If f : X → Y is a Lipschitz map, then dimH f(X) ≤ dimHX.

Proof. Exercise

11
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2 Length Spaces

2.1 Length structures

Let X be a topological space.

A path γ in X is a continuous map γ : I → X where I is interval in R that may be open,
closed, finite or infinite. A single point is counted as an interval.

2.1 Remark. Two paths γi : Ii → X, i = 0, 1, are equivalent or reparametrizations of each
other if there exists an interval I ⊂ R, a path γ : I → X and continuous nondecreasing
functions φi : Ii → I such that γi = γ ◦ φi, i = 0, 1.

An (unparametrized) curve is an equivalence class of paths.

If φ0, φ1 are homeomorphisms (i.e. strictly increasing), then γ0 = γ2◦φ with φ = φ−1
1 ◦φ0.

2.2 Definition. A length structure on a Hausdorff space X is a family A of admissible
paths together with a map L : A→ [0,∞], the length of paths in A such that the class A
satisfies the following properties:

(i) A is closed under restrictions: If γ : I → X is an admissible path and J ⊂ I an
interval, then also γ|J is an admissible path.

(ii) A is closed under concatenations of paths: If γ : [a, b] → X is a path and c ∈ [a, b]
such that γ0 : [a, c] → X and γ1 : [c, b] → X are admissible paths, then also γ is an
admissible path. γ the concatenation of γ0 and γ1.

2.3 Remark. Given two paths γ0 : [a, b] → X, γ1 : [c, d] → X the concatenation
between γ0 and γ1 is defined by

γ0 ∗ γ1 : [a, d− c+ b] → X, γ0 ∗ γ1(t) =

{
γ0(t) t ∈ [a, b],

γ1(t− b+ c) t ∈ [b, d− c+ b].

(iii) A is closed under (at least) affine reparametrizations: For γ : [a, b] → X in A and
φ : [c, d] → [a, b] with φ(t) = αt+β, the composition γ ◦φ : [c, d] → X is also a path
in A.

2.4 Remark. Every natural class of paths comes ususally with its own class of
reparametrizations. For instance continuous paths and homeomorphisms, or C1-
curves and diffeomorphisms. (iii) therefore requires that this class of natural reparametriza-
tions includes all linear maps.

The length L has to satisfy the following properties:

1. Additivity: L(γ|[a,b]) = L(γ|[a,c]) + L(γ|[c,b] for any c ∈ [a, b].

2. Given a path γ : [a, b] → X of finite length we define L(γ, a, t) = L(γ|[a,t]). We
require that L(γ, a, ·) is a continuous function.
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3. The length is invariant under affine reparametrizations: L(γ ◦ φ) = L(γ) for any
affine homomorphism φ.

4. The length structure agrees with the topology of X: for any neighborhood Ux of x
we have

inf {L(γ) : γ(a) = x, γ(b) ∈ X\Ux} > 0.

2.5 Examples. 1. Let (V, | · |) be a finite dimensional normed vector space. Let A be
the class of piecewise differentiable paths γ : [a, b] → V . A length structure on V is
given via

γ ∈ A 7→ L(γ) =

∫ b

a
|γ′(t)|dt.

For instance V = R2 with | · |eucl.

2. Let (V, | · |), A and L as before. And let W ⊂ V be a subset with the induced
topology. Let B ⊂ A the paths γ in A such that Im(γ) ⊂ W and let LW = L|B.
This is a length structure on B.

For instance, let (V, | · |) = (Rn, | · |eucl) and let W = M be an m-dimensional
submanifold.

3. Driving in Manhatten. Consider (Rn, | · |eucl), A and L as before. We restrict L to
the class of paths that are broken lines that are parallel to the coordinate axes.

4. Let (M, g) be a Riemannian manifold, i.e. p ∈ M 7→ gp smooth with gp is an
Euclidean inner product on TpM , and let A be the family of piecewise differentiable
curves in M . Then

γ ∈ A 7→ L(γ) =

∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt.

2.6 Definition. Let X be a Hausdorff space and L : A→ [0,∞] a length structure on X.
For two points x, y ∈ X we set

dL(x, y) = inf{L(γ) : γ : [a, b] → X, γ ∈ A, γ(a) = x, γ(b) = y}.

A metric d on a Hausdorff space X that is obtained by a length structure is called a length
metric or intrinsic metric. A metric space (X, d) whose metric is a length (intrinsic) metric
is called length (intrinsic) space.

2.7 Example. 1. Let X = R2 and let L be the length induced by the Euclidean norm on
the family of piecewise differentiable curves. Then dL(x, y) = |x− y|eucl ∀x, y ∈ R2.

2. (”Metric on an island”) Let X ⊂ R2 be conencted. Admissible paths are all piecwise
differentiable paths with image in X and the length of paths is the Euclidean length.
If X is convex, the induced distance of this length structure on X coincides with
| · − · |eucl. But in general this is not the case.

13



2.8 Remark. The pair (X, dL) is a ∞-metric space (Exercise).

The metric dL is not necessarily finite. For instance, if X is a union of two disconnected
components, there is no continuous path from one component to the other. Hence, dL(x, y)
for points in different components is infinite. On the othere hand there may be points
such that continuous path between them exist, but all have infinite length. We say two
points belong to the same accessibility component if they can be connected by a path of
finite length.

2.9 Remark. The topology of dL can only be finer than the topology of X: any open set
of X is an open set w.r.t. (X, dL).

2.10 Definition. A length structure (A,L) is said to be complete if for every two points
x, y there exists an admissible path γ ∈ A joining them such that L(γ) = dL(x, y).

An intrinsic metric that is associated to a complete length structure is called strictly
intrinsic.

2.11 Example. 1. (”crossing the swamp”) Consider R2 and let f : R2 → (0,∞) be
continuous. We define the length of a piecewise differentiable path γ : [a, b] → R2 by

L(γ) =

∫ b

a
f(γ(t))|γ′(t)|dt.

We interpret L as a weighted Euclidean length. Where f assigns big values it is
more difficult to traverse (for instance, a swamp or a mountain trail).

2. (”Finslerian length”) We consider f : R2 × R2 → (0,∞) and the same class of
admissible paths as before. and define length by

L(γ) =

∫ b

a
f(γ(t), γ′(t)).

In order for this expression to be invariant under reparameterizations of path one
has to require that f(x, kv) = |k|f(x, v) for k ∈ R and ∀x ∈ R2.

Examples of this type of length is the length structure associated to normed spaces
where f(x, v) = |v|.
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2.12 Definition. Let (X, d) be a metric space and let γ : [a, b] → X be a path. Consider
a partition Z = (t0, . . . , tN ) of [a, b], i.e. a = t0 ≤ t1 ≤ · · · ≤ tN = b. We define

LZ(γ) =

N∑
i=1

d(γ(ti−1), γ(ti)).

We can see LZ(γ) as the length of the polygon induced by Z. The length of γ is

L(γ) := Ld(γ) = sup{LZ(γ) : Z is a partition of [a, b]} ∈ [0,∞].

A path γ : [a, b] → X is said to be rectifiable if Ld(γ) <∞.

The class of paths γ : [a, b] → X for a ≤ b ∈ R with Ld : A→ [0,∞] is a length structure.
We call Ld the induced length.

Remark. Let Z,Z ′ partitions of [a, b]. Z ′ is called a refinement of Z if Z ′ ⊂ Z. By ∆-
inequality it follows LZ′

(γ) ≥ LZ(γ) for γ : [a, b] → X.

We define the mesh size of a partition Z = (t0, . . . , tN ) of [a, b] as

|Z| = max {|ti−1 − ti| : i = 1, . . . , N} .

2.13 Lemma. LZi(γ) ↑ L(γ) if |Zi| ↓ 0.

Proof. Exercise.

2.14 Lemma. Let (V, | · |) be a finite dimensional normed vector space and γ : [a, b] → V
is a differentiable map. Then

L(γ) =

∫ b

a
|γ′(t)|dt.

2.15 Proposition (Properties of the induced length). Let γ : [a, b] → X be a path. The
length L = Ld induced by a metric d possesses the following properties.

(i) Generalized ∆-inequality: L(γ) ≥ d(γ(a), γ(b)).

(ii) Additivity: if a < c < b, then L(γ, a, c) +L(γ, c, b) = L(γ). In particular L(γ, a, t) is
a nondecreasing function in t ∈ [a, b].

(iii) If γ : [a, b] → X is rectifiable, then L(γ, c, d) is a continuous function in c, d ∈ [a, b].

(iv) L is lower semi-continuous on the space of continuous paths γ : [a, b] → X with
respect to point-wise convergence, and hence w.r.t. uniform convergence.

Remark. In general then induced length is not continuous.

Proof. (i) By ∆-inequality it is clear that LZ(γ) ≥ d(γ(b), γ(a)) for any partition Z of
[a, b]. Hence L(γ) = supZ L

Z(γ) ≥ d(γ(a), γ(b)).

(ii) Given a partition Y = (t0, . . . , tN ) and c ∈ (a, b), ∃i ∈ {1, . . . , N} such that c ∈
[ti−1, ti]. Then Y ′ = (t0, . . . , ti−1, c, ti, . . . , tN ) is also a partition and LZ′

(γ) ≥ LZ(γ) by
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the ∆-inequality. Moreover Z0 = (t0, . . . , ti, c) and Z1 = (c, ti, . . . , tn) are partitions of
[a, c] and [c, b] respectively and LZ′

(γ) = LZ0(γ|[a,c]) + LZ1(γ|[c,b]). If we choose Z such

that LZ(γ) + ϵ ≥ L(γ), then it follows L(γ) ≤ L(γ, a, c) + L(γ, c, b).

On the other hand, given two partitions of Z0, Z1 of [a, c] and [c, b], then Z = Z0 ∪ Z1 is
a partition of [a, b]. Similarly we get then that L(γ, a, c) + L(γ, c, b) ≤ L(γ).

(iii) We prove continuity in d ∈ (a, b] from the left. The other case works analogously.
Since L(γ) is finite, for ϵ > 0 we may choose a partition Z = (t0, . . . , tN ) of [a, b] such that
L(γ) ≤ LZ(γ) + ϵ. By adding another point in Z (which preserves the inequality) we can
assume that d = tj for j ∈ {1, . . . , N}. Since L(γ, ti−1, ti) ≥ d(γ(ti−1), γ(ti)) ∀i by (i),

L(γ, tj−1, d)− d(γ(tj−1), γ(d)) ≤ L(γ)− LZ(γ) < ϵ.

This estimate holds now for any Z with tj−1 = c that is arbitrarily close to d. Hence

L(γ, a, d)− L(γ, a, c) = L(γ, c, d) < d(γ(c), γ(d)) + ϵ.

Since ϵ > 0 was arbitrary, this yields continuity from the left.

(iv) Let γj be paths that converge pointwise to γ, both defined on [a, b]. Choose ϵ > 0
and let Z be a partition of [a, b] as in (iii) for γ. Consider now LZ(γj) and choose j large
enough such that d(γj(z), γ(z)) < ϵ for all z ∈ Z. Then it follows

L(γ) ≤ LZ(γ) + ϵ ≤ LZ(γi) + ϵ+ 2(N + 1)ϵ ≤ L(γj) + (2N + 3)ϵ.

Since ϵ > 0 was arbitrary, we get L(γ) ≤ L(γj) and hence L(γ) ≤ lim inf L(γj).

2.16 Definition. Let (X, d) be a metric space and let Ld be the induced length structure
on continuous paths. We call d̂ := dLd

the induced intrinsic metric.

2.17 Example. 1. Consider S1 = {(x, y) : x2+ y2 = 1} with the restricted metric of R2.
The induced intrinsic metric is the angular metric d̂(v, w) = arccos⟨v, w⟩eucl.

2. Consider X = Rn with d(x, y) =
√
|x− y|. d is a finite metric on Rn (check). But

d̂(x, y) = ∞ for all x, y ∈ Rn. Indeed, if γ : [0, 1] → is a path, then

Ld(γ) ≥
N∑
i=1

d(γ(ti−1, ti) = n

N∑
i=1

1

n

√
|γ(ti−1)− γ(ti)|

Jensen Inequality
≥ n

√∑
i

1

n
|γ(ti−1)− γ(ti)|

=
√
n

√∑
i

|γ(ti−1)− γ(ti)| ≥
√
n
√
|γ(1)− γ(0)| → ∞.

2.18 Proposition. Let (X, d) be a metric space.

(1) If γ is a rectifiable curve in (X, d), then Ld̂(γ) = Ld(γ).

(2) The intrinsic metric induced by d̂ coincides with d̂, i.e.
ˆ̂
d = d̂.
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Proof. (1) By definition of Ld it follows Ld(γ) ≥ d(γ(a), γ(b)) for every curve γ : [a, b] → X.
This implies d̂ ≥ d. It follows that Ld̂ ≥ Ld.

For the inverse inequality we pick γ : [a, b] → X that is rectifiable and a partition
Z = (t0, . . . , tN ) of [a, b]. By definition of d̂ it follows that d̂(γ(ti−1), γ(ti)) ≤ Ld(γ, ti−1, ti)
∀i. Hence

LZ
d̂
(γ) ≤ Ld(γ).

Since Z was an arbitrary partition we get the desired inequality Ld̂(γ) ≤ Ld(γ). This
proves (1).

(2) This follows trivially from (1).

Remark. The assumption that the curve γ is rectifiable w.r.t. Ld is essential because
otherwise the curve γ may not be continuous w.r.t. (X, d̂).

2.19 Proposition. Let (A,L) be a length structure and (X, dL) the associated length
space. Let d̂ be the intrinsic metric induced by d = dL (or more precisely by LdL). Then

d̂ = dL.

Proof. We repeat the argument from the previous proposition. Let γ : [a, b] → X be
an admissible curve and Z = (t0, . . . , tN ) a partition of [a, b]. By definition of dL we
have dL(γ(ti−1), γ(ti)) ≤ L(γ, ti−1, ti). As before it follows that LdL(γ) ≤ L(γ) and hence

d̂(γ(a), γ(b)) ≥ dL(γ(a), γ(b)).
On the other hand we have dL(γ(a), γ(b)) ≤ LdL(γ) by construction of LdL and hence

dL ≤ d̂.

Remark. Note that given a metric d such that d = d̂ where d̂ is the induced intrinsic metric
automatically implies that d was already intrinsic. We now can say (X, d) is a length space
if and only if d = d̂.
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Remark. If γ0 and γ1 are two equivalent paths (a curve), then it is easy to see they have
the same induced length Ld.

2.20 Definition. We say a path γ : I → X is parametrized with constant speed c ∈ [0,∞)
if L(γ|[a,b]) = c(b − a) ∀[a, b] ⊂ I. If c = 1 we say γ has unit speed or we say γ is
parametrized by arc length. Equivalently, γ is parametrized by arc length if and only if ∀
a ∈ I and t ∈ I we have

d

dt
L(γ, a, t) = 1.

2.21 Proposition. Every rectifiable curve γ : [a, b] → X can be represented in the form
γ = γ̄ ◦φ where γ̄ : [0, L(γ)] → X is parametrized by arc length. and φ is a nondecreasing
continuous map from [a, b] to [0, L(γ)].

Proof. Define φ(t) = L(γ, a, t) ∀t ∈ [a, b] and ψ(τ) = inf{t ∈ [a, b] : φ(t) = τ} for
τ ∈ [0, L(γ)]. We then define γ̄(τ) = γ ◦ ψ(τ).

First we check that γ̄◦φ(t) = γ(t). Indeed, by definition we have that φ◦ψ◦φ(t) = φ(t)
and hence L(γ, a, t) = L(γ, a, ψ ◦ φ(t)) that implies γ(t) = γ ◦ ψ ◦ φ(t) = γ̄ ◦ φ(t).

It remains to verify that γ̄ : [0, L(γ)] → X is continuous and parametrized by arc
length. We pick τ0, τ1 ∈ [0, L(γ)] and t0, t1 ∈ [a, b] such that φ(ti) = τi. Then L(γ, t0, t1) =
φ(t1) − φ(t0) = τ1 − τ0. Moreover d(γ̄(τ0), γ̄(τ1)) ≤ |τ1 − τ0|. Hence γ̄ is continuous. It
also holds L(γ̄, τ0, τ1) = L(γ, t0, t1) = τ1 − τ0. Thus γ̄ is parametrized by arc length.

2.2 Existence of shortest paths

2.22 Definition. A sequence of curves uniformly converges to a curve γ if they admit
parametrizations with the same domain that uniformly converge to a parametrization of
γ.

2.23 Theorem (Arzela-Ascoli Theorem). In a compact metric space any sequence of
curves with uniformly bounded lengths has a uniformly converging subsequence.

Proof. Let (γi) be the sequence in the theorem. Each γi admits a parametrization on
[0, 1] with constant speed. Uniformly bounded lengths means that the speeds of these
parametrizations are uniformily bounded. Hence

d(γi(t), γi(t
′)) ≤ L(γ, t, t′) ≤ C|t− t′| ∀t, t′ ∈ [0, 1] and ∀i ∈ N. (∗)

Let S = {tj} be a countable dense subset of [0, 1]. Using a diagonal argument one can
construct a subsequence γni of γi such that γni(tj) converges for i → ∞ and for every
j ∈ N.

We will show that (γni) converges pointwise. W.l.o.g. (or by renaming the subse-
quence) we assume γni = γi.

For this one shows that γi(t) is a Cauchy sequence (Exercise) and we can define γ(t) :=
limi→∞ γi(t) for t ∈ [0, 1]. Then we can pass to the limit in (∗) and get that γ : [0, 1] → X
is a continuous map.

Finally we have to show that the convergence of γi to γ is uniform. Let ϵ > 0, pick
N ≥ 4C

ϵ , N ∈ N and letM > 0, such that d(γ(k/N), γi(k/N)) < ϵ/2 for all k = 0, 1, . . . , N
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for all i ≥M . Then it follows for t ∈ [k/N, (k + 1)/N ] that

d(γi(t), γ(t)) ≤ d(γi(t), γi(k/N)) + d(γi(k/N), γ(k/N)) + d(γ(k/N), γ(t))

≤ C|t− k/N |+ ϵ/2 + C|t− k/N | ≤ 2C

N
+ ϵ/2 ≤ ϵ.

Since M and ϵ don’t depend on t, we get uniform convergence.

2.24 Definition. Let (X, d) be a metric space. A curve γ : [a, b] → X is a shortest path
if its length is minimal w.r.t. all curves with the same endpoints.

If (X, d) is a length space a path γ : [a, b] → X is a shortes path if and only if
L(γ) = d(γ(a), γ(b)).

2.25 Proposition. Let (X, d) be a length space and let γi be shortest paths that converge
to a path γ as i→ ∞. Then γ is also shortest path.

Proof. Uniform convergence of γi : [a, b] → X to γ implies in particular that γi(a), γi(b) →
γ(a), γ(b). Since X is a length space, we have L(γi) = d(γi(a), γi(b)), and consequently
L(γi) → d(γ(a), γ(b)). But by lower semi-continuity of L it then follows L(γ) ≤ d(γ(a), γ(b)).
Hence γ is a shortest path.

2.26 Proposition. Let (X, d) be a compact metric space and let x, y ∈ X such that there
exists at least one rectifiable curve that connects them. Then there exists a shortest path
between x and y.

Proof. Consider d̂(x, y) that is the infimum of lengths of rectifiable curves between x and
y. Hence ∃ (γi) such that L(γi) → d̂(x, y). According to the Arzela-Ascoli theorem there
exists a subsequence of (γi) that converges to a curve γ. The path γ has the same endpoints
x and y and by lower semicontinuity of L we have L(γ) ≤ d̂(x, y). Thus L(γ) = d̂(x, y).

2.27 Definition. A metric space (X, d) is called locally compact if every point x ∈ X
has a pre-compact neighborhood.

2.28 Proposition. If (X, d) is a complete locally compact length space, then every closed
ball in X is compact.

Proof. Let x ∈ X be arbitrary. If B̄r(x) = {y ∈ Y : |x, y| ≤ r} is compact for some r > 0,
then B̄ρ(x) is compact for any ρ < r. Define R := sup{r > 0 : B̄r(x) is compact}. Since x
has pre-compact neighborhood, we have R > 0. We set B̄R(x) =: B.

We prove B is compact. B is closed set in a complete space. Hence, it suffices to prove
that B is totally bounded, i.e. for any ϵ > 0 B contains a finite ϵ-net (Theorem 1.13).

We may assume ϵ < R. Let B′ := B̄R−ϵ/3(x). This ball is compact and therefore
contains a finite ϵ/3-net. Let y ∈ B. Assume y /∈ B′. Since X is a length space, we have
d(y,B′) = d(x, y)− (r − ϵ/3) < ϵ/3 (see Corollary 2.35 below). Hence ∃y′ ∈ B′ such that
d(y, y′) < ϵ/2. On the other hand d(y′, S) < ϵ/2, and hence d(y, S) < ϵ. It follows that S
is an ϵ-net for B, and B is therefore compact.

Each y ∈ B has a precompact neightborhood Uy. We pick a finite collection {Uy}y∈Y
of such neighborhoods that cover B. The union of U :=

⋃
y∈Y Uy is precompact. There

exists ϵ > 0 such that Bϵ(B) ⊂ U (argue by contradiction). Since X is a length space,
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we also have Bϵ(B) = BR+ϵ(x) (indeed, if z ∈ Bϵ(B)\B, then ϵ > d(z,B) = d(x, z) − R
and hence z ∈ BR+ϵ(x). BR+ϵ(x) ⊂ Bϵ(B) holds in any case). Moreover the closure
B̄R+ϵ(x) ⊂ Ū is compact. This is a contradiction with the definition of R > 0 and R <∞.
Hence R = ∞.

20



2.29 Corollary. Let (X, d) be complete locally compact length space. Then (X, d) is
strictly intrinsic.

Proof. We have to show that that for every x, y ∈ X such that d(x, y) = R < ∞ ∃ a
shortes path γ connection x and y. By the previous proposition B̄2R(x) is compact, and
since X is a length space there exists a rectifiable curve γ̃ between x, y with L(γ̃) ≤ R+ ϵ.
The Proposition 2.26 yields the existence of a shortest path γ w.r.t. paths in B̄2R(x).
Since γ̃ is such a path, since L(γ̃) < 2R and since paths that start in x and leave B2R(x)
at least have length 2R, it follows that γ satisfies L(γ) = d(x, y).

Question: Given an intrinsic metric d induced by a length structure L, what is the
relation between L and Ld?

2.30 Theorem. If L is a lower semi-continuous length structure, i.e. lower semi-continuous
w.r.t. pointwise convergence of paths in X, L coincides with the length structure induced
by its intrinsic metric dL = d on all curves that are admissible for L.

Proof. The inequality Ld(γ) ≤ L(γ) for an admissible path γ holds for any length structure
(see Proposition 2.19).

Consider L(t) = L(γ, a, t) for an admissible path γ : [a, b] → X with finit length. By
the second property 2. of length structures L(t) is uniformily continuous. Hence for any
ϵ > 0 there exists a partition Z = (t0, . . . , tN ) of [a, b] such that dL(γ(ti−1), γ(ti)) < ϵ ∀i =
1, . . . , N . According to the definition of dL for each i = 1, . . . , N there exists an admissible
curve σi : [ti−1, ti] → X with endpoints σi(ti−1) = γ(ti−1) and σi(ti) = γ(ti) such that
L(σi) ≤ dL(γ(ti−1), γ(ti)) + ϵ/N . We can consider the concatenation cϵ : [a, b] → X of the
curves σi and cϵ we have

L(cϵ) =

N∑
i=1

L(σi) ≤
N∑
i=1

dL(γ(ti−1), γ(ti)) + ϵ ≤ Ld(γ) + ϵ.

From the triangle inequality we see that dL(γ(t), cϵ(t)) < 3ϵ for all t ∈ [a, b]. Hence cϵ
converges pointwise to γ for ϵ ↓ 0 w.r.t. dL. But the topology of dL is always finer than
the original topology of X. So by lower semi-continuity of L we obtain

L(γ) ≤ lim inf
ϵ→0

L(cϵ) ≤ Ld(γ)

which is the desired inequality.

In the following we will only consider lower continuous length structures L (defined on
admissible paths). Hence dL = d̂L =: d and L = Ld (on admissible paths). In particular
ˆ̂
dL = d̂L = dL.

W.l.o.g. if we consider an intrinsic metric space (X, d) we mean that d̂ = d and L = Ld

on continuous paths.

2.31 Example. Let (M, g) be a Riemannian manifold, L the induced length structure on
piecewise differentiable curves, and d̂ = dL the induced Riemannian distance. (M, d̂) is
locally compact length space and L is also lower semi-continuous. Hence the induced
length Ld̂ coincides with L on piecewise differentiable curves. If (M, d̂) is complete as
metric space, then ∀x, y ∈M ∃ a minimal geodesic between x and y (Hopf-Rinow).
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We consider a metric space (X, d) as before.

2.32 Definition. (i) A point z ∈ X is called a midpoint between x, y ∈ X if d(x, z) =
d(z, y) = 1

2d(x, y).

(ii) Given ϵ > 0 a point z ∈ X is called an ϵ-midpoint between x, y ∈ X if

max{d(x, z), d(z, y)} ≤ 1

2
d(x, y) + ϵ.

2.33 Lemma. 1. If d is strictly intrinsic, then for every two points x, y ∈ X there
exists a midpoint z.

2. If d is intrinsic, then ∀ϵ > 0 and for every two points x, y ∈ X there exists an
ϵ-midpoint z between them.

Proof. We first prove 2. Let γ : [a, b] → X be a path between x, y ∈ X such that
L(γ) = d(x, y) + 2ϵ. Since t ∈ [a, b] 7→ L(γ, a, t) is continuous, there exists t0 ∈ [a, b] such
that L(γ, a, t0) =

1
2L(γ). Hence d(γ(a), γ(t0)) ≤ L(γ, a, t0) ≤ 1

2d(x, y) + ϵ. Similarly one
can prove 1.

2.34 Theorem. Let (X, d) be a complete metric space.

1. If for every x, y ∈ X there exists a midpoint, then d is strictly intrinsic.

2. If for every x, y ∈ X and for every ϵ > 0 there exists an ϵ-midpoint, then d is
intrinsic.

Proof. We only prove 1. and 2. is left as an exercise.
We construct a path γ : [0, 1] → X between x, y such that γ(0) = x, γ(1) = y and

L(γ) = d(γ(0), γ(1)). First we assign the values of γ for all dyadic rationals k
2m , k ∈

{1, . . . , 2m} and m ∈ N. This is done by successively picking midpoints. The map that we
obtain by such a contruction satisfies

d(γ(t), γ(t′)) = (t′ − t)d(x, y) (1)

where t′, t are dyadic and t < t′. Hence γ is defined on a dense subset of [0, 1] and
1-Lipschitz continuous. Since (X, d) we can extend γ to the entire interval [0, 1] as a 1-
Lipschitz map using Proposition 1.8. Thus we obtain a path between x and y, and (1)
holds for all s, t ∈ [0, 1] with s < t. It also follows that L(γ) = d(x, y).

2.35 Corollary. Let (X, d) be a length space, x, y ∈ X and r ∈ (0, d(x, y)). Then
d(y,Br(x)) = d(x, y)− r.

2.36 Corollary. A complete length space X is a length space iff given ϵ > 0 and 2 points
x, y ∈ X there exists a finite sequence x = x1, . . . , xk = y such that every two neighboring
points in this sequence are ϵ-close (i.e. d(xi, xi+1) ≤ ϵ ∀i) and

∑k−1
i=1 d(xi, xi+1) < d(x, y)+

ϵ.
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2.37 Definition. Let I ⊂ R be an interval. A path γ : I → X is a shortest path if γ|[a,b]
is a shortest path for any interval [a, b] ⊂ I.

A path γ : I → X is called a geodesic if ∀t ∈ I there exists [a, b] such that t ∈ (a, b) ⊂ I
and γ|[a,b] is a shortest path.

Remark. In general geodesic are not shortest path. Moreover shortest paths between
points are not unique in general.

2.38 Theorem (Hopf-Rinow-Cohn-Vossen). Let (X, d) be a locally compact length space.
The following statements are equivalent:

(i) X is boundedly compact, i.e. every closed metric ball in X is compact.

(ii) X is complete.

(iii) Every geodesic γ : [0, a) → X can be extended to a continuous path γ̄ : [0, a] → X.

(iv) There is a point p ∈ X such that every shortest path γ : [0, a) → X with γ(0) = p
can be extended to a continuous path γ̄ : [0, a] → X.

By Corollary 2.29 each of the conditions imply that all points in X can be connected by a
shortest path.

Proof. The implications (i) ⇒ (ii) ⇒ (iii)⇒ (iv) are straightforwart and left as an exercise.
We will show that (iv) implies (i). The proof is similar to the one of Proposition 2.28.

The difference is that for Proposition 2.28 we were allowed to use completeness where in
this case we only can use property (iv).

We fix p ∈ X and we define again R = sup{r : B̄r(p) is compact} where R > 0 by
local compactness. Our goal is to show that R = ∞.

We assume R < ∞ and first show that BR(p) is precompact. For this we pick a
sequence (xi) ⊂ BR(p) and set d(p, xi) = ri. We will show that (xi) has a converging
subsequence. We can assume ri → R. Otherwise xi ∈ Br(p) ∀i for some r ∈ (0, R) and by
compactness of B̄r(p) we find a converging subsequence.

Let γi : [0, ri] → X be a sequence of shortest paths between p and xi that is parametrized
by arc length. These paths exit because every xi belongs to a compact ball centered at
p. We can choose a subseqence such that the restriction γi|[0,r1] converges to a curve
γ1 : [0, r1] → X. From this subsequence we can choose another subsequence such that
γi|[0,r2] converges to γ2 : [0, r2] → X. We continue this iteration and then pick a diagonal
sequence γi that converges on [0, rj ] for every j.

We can then define γ(t) = lim γi(t) for t ∈ [0, R). The curves γi where nonexpanding,
i.e. 1-Lipschitz,

d(γi(t), γi(s)) ≤ |t− s|

and hence by continuity of this inequality also γ is 1-Lipschitz. Moreover γ is also a shortest
path on each subinterval [0, ri] by Proposition 2.25. By (iv) there exists a continuous
extension γ̄ : [0, R] → X. Moreover γi(ri) = xi converges γ̄(R) (Exercise). Hence BR(p)
is precompact.

Therefore B̄R(p) is compact and we can proceed like in the proof of Proposition 2.28
the end up with a contradiction.
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2.3 Metric speed

2.39 Definition. Let (X, d) be a metric space and γ : I → X a curve. The speed of γ at
t ∈ I denoted by vγ(t) is defined by

vγ(t) := |γ̇(t)| := lim
ϵ→0

d(γ(t), γ(t+ ϵ))

|ϵ|

if the limit exists.

Remark. The notation |γ̇(t)| is justified by the following observation. Let γ : [a, b] →
(Rn, | · |eucl) be a differentiabl curve, then vγ(t) exists ∀t ∈ [a, b] and vγ(t) = |γ′(t)|eucl.

2.40 Theorem. Let (X, d) be a metric space and let γ : [a, b] → X be a rectifiable curve.
Then for L1-a.e. t ∈ [a, b] it holds either

lim
ϵ,ϵ′↓0

L(γ|[t−ϵ,t+ϵ′])

ϵ+ ϵ′
= 0

or

lim
ϵ,ϵ′↓0

d(γ(t− ϵ), γ(t+ ϵ))

L(γ|[t−ϵ,t+ϵ′])
= 1.

2.41 Theorem (Vitali’s Covering Theorem for Rn). Let X ⊂ Rn be bounded and let B be
a collection of closed balls in Rn such that for every x ∈ X there exists ϵ > 0 and B ∈ B
with x ∈ B and diamB < ϵ. The there exists a countable subcollection {Bi}i∈I in B of
disjoint balls the still cover X up to a set of Lebesgue measure 0.

Proof. We argue by contradiction and suppose the contrary. For every α > 0 let Zα denote
the set of all t ∈ [a, b] such that

lim inf
ϵ,ϵ′↓0

L(γ|[t−ϵ,t+ϵ′])

ϵ+ ϵ′
= α (†)

and

lim
ϵ,ϵ′↓0

d(γ(t− ϵ), γ(t+ ϵ))

L(γ|[t−ϵ,t+ϵ′])
= 1− α (‡).

By assumption L1(Zα) > 0 for all α > 0 sufficiently small. Otherwise
⋃

α>0 Zα would
have 0 measure which is equivalent to the statement of the theorem.

We fix α > 0 with L1(Zα) > 0 and set Zα =: Z as well L1(Z) = µ.
We choose ϵ0 > 0 so small, such that for any partition {yi}i=0,...,N of [a, b] with

max1=1,...,N (yi − yi−1) < ϵ0, one has

L(γ)−
N∑
i=1

d(γ(yi−1), γ(yi)) < µα2/2.

(We find such ϵ0 by Problem 1 on problem sheet 4.)
Consider now the set B of all intervals of the form [t − ϵ, t + ϵ′] such that t ∈ Z and

ϵ, ϵ′ > 0 satisfy ϵ+ ϵ′ < ϵ0, and
L(γ|[t−ϵ,t+ϵ′])

ϵ+ ϵ′
> α
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and
d(γ(t− ϵ), γ(t+ ϵ))

L(γ|[t−ϵ,t+ϵ′])
< 1− α.

By the definition of Z every t ∈ Z is contained in arbitrarily short element of B. Applying
Vitali’s covering theorem (Theorem 2.41) we can find a countable subfamily {[ti − ϵi, ti +
ϵi]}∞i=1 in B of dijoint intervals that cover Z up to a set of zero measure. In particular

∞∑
i=1

(ϵi + ϵ′i) ≥ µ.

Hence for M ∈ N sufficiently large we have

M∑
i=1

(ϵi + ϵ′i) > µ/2.

Since the intervals from this subfamily are disjoint, we can find a partition {yj}j=0,...,N

such that maxi(yi − yi−1) < ϵ0 such that ∀i we have that [ti − ϵi, ti + ϵ′i] ⊂ [yj−1, yj ] for
some j. In particular, since the length of [yj−1, yj ] is smaller than ϵ0, if ti ∈ [yj−1, yj ],
then [yj−1, yj ] ∈ B.

We denote Lj = L(γ|[yj−1,yj ] and dj = d(γ(yj−1), γ(yj)). By the choice of ϵ0, we have

N∑
j=1

(Lj − dj) = L(γ)−
N∑
j=1

dj < µα2/2.

If [yj−1, yj ] is in B (i.e. [yj−1, yj ] = [ti − ϵ̃i, ti + ϵ̃′i] for some i, then

Lj − dj ≥ Lj − (1− α)Lj = αLj ≥ α2(yj−1 − yj) = α2(ϵ̃i + ϵ̃′i).

Hence
N∑
j=1

(Lj − dj) ≥ α2
M∑
i=1

(ϵ̃i + ϵ̃′i) ≥ α2
M∑
i=1

(ϵi + ϵ′i) >
1

2
µα2.

This is a contradiction.

Proof of Vitali’s Theorem. We may assume that every ball inB contains a least one x ∈ X
and that every ball in B has radius not greater than 1. Then all the balls are contained in
the 2-neighborhood B2(X) which is bounded and hence has finite volume. We construct a
sequence of balls {Bi}i∈N by induction. Assume B1, . . . , Bm are already constructed. Let
Bm be the collection of balls in B that do not intersect with B1, . . . , Bm. If Bm is empty,
then {Bi}i=1,...,m covers the entire set X and the proof is finished. If Bm is not empty, we
choose Bm+1 to be any element of Bm with

diamBm+1 >
1

2
sup{diamB : B ∈ Bm}.

The sequence of balls {Bi}i∈N is disjoint by construction. We have to show that they cover
X up to a set of measure 0. We have

∞∑
i=1

Ln(Bi) <∞
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since the union of these balls has finite volume. Hence ∃m ∈ N such that
∑∞

i=m+1 Ln(Bi) <
ϵ. Let x ∈ X\

⋃
iBi and let B be any ball in B that contains x and does not intersect the

balls B1, . . . , Bm. Note that B must intersect with
⋃

iBi because otherwise B ∈ Bm for
all m ∈ N which contradicts that Ln(Bi) → 0 (since 2L(Bi) > diamB ∀B ∈ Bi−1).

Let k ∈ N be minimal such that B ∩ Bk ̸= ∅. Then B ∈ Bk−1 and hence diamBk >
1
2 diamB. It follows that the distance between x and the center of Bk is not greater as
5 times the radius of Bk. Hence x belongs to the ball with the same center as Bk and 5
times its radius. We denote this ball with 5Bk.

We have proved that x ∈ X\
⋃

iBi is contained in 5Bk for some k > m and therefore
X\

⋃
iBi ⊂

⋃∞
i=m+1 5Bi. Hence

Ln(X\
⋃
i

Bi) ≤
∞∑

i=m+1

Ln(5Bi) = 5n
∞∑

i=m+1

µn(Bi) < 5nϵ.

Since ϵ > 0 is arbitrary, we showed that X\
⋃

iBi has measure 0.
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In the proof of Theorem 2.40 it is possible to set ϵ = 0. Then we obtain the following
corollary.

2.42 Corollary. Let (X, d) be a metric space and let γ : [a, b] → X be a rectifiable curve.
Then for L1-a.e. t ∈ [a, b] it holds either

lim
ϵ↓0

L(γ|[t,t+ϵ])

ϵ
= 0 or lim

ϵ↓0

d(γ(t), γ(t+ ϵ))

L(γ|[t,t+ϵ])
= 1.

2.43 Corollary. Let X be a metric space, γ : [a, b] → X a Lipschitz curve. Then the

speed vγ(t) exists for L1-almost every t ∈ [a, b] and L(γ) =
∫ b
a vγ(t)dt.

Proof. Recall the following fact. If f : [a, b] → R is Lipschitz, f ′(t) exists L1-almost

everywhere, and
∫ b
a f

′(t)dt = f(b)− f(a).
If we define f(t) = L(γ|[a,t]) for t ∈ [a, b], then f is a Lipschitz function. For a.e.

t ∈ [a, b] we write

f ′(t) = lim
ϵ→0

L(γ|[t,t+ϵ])

|ϵ|
= lim

ϵ→0

L(γ|[t,t+ϵ])

d(γ(t), γ(t+ ϵ))︸ ︷︷ ︸
≥1

·d(γ(t), γ(t+ ϵ))

|ϵ|
≥ lim sup

ϵ→

d(γ(t), γ(t+ ϵ))

|ϵ|
.

Then we have either f ′(t) = 0, or the first term in the last product goes to 1. In the first
case we have

0 = lim
ϵ→0

d(γ(t), γ(t+ ϵ))

|ϵ|
= vγ(t).

In the second cases we have

vγ(t) = lim
ϵ↓0

d(γ(t), γ(t+ ϵ))

|ϵ|
= f ′(t).

Thus vγ(t) exists and equals f ′(t) in both cases (for L1-almost every t).
The theorem follows by integrating vγ(t) = f ′(t).

The last corollary actually holds for bigger class of paths.

2.44 Definition. Consider a metric space (X, d). A path γ : [a, b] → X is called absolutely
continuous if for any ϵ > 0 there exists δ > 0 such that for any sequence of disjoint intervals
[ai, bi], i = 1, . . . , N with

∑N
i=1(bi − ai) ≤ δ we have

∑N
i=1 d(γ(ti−1), γ(ti)) ≤ ϵ.

Remark. Let γ : [a, b] → X be a path. If γ is Lipschitz, then it is absolutely continuous.

Recall the following. If f : [a, b] → R is absolutely continuous, then f is differentiable
almost everywhere, f ′ is integrable and∫ b

a
f ′(t)dt = f(b)− f(a).

2.45 Lemma. If a path γ : [a, b] → X is absolutely continuous, then it is rectifiable.
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Proof. Let ϵ = 1 and pick δ > 0 like in the definition of an absolutely continuous path,
and let M ∈ N be such that b−a

M ≤ δ.

Let Z = (t0, . . . , tM ) is be the partition of [a, b] given by ti = a+ i b−a
M . Let Z ′ be any

partition with mesh size smaller than b−a
M . W.l.o.g. we can assume that Z ⊂ Z ′. Hence,

for every i there exist y0, . . . , yk ∈ Z ′ such that ai−1 = y0 ≤ · · · ≤ yk = ai. Moreover, it
holds

∑k
j=1(yj − yj−1) ≤ δ. Hence

k∑
i=1

d(γ(yi−1), γ(yi)) ≤ 1.

Hence LZ′
(γ) ≤M . Since Z ′ was any partition with mesh size smaller than b−a

M , we have
γ is rectifiable.

2.46 Theorem. Let (X, d) be a metric space and let γ : [a, b] → X be an absolutely
continuous path. Then the speed vγ(t) exists L1-a.e., is integrable and

L(γ) =

∫ b

a
vγ(t)dt.

Proof. If we show that f(t) = L(γ, a, t) is absolutely continuous, we can finish the proof
exactly like for the case of Lipschitz curves.

Let ϵ > 0 and pick δ > 0 as before. Hence, if (ai, bi), i = 1, . . . , k, are intervals such
that

∑k
i=1(bi − ai) ≤ δ, then

∑k
i=1 d(γ(ai), γ(bi)) ≤ ϵ.

This estimate stays true, if pick any family of finer intervals that come from partitions
of the intervals [ai, bi]. Hence, it follows

∑k
i=1 L(γ, ai, bi) =

∑k
i=1 f(bi)− f(ai) ≤ ϵ.

2.4 Length and Hausdorff measure

Let (X, d) be a metric space. Recall the definition of the 1-dimensional Hausdorff measure.
For a countable family of sets {Si} in X, the 1-weight is defined as

w1({Si}) =
∑
i

diamSi.

Given A ⊂ X for any ϵ > 0 we set

H1,ϵ(A) = inf{w1({Si}) : diamSi ≤ ϵ, ∀i ∈ I}

where the infimum runs over all countable coverings of A with +∞ if no such covering
exists. The 1-dimensional Hausdorff measure is then

H1(A) = C lim
ϵ↓0

Hr,ϵ(A)

for a constant C > 0.

2.47 Lemma. For any connected metric space X, it holds H1(X) ≥ diamX.
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Proof. First we note the in the definition of H1 it suffices to consider only coverings with
open sets. Indeed, if {Si} ⊂ X, with i ∈ N, we define

S′
i = Bδ(Si) = {y ∈ X : d(Si, y) ≤ δ/2i}.

Then diamS′
i ≤ diamSi + 2δ/2i and therefore w1({S′

i}) ≤ w1({Si}) + 2δ. Since δ > 0 is
arbitrarily small, the claim follows.

Let {Si} be an open cover of X. Let x, y ∈ X. There exist a finite sequence of
Si1 , . . . , Sin such that x ∈ Si1 and y ∈ Sin and Sik ∩ Sik+1

̸= ∅ ∀k = 1, . . . , n− 1. Indeed,
fixing x ∈ X let Y be the set of all points y such that such a sequence exists. Then any
open set U ⊂ X must be either in Y or in X\Y . Hence Y and X\Y are open. Since X is
connected we have Y = X.

Now let {Si} be an arbitrary countable covering of X, x, y ∈ X and {Sik} a sequence
as before. It follows there exist xk ∈ Sik ∩ Sik+1

for all k = 1, . . . , n− 1 such that x0 = x
and xn = y. Clearly then d(xk, xk+1) ≤ diamSik+1

. Therefore∑
i

diamSi ≥
∑
k

diamSik ≥
∑
k

d(xk, xk+1) ≥ d(x, y).

Since {Si} and x, y ∈ X are arbitrary, it follwos H1(X) ≥ diamX.

2.48 Theorem. Let (X, d) be a metric space and let γ : [a, b] → X be a rectifiable simple
curve. Then L(γ) = H1(γ([a, b])).

Remark. A path γ is simple if it is an injective map.

Proof. Let L = L(γ) < ∞ and S = γ([a, b]). Assume γ is parametrized by arc length, in
particular [a, b] = [0, L] w.l.o.g.

Consider the partitioin ti = i LN , i = 0, . . . N , of [0, L]. It follows that d(γ(s), γ(t)) ≤
L(γ, s, , t) ≤ L(γ, ti−1, ti) for all s, t ∈ [ti−1, ti]. Hence diam γ([ti−1, ti]) ≤ L(γ, ti−1, ti) =
L/N . Hence, the sum of these diameter is smaller or equal than L. Since these diameter
also go to 0 as N → ∞, it follows that H1(S) ≤ L.

On the other hand let a = t0 ≤ . . . tN = b be a partition of [a, b], and set Si =
γ([ti, ti+1]), i = 0, . . . , N − 1. Since γ is simple, the Si are disjoint, up to finitely many
points γ(ti). The unition of these points has H1-measure 0. Thus H1(S) =

∑
iH1(Si).

The previous lemma implies

Hi(Si) ≥ diamSi ≥ d(γ(ti), γ(ti+1)).

Since the partition was arbitrary, it follows that H1(S) ≥ L(γ).
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3 Constructions

3.1 Locality of length spaces

3.1 Lemma. Let X be a topological space that is covered by a collection of open sets
{Xα}α∈Λ. Assume each Xα is equipped with a length structure Lα and such that the
following holds: if γ is a path that maps to the intersection of Xα and Xβ then Lα(γ) =
Lβ(γ).

Then there exists a unique length structure L on X whose restriction to every Xα is
Lα. Moreover, if X is connected and all intrinsic metrics induced by Lα on Xα are finite,
then so is L.

Proof. Consider a path γ : [a, b] → X. The inverse images γ−1(Xα) are an open covering
[a, b]. The compactness of [a, b] implies that there is a finite partition a = t0 ≤ t1 ≤ · · · ≤
tn = b such that every segment [ti, ti+1] is contained in one of the sets Xα and the length
of γ|[ti,ti+1] is given by Lα. By additivity of length, the length of γ must be equal to the
sum of lengths of its restricted intervals [ti, ti+1]. This proves the uniquness part of the
lemma. Moreover this gives a way to define a length L on X. To complete the proof
one has to check that L defined this way is independent of the choice of a partition and
satisfies the properties of a length structure. (Exercise).

To prove the statement about finiteness we fix a point x ∈ X and define Y as the set
of all points such that the length distance between x and a point y ∈ Y is finite. Every
set Xα is either contained in Y or in X\Y by the triangle inequality. It follows that Y
and X\Y are both open. But since X is connected we have Y = X.

3.2 Corollary. Consider two intrinsic metrics d1 and d2 defined on the same set X and
inducing the same topology. Assume every point x ∈ X has a neighborhood Ux such that
d1(p, q) = d2(p, q) ∀p, q ∈ Ux. Then d1 = d2.

Proof. Exercise .

Give an example that demonstrates that the corollary fails without the assumption that
the metrics in quesiton are intrinsic.

3.3 Proposition. If a complete metric d on a set X is not intrinsic, then there exists
another metric d1 on X such that d ̸= d1 but every point has a neighborhood where d and
d1 coincide.

Proof. For every ϵ > 0 define dϵ(x, y) = inf
∑k

i=0 d(pi, pi+1) where the infimum is taken
over all finite sequences of points p0, p1, . . . , pk+1 such that p0 = x, pk+1 = y and
d(pi, pi+1) ≤ ϵ for all i = 0, 1, . . . , k. Clearly dϵ(x, y) = d(x, y) if d(x, y) ≤ ϵ and thus
dϵ and d coincide on every ball of radius ϵ/2. On the other, if dϵ = d for all ϵ > 0, then d
is intrinsic.
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3.2 Glued spaces

3.4 Example. 1. Consider the strip R × [0, 1] and for every x ∈ R identify (x, 1) with
(x+100, 0). This is a topological cylinder. What is the distance between (0, 12) and
(1000, 12) in this quotient? We can estimate the distance as follows. A sequence of
sgements that connects the two points is

(0,
1

2
) → (0, 1) =

1

2
, (0, 1) → (100, 0) = 0,

(100, 0) → (100, 1) = 1, (100, 1) → (200, 0) = 0,

...

(900, 0) → (900, 1) = 1, (900, 1) → (1000, 0) = 0,

(1000, 0) → (1000,
1

2
) = 1.

Hence the distance should be less than 11.

2. Consider R2 and identify (x, y) with the point given by (−y, 2x). Then distance
between the origin and any other point is 0, since (x, y) is identified with (12y,−x)
that is identified with (−1

2x,−
1
2y) that is identified with (−1

4y,
1
2x) etc. The distance

between these points is set to 0 and the sequence converges to (0, 0).

These examples suggest a general strategy for defining a metric on a space that results
from identifying certain points

3.5 Definition. Let (X, d) be an ∞-metric space and let R be an equivalence relation on
X. The quotient semi-metric dR is defined as

dR(x, y) := inf

{
N∑
i=1

d(pi, qi) : p1 = x, qN = y,N ∈ N and pi+1 ∼R qi∀i = 1, . . . , N − 1

}
.

We associate to the semi-metric (X, dR) a metric space (X̂, dR) where X̂ := X/dR is the
quotient space that arises from the equivalence relation p ∼dR q ⇔ dR(p, q). (X̂, dR) is the
quotient metric space associated to ∼R. One also says that (X̂, dR) results from gluing
(X, d) along R.

Remark. It is possible that the relation dR ≡ 0 is stronger than R, i.e. more points get
identified in X/dR than in X/R. As example consider [0, 1] and glue together all the
rational points.

3.6 Remark. Gluing a length space yields a length space. To see this we first observe
that dR ≤ d, i.e. dR([x], [y]) ≤ d(x, y) ∀x, y ∈ X. Hence every d-continuous curve is also
dR-continuous and LdR ≤ Ld. If (pi) and (qi) are points as in the definition of dR we can
construct a curve between x and y in (X̂, dR) whose length is almost equal to dR(x, y).
For this we concatenate almost shortest path between pi and qi for i = 1, . . . , N . Since qi
and p1+1 are identified in X̂ this curve is continuous w.r.t. dR. Hence (X̂, dR) is length
space.
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3.7 Definition (Gluing along subsets). Let (Xα, dα) be a collection of length spaces and
consider the disjoint union X :=

⋃̇
αXα. We introduce a length ∞-metric on X by the

following rule

d(x, y) :=

{
dα(x, y) if x, y ∈ Xα,

∞ otherwise.

Assume α = 0, 1 and let I : Y0 ⊂ X0 → Y1 ⊂ X1 be a bijection. We introduce the
equivalence relation R on X = X0∪̇X1 generated by the relation x ∼ y ⇔ f(x) = y. We
denote the resulting glued space X0 ∪I X1.

3.8 Examples. 1. Consider a segement [0, 1] with the metric | · − · |. We introduce the
equivalence relation R generated by 0 ∼ 1. The glued space ([0, 1]/R, dR) is a circle
of length 1.

2. Begin with a square [0, 1] × [0, 1] = Q with the Euclidean metric. An equivalence
relation R is induced from (0, x) ∼ (1, x) and (x, 0) ∼ (x, 1). The quotient space is
a torus.
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3.9 Lemma. Let b : X × X → R+ ∪ {∞} be an arbitrary function, and consider the
class D of all semi-metrics d on X such that d ≤ b. Then D contains a unique maximal
semi-metric dmax such that dmax ≥ d ∀d ∈ D.

Proof. For x, y ∈ X we define

dmax(x, y) = sup{d(x, y) : d ∈ D}.

The function dmax is non-negative, symmetric and satisfies dmax ≤ b. We only need to
prove the triangle inequality for dmax. Let x, y, z ∈ X. Then

dmax(x, y) = sup
d∈D

d(x, y) ≤ sup
d∈D

{d(x, z) + d(z, y)}

≤ sup
d∈D

d(x, z) + sup
d∈D

d(z, y) = dmax(x, z) + dmax(z, y).

3.10 Corollary. Let X be a set that is covered by a collection of subsets {Xα}α and each
Xα carries a semi-metric dα. Consider the class D of all semi-metric d ≤ dα whenever
x, y ∈ Xα. Then D contains a unique maximal semi-metric dmax such that dmax(x, y) ≥
d(x, y) ∀d ∈ D and x, y ∈ X. If all dα are intrinsic, then so is dmax.

Proof. We assume dα is defined on X by setting d(x, y) = ∞ if x /∈ Xα or y /∈ Xα. Then
dmax is defined as in the previous Lemma where b(x, y) = infα dα(x, y).

Let d̂max be the intrinsic metric induced by dmax. If dα is intrinsic, it follows d̂max ≤ dα
on Xα. So d̂max belongs to D and hence d̂max = dmax.

3.11 Theorem. Let (X, d) be a metric space and R an equivalence relation on X. Con-
sider

bR(x, y) =

{
0 if x is R-equivalent to y,

d(x, y) otherwise.

Then the maximal semi-metric among those not exceeding bR coincides with the semi-
metric dR obtained by gluing (X, d) along R.

Proof. Let D denote the class of semi-metric not exceeding bR. Clearly we have dR ∈ D.
We show dR ≥ d′ for any semi-metric d′ ∈ D.

If x, y ∈ X and {pi}ki=1, {qi}ki=1 as in the definition of the gluing metric, then by the
triangle inequality we have

d′(x, y) ≤
k∑

i=1

d′(pi, qi) +
k∑

i=1

d′(qi, pi+1) ≤
k∑

i=1

bR(pi, qi)︸ ︷︷ ︸
≤d(pi,qi)

+
k∑

i=1

bR(qi, pi+1)︸ ︷︷ ︸
≤bR(qi,pi+1)=0

.

Hence d′(x, y) ≤ dR(x, y).
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3.3 Products and Cones

3.12 Definition (Direct product). LetX and Y be length spaces. The product Z = X×Y
is equipped with the metric

d((x1, y1), (x2, y2)) =
√
d2X(x1, x2) + d2Y (y1, y2) (2)

where x1, x2 ∈ X and y1, y2 ∈ Y . It is easy to check that d is metric. d is called product
metric, and the metric space (Z, d) is called direct product of X and Y .

3.13 Proposition. The direct product of (strictly) intrinsic metric spaces is a (strictly)
intrinsic metric space.

Proof. We prove the statement regarding (Z, d) being instrinsic. We fix ϵ > 0, let zi =
(xi, yi) ∈ Z. SinceX and Y are intrinsic, we can find curves α and β such that dX(x1, x2) ≥
L(α)− ϵ and dY (y1, y2) ≥ L(β)− ϵ. In particular, α and β are rectifiable. Then, there are
reparametrizations ᾱ and β̄ proportional to arc length, defined on [0, 1] and with constant
speed L(α) and L(β) respectively. Moreover, ᾱ and β̄ are Lipschitz and vᾱ = L(α) and
vβ̄ = L(β) a.e.

We define γ = (ᾱ, β̄) that is also Lipschitz. Hence vγ exists a.e. and from the definition
it follows that vγ(t) =

√
vα(t)2 + vβ(t)2 =

√
L(α)2 + L(β)2. Henc

L(γ) =

∫ 1

0
vγ(t)dt =

√
L(α)2 + L(β)2 ≤

√
dX(x1, x2)2 + dY (y1, y2)2 + Cϵ

for a constant C > 0 independent of α and β but dependent on L(α) and L(β). Hence d
is intrinsic.

3.14 Remark. There are other possible definitions for a product metric on Z. For instance,
we can define d((x1, y1), (x2, y2)) = dX(x1, x2)+dY (y1, y2). More general, we can consider
any norm ∥·∥ on R2 such that the restrictions to the rays {x0, y > 0} and {x > 0, y0} are
monotone. Then d(z1, z2) = ∥dX(x1, x2), dY (y1, y2)∥ a product metric.

The formula (2) is motivated by the Pythagorean theorem.

3.15 Fact. A constant speed path in Z is a shortest path (a geodesic) if and only if it is the
product of two shortest paths (geodesics) in X and Y with constant speed parametrizations.

3.16 Definition (Topological cone). A cone over a topological space X is the quotient of
the product X × [0,∞) w.r.t. the equivalence relation ∼ that is given by (r, x) ∼ (s, y) ⇔
r = s = 0 ∀x, y ∈ X. I.e. we identify all points in {0} ×X as a single point that is called
the origin (or apex, or tip) of the cone.

Question: How should we equip a cone with a metric?

Consider a subset X of S2 = {v ∈ R3 : ∥v∥eucl = 1} equipped wiht the angular metric
d(x, y) := ∠(x, y). To built a cone over X we take all the rays from the origin 0 ∈ R3

through a point x ∈ X. A point v in the union of all these rays can be described as a tuple
(r, x) with x ∈ X and r = deucl(0, v). By the cosine formula we can write the distance
between two vectors v = (r, x) and w = (s, y) as

∥v − w∥eucl = deucl(v, w) =
√
r2 + s2 − 2rs cos∠(x, y).

This motivates the following definition.
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3.17 Definition. Let X be a metric space with diam(X) ≤ π. The cone metric dC on
[0,∞)×X is given by the formula

dC((r, x), (s, y)) =
√
r2 + s2 − 2rs cos d(x, y)

∀(r, x), (s, y) ∈ [0,∞)×X.
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3.18 Definition. A subset A in a metric space (X, d) is said to be convex if the restriction
of d to A is strictly intrinsic and finite.

A is said locally convex if every point x ∈ A has a neighborhood U such that U is
convex.

Remark. A submanifold N in a Riemannian manifold M is locally convex if and only if it
is totally geodesic (all geodesics of N are geodesic of M).

3.19 Lemma. If (X, d) is strictly intrinsic and finite and F : X → Y distance preserving,
then F (X) is convex in Y .

3.20 Proposition. Let X and Y be length spaces, and α : [a, b] → X, β : [c, d] → Y
shortest paths. Then the product of their images R = Imα× Imβ is convex in X × Y and
isometric to an Euclidean rectangle.

Proof. The map F : [a, b] × [c, d] → X × Y given by F (t, s) = (α(t), β(s)). This map is
distance preserving. Then we apply the previous Lemma.

3.21 Proposition. If X is a metric space X with diamX ≤ π, then dC is a (semi)-metric.

Proof. Positiveness and symmetry are clear. We prove the triangle inequality.
Consider pi = (ri, xi), i = 1, 2, 3 in C(X) and let α = d(x1, x2) and β = d(x2, x3). Now

construct 3 points p̄i in R2 such that |p̄i|eucl = ri and ∠(p̄1p̄2) = α and ∠(p̄2, p̄3) = β,
and also the rays going through 0 and p̄1 and p̄3 are in different half-planes w.r.t. the ray
through 0 and p̄2. By definition of the cone metric and our choice of p̄i, i = 1, 2, 3, we get
|p̄1 − p̄2|eucl = dC(p1, p2) and |p̄2 − p̄3| = dC(p2, p3).

We have two cases: α+ β ≤ π and α+ β > π. In the first case we have

∠(p̄1, p̄3) = α+ β ≥ d(x1, x3)

by the triangle inequality in X. Hence, by the properties of cos (and since α + β ≤ π),
we have |p̄1 − p̄3|eucl ≥ dC(p1, p3). Then the triangle inequality for dC follows from the
triangle inequality in R2:

dC(p1, p2) + dC(p2, p3) = |p̄1 − p̄2|eucl + |p̄2 − p̄3|eucl ≥ |p̄1 − p̄3|eucl ≥ dC(p1, p3).

In the second case we argue as follows. Since α + β > π, the broken line between p̄1, p̄2
and p̄3 lies outside the sector formed by the ray through 0 and p̄1 and 0 and p̄3. Hence,
this broken path is longer than the path from p̄1 to p̄3 through 0. Hence

dC(p1, p2) + dC(p2, p3) ≥ r1 + r3 ≥
√

(r1 + r3)2 =
√
r21 + r23 − 2r1r3 cos d(x1, x3).

3.22 Lemma. If X is a length space with diamX ≤ π, and γ is a shortest segment in X,
then the cone over the image of γ is a convex flat surface in the cone C(X) over X.

Proof. Let γ : [0, L] → X be a shortest path inX parametrized by arclength. We introduce
polar coordinates (r, φ) on the Euclidean plane. More precisely, if (x, y) are the standard
coordinates of R2, then (x(r, φ), y(r, φ)) = (r cosφ, r sinφ). We denote by Q the set of
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points in the plane whose φ coordinate is between 0 and L. Recall the Euclidean distance
between two points (x1, y1) and (x2, y2) in R2 is

deucl((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2 =

√
r21 + r22 − 2r1r2 cos(|φ2 − φ1|).

The map F : Q→ C(X) is given via F (r, φ) = (r, γ(φ)). The image of F is the cone over
γ. The map F is also distance preserving. Indeed

d2C(F (r, φ), F (r
′, φ′)) = r2 + (r′)2 − 2rr′ cos dX(γ(φ), γ(φ′))

= r2 − (r′)2 − 2rr′ cos(φ− φ′) = d2eucl((r, φ), (r
′, φ′)).

This implies F (Q) is flat and convex.

3.23 Example. Let X = S2 with the angular metric. Then C(X) = R2. A shortest path
γ in X then is an arc contained in a great circle of X, and so the cone over γ is a planar
sector. Any point in this sector has cone coordinates (r, γ(t)). If γ is parametrized by arc
length, r and t are precisely the polar coordinates in this planar sector.

Remark. The cone metric on [0,∞) × X is first a semi-metric. The equivalence relation
dC((r, x), (s, y)) = 0 coincides with the relation ∼ from before. [0,∞)×X/dC = [0,∞)×
X/ ∼ and dC is a metric on [0,∞)×X/ ∼. We write C(X) for the metric cone over (X, d).

3.24 Remark. Let γ̄ : [a, b] → C(X) be a shortest path not passing through 0. We can
write γ̄(t) = (r(t), γ(t)) where r(t) is a curve in (0,∞) and γ(t) is a curve in X. From
the proof of the triangle inequality in C(X) we see that the triangle inequality between
any three points γ(t1), γ(t2) and γ(t3) in X for t1 < t2 < t3 turns into an equality. This
implies L(γ) = d(γ(a), γ(b), hence γ is a shortest path.

Hence there is an injective correspondence between shortest paths in X of lenght
strictly less than π and shortest paths in C(X) not passing through 0. As for shortest
paths passing through the origin, it is easy to see the following. Every point (x, r) ∈ C(X)
is connected to the origin by a unique shortest path (x, t)t∈[0,r]. The concatenation of
two such segments with endpoints (x1, r1) and (x2, r2) is a shortest path if and only if
d(x1, x2) = π.

How can we define the cone over larger spaces. The previous formula does not work
since, for instance, the triangle inequality may fail. We have the following guidelines: the
previous formula shall hold for small distances ≤ π and the resulting cone shall be a length
space. Existence and uniqueness of such a metric is guaranteed by Lemma 3.1.

3.25 Definition (Cone over a larger space). Let X be a metric space. The cone distance
dC(a, b) between points a = (t, x) and b = (s, y) in C(X) is defined as

dC(a, b) =

{√
t2 + s2 − 2ts cos dX(x, y) dX(x, y) ≤ π,

t+ s dX(x, y) ≥ π.

Remark. Alternatively, one can define d̄(x, y) = min{d(x, y), π} that is a metric on X, and
define C(X) := C(X, d̄) where the metric of C(X, d̄) is given by the previous formula.
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3.26 Theorem. The metric dC on C(X) is intrinsic (resp. striclty intrinsic) if and only
if the metric d is intrinsic (resp. strictly intrinsic) at distances less than π. The latter
means for any two points x, y ∈ X such that d(x, y) < π there is a curve in X connection
x and y whose length is arbitrarily close (resp. equal) to d(x, y).

Proof. Assume first d < π. Let x, y ∈ X and a = (t, x), b = (s, y) ∈ C(X). If γ is a
shortest path between x, y then we apply the previous Lemma, and we know that the
cone over γ is a flat surface that embeds into C(X). It follows there exists a curve of
length dC(a, b) connecting a and b. If d(x, y) ≥ π, then dC(a, b) = t+ s and there are two
segments connecting a and b with the origin and the union of this segments is shortest
path between a and b. Thus dC is strictly intrinsic.

Conversely, if dC is striclty intrinsic, for any two points x, y ∈ X with d(x, y) < π, we
apply the result of Problem 3 on Problem Sheet 7 to a shortes path γ̃ between a = (1, x)
and b = (1, y). Since L(γ̃) = dC(a, b) < 2, γ̃ does not pass through the origin and hence
has a well defined projection γ in X that is a geodesic in X by the previous Remark.

3.27 Remark (Warped products and spherical suspensions). 1. Let (X, d) be a metric
space with diamX ≤ π and consider [0, π] × X. We can identify the points (0, x)
∀x ∈ X, and the points (π, y) ∀y ∈ X. On the corresponding quotient X/ ∼ space
we introduce a metric dΣ as follows:

cos dΣ((s, x), (t, y)) = cos s cos t+ sin s sin t cos d(x, y).

The space (X/ ∼, dΣ) = Σ(X) is called spherical suspension of X.

2. Let X and Y be two complete length spaces and f : X → [0,∞) continuous. For a
Lipschitz curve γ = (α, β) : [a, b] → X × Y in X × Y we can define a length by the
following formula

L(γ) =

∫ b

a

√
vα(t)2 + (f ◦ α)2(t)vβ(t)2dt.

The intrinsic metric induced by this length structure on X × Y is called warped
product metric. The warped product is denoted with X ×f Y .

If X = [0,∞) and f(r) = r, then [0,∞)×r Y = C(Y ) (Exercise).

3.4 Angles

Question: How can we measure angles in a metric space?

For this first we consider two rays α, β : [0,∞) → R2 emanating from the same point
a = α(0) = β(0). We can pick t, s > 0 and apply to the cosine rule to the triangle
∆(a, α(t), β(s)). That is

arccos
|a− α(t)|22 + |a− β(s)|22 − |α(t)− β(s)|22

2|a− α(t)||a− β(s)|
= ∠α(t)bβ(s).

This expression gives the angle between α and β at a.
We can now mimic this definition in a general length space. Let α, β be geodesic rays

in a metric space (X, d) and replace | · − · |2 with d. But in general the expression above
will depend on t and s.
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3.28 Definition. Let (X, d) be a metric space and let x, y, z ∈ X be 3 distinct points.
We define the comparison angle ∠̃xyz of xyz at y by

∠̃xyz = arccos
d(x, y)2 + d(y, z)2 − d(x, z)2

2d(x, y)d(y, z)
.

The geometric meaning of this definition is as follows. We pick a triangle ∆x̄ȳz̄ in R2

whose sides correspond to d(x, y), d(y, z) and d(z, x). Then ∠̃xyz = ∠x̄ȳz̄.

3.29 Definition. Let α, β : [0, ϵ) → X be two paths in a length space (X, d) with
α(0) = p = β(0). We define the angle ∠(α, β) between α and β as

∠(α, β) = lim
s,t→0

∠̃α(s)pβ(t)

if the limit exists.
If α and β are shortest paths parametrized by arc length, then d(p, α(s)) = s and

d(p, β(t)) = t, and

∠α(s)pβ(t) = arccos
s2 + t2 − d(α(s), β(t))2

2st
.

3.30 Fact. 1. Every shortest path forms zero angle with itself.

2. Let α : [a, b] → X and β : [b, c] → X be two shortest segments with α(b) = p = β(b),
such that their concatenation is also a shortest path, then the angle between α and
β at p is π.

Remark. We will mainly deal with length spaces that admit curvature bounds. In such
spaces the angle between shortest paths is always defined. For more general metric spaces
one may also consider so-called upper angles, defined as

∠U (α, β) = lim sup
s,t→0

∠α(s)pβ(t).

3.31 Theorem. Let (X, d) be a metric space. Consider 3 paths γ1, γ2 and γ3 starting at
the same point p ∈ X. Assume the angle ∠(γ1, γ2) = α3,∠(γ2, γ3) = α1 and ∠(γ1, γ3) = α2

exist. Then
α3 ≤ α1 + α2.

Proof. The statement is trivial if α1 + α2 ≥ π. So suppose this is not the case.
Given ϵ > 0 there exist a = γ(s), b = γ2(t) and c = γ3(r) such that for each angle we

have
|α1 − θ(b, c)|, |α2 − θ(a, c)|, |α3 − θ(a, b)| ≤ ϵ

where in this situation we define

θ(a, b) =
d(p, a)2 + d(p, b)2 − d(a, b)2

2d(p, a)d(p, b)
.

We pick 4 points p̄, ā, b̄, c̄ in the Euclidean plan R2 such that ∆āp̄c̄ and ∆c̄p̄b̄ are comparison
triangles for ∆apc and ∆cpb.
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We fix a, b and move c towards p. Formally this means we fix s and t and decrease
r > 0. For c close enough to p, we have that p̄ and c̄ are situated on one side of the line
that goes through ā and b̄. On the other hand fixing c and moving a and b towards p we
obtain a configuration with p̄ and c̄ on opposite sides of the line through ā and b̄.

By continuity we can finde s, t, r > 0 such that c̄ belongs to the segment [ā, b̄]. Here
[ā, b̄] is a notation for the set {(1− t)ā+ tb̄ ∈ R2 : t ∈ [0, 1]}.

For this configuration (c̄ ∈ [ā, b̄]) we have

|ā− b̄| = |ā− c̄|+ |c̄− b̄| = d(a, c) + d(c, b) ≥ d(a, b).

We now add a point b̃ to this configuration in R2 such that

|p̄− b̄| = |p̄− b̃| = d(p, b), |ā− b̃| = d(a, b)

and such that b̃ lies on the same side of the line through p̄ and ā as b̄.
Recall θ(a, b) is equal to the angle of the triangle ∆āp̄b̃ in p, that is ∠āp̄b̃. Similarly

θ(a, c) = ∠āb̄c̄ and θ(b, c) = ∠b̄p̄c̄. Hence

θ(a, c) + θ(c, a) = ∠āb̄b̄.

Comparing the triangles ∆(b̄p̄ā) and ∆b̃p̄ā, we see that they have two equal sides, and
|ā− b̄| ≥ |ā− b̃|. Thus ∠āp̄b̄ ≥ ∠āp̄b̃. It follows

θ(a, c) + θ(b, c) ≥ θ(a, b).

Combining this with the estimate at the beginning we get

α3 ≤ α1 + α2 + 3ϵ ∀ϵ > 0.

This finishes the proof.

3.32 Definition. A curve γ (starting in p) has a direction a p if the angle ∠(γ, γ) exists.
We say two curves α and β starting in p have the same direction at p if ∠(α, β) exists and
is 0.

The equivalence class of curves starting in p with the same direction is called a direction
in p.
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4 Metric spaces with curvature bounds

4.1 Definition. Let (X, d) be a length space and let p ∈ X. The distance to p is the real
valued function dp on X defined by

dp(x) = d(p, x).

Let γ : [0, L] → X be a shortest path parametrized by arc lenght between points x, y. We
also write Imγ =: [x, y]. Then the 1-dimensional distance function is defined by

g(t) = d(p, γ(t)) = dp(γ(t)).

4.2 Remark (Comparison configuration in the Euclidean plane). Let x, y ∈ X, γ and g be
as in the previous definition.

Consider R2 with d = deucl = | · − · |. We choose x̄, ȳ ∈ R2 such that |x̄ − ȳ| =
d(x, y) = L and let γ̄ : [0, L] → R2 the segment that is the shortest path between x̄, ȳ ∈ R2

parametrized by arclength. More precisely γ(t) = x̄+ t ȳ−x̄
|ȳ−x̄| .

Next we choose a reference point p̄ ∈ R such that |p̄ − x̄| = dp(x) = d(p, x) and
|p̄− ȳ| = dp(y)the = d(b, y). (Why is this possible?)

This comparison configuration is unique up to rigid motions.
We call ḡ(t) := |p̄− γ̄(t)| the comparison function for g.

We are going to define spaces with nonpositive (nonnegative) curvature by saying
that distance functions g are more convex (concave) than the corresponding comparison
function, i.e. g0(t) ≥ g(t) (g0(t) ≤ g(t)). Since we also want our definition to be local we
formulate it as follows.

4.3 Definition (Distance condition). We say that a length space (X, d) is nonpositively
curved (nonnegatively curved) if every point x ∈ X has a neighborhood U = Ux such that
the following holds: ∀p ∈ U and ∀γ that is a shortest path in U the comparison function
g0 for the corresponding g = dp ◦ γ satisfies

g0(t) ≥ g(t) (g0(t) ≤ g(t)) ∀t ∈ [0, L].

We will use the name Alexandrov space for spaces with curvature bounded from above
or below, and in particular for spaces with nonpositive or nonnegative curvature.

4.4 Example. The space (R, | · |) has nonpositive and nonnegative curvature, because R
embeds distance preserving into R2.

4.5 Example. We glue together 3 copies of [0,∞) ⊂ R by gluing at the point 0. The
resulting glued space R3 has nonpositive curvature.

Indeed, we can argue as follows. Denote O the common point of the three rays. Every
shortest path in R3 is eigher a segment in one the 3 rays, or a concatenation of two
segments in two different rays that meet at O.

Let γ : [0, L] → R3 be any shortest path and let p ∈ R3. If two of the three points
γ(0), γ(L) and p belong to the sam ray, then the statement is trivial because γ and p are
contained in union of two rays, and such subset of R3 is isometric to R.

So we consider the case when all 3 points γ(0) = a, γ(L) = b and p belong two different
rays. For every x ∈ [O, a] one has d(p, x) = d(p, a)−d(a, x). For the function g this means

g(t) = dp(γ(t)) = d(p, γ(t)) = g(0)− t if γ(t) ∈ [O, a].
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On the other, for the function g0 one has

g0(t) = |p− γ̄(t)| ≥ |p− a| − |a− γ̄(t)| = g0(0)− t = g(0)− t = g(t).

The case γ(t) ∈ [O, b] works similar.

Consider a metric space X from now on we often write |xy| for the distance between
two points in X and [xy] for a shortes segment between x, y. Note that [xy] may not
be unique. A triangle in X is collection of 3 points x, y, z ∈ X connected by shortest
segments. ∠abc denotes the angle between [ba] and [bc] (if the angle is welldefined).

4.6 Example. Let K be the cone over a circle of length L > 0. Then K is a space of
nonnegative curvature if L ≤ 2π and K is a space of nonpositive curvature if L ≥ 2π.

Indeed we can argue as follows. First note that the cone over a circle is (locally) flat
outside of the vertex: Every subcone over segment with length α ≤ max{L/2, π} is convex
and isometric to a planar sector with angle α.

Pick a shortest path γ : [0, L] → K and a point p ∈ K, and consider the triangle ∆
composed of the three shortest paths between p, γ(0) and γ(L). There are two possibilities:

1. ∆ bounds a region not containing O or one of the points a, b, p coincide with O.

2. ∆ bounds a region containing O, or some of its sides pass through O.

More precisely, the first case means that one of the points a, b, p is contained the planar
sector that is the cone over Imβ where γ = (α, β) is the shortest path that connects the
other two points. In this case the triangle composed of the 3 points is isometric to a flat
triangle in Euclidean space and therefore the distance function g coincides with g0.

The second case we treat for L < 2π and L > 2π separately. The case L = 2π is
trivial, because then K is isometric to R2.

L < 2π. We cut R2 along the segments [0, a] and [0, b] and [0, p]. Each of the ensuing
sectors is isometric to a planar sector since L < 2π. Since the sum of the angles is bounded
from above by 2π we may put together these sectors in R3 to form a wedge with vertices
ā, b̄, p̄ and 0. The surface of this wedge with the gluing metric is isometric to K.

The triangle ∆āb̄p̄ lies in the plane spanned by ā, b̄ and p̄ in R3, and is also a comparison
configuration for a, b and p. Since the intrinsic distances in K are bigger than in the
ambient space R3, we have g0(t) ≤ g(t) where the later comes from the intrinsic distance
in K. Hence K is nonnegatively curved.

Now suppose L > 2π. The triangles ∆abO,∆apO and ∆bpO are flat, i.e. isometric to
Euclidean ones. Consider the first and last of these triangles and place isometric copies
∆āb̄Ō and ∆b̄p̄Ō in the plane at different sides of the common side Ōb̄ (if a shortest path
[ab] and [bp] passes through O its isometric copy degenerates to a segment.) Observe
∠b̄Ōā + ∠b̄Ōp̄ ≥ π and ∠āŌp̄ ≤ ∠aOp (since L > 2π); hence |āp̄| ≤ |ap|. Let us rotate
the trianglel ∆b̄p̄Ō around b̄ until |āp̄| is equal to |ap|. This shows that isometric copies of
triangles ∆abO and ∆bpO lie without overlapping in a planar triangle ∆āb̄p̄ whose sides
are equal to ∆abp. This argument works for any pair of triangles. Hence isomtric copies
of all triangles lie without overlapping in the planar triangle ∆āb̄p̄. Hence all distances
between points in the sides of ∆abp are less or equal to distances between corresponding
points on the sides of the comparison triangle ∆āb̄p̄, i.e. g ≤ g0.
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Remark. From the above proof one can see that the converse statement is also true, i.e.
a cone over a circle is nonnegatively (nonpositively) curved only if the length of the circle
is not greater (not smaller) than 2π.

Given a triangle ∆abc in a metric space X a triangle ∆āb̄c̄ in R2 with

|ab| = |āb̄|, |bc| = |b̄c̄|, |ac| = |āc̄|

is called a comparison triangle for ∆abc.

Remark. It is clear that a comparison triangle in R2 is unique up to rigid motions.

4.7 Definition (Triangle comparison condition). A length space X is a space of nonpos-
itive (nonnegative) curvature if in some neighborhood of each point the following holds:
For every ∆abc and every point d ∈ [ac], on has |db| ≤ |d̄b̄| (≥) where d̄ is the point on
the side [āc̄] of a comparison triangle ∆āb̄c̄ such that |ād̄| = |ad|.

Such a neighborhood is called a normal region.
One can always choose a normal region Ux so small such that all shortest path with

endpoints in Ux are still contained in a possibly larger normal region Vx. For instance, one
can pick a normal region Vx and then let Ux be a ball around x in Vx sufficiently small.

4.8 Remark. For nonpositively curved spaces, if one can choose the whole space X as a
normal neighborhood, one calls X a CAT (0) space. Here CAT stands for comparison
of Cartan-Alexandrov-Toponogov and (0) indicates that we compare with flat space, i.e.,
that we impose a zero upper curvature bound.

Spaces with nonnegative or nonpositive curvature are also called Alexandrov spaces.

Roughly speaking, all sufficiently small triangles in a space of nonposi- tive (resp.
nonnegative) curvature are not thicker (resp. not thinner) than corresponding Euclidean
triangles.
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Let X be a length space. Recall that a triangle in a length space is a collection of

3 points and a choice of shortest paths between these points. Let a, b and c points and
consider shortest paths α, β and γ between b and a, b and c, and c and a. We assume
α(0) = β(0) = b. The definition of angle between α and β at b is

∠(αβ) = lim
s,t→0

arccos

(
s2 + t2 − |α(s)β(t)|

2ts

)
if the limit exists. In this case we also write ∠(αβ) = ∠abc, the angle at b of the triangle
formed by a, b and c and the shortest paths α, β and γ.

Recall that ∠̃abc denotes the comparison angle, i.e. ∠̃abc = ∠āb̄c̄ for a comparison
triangle ∆āb̄c̄ in R2 associated to ∆abc.

Also note that, given two points a, b ∈ X, after we picked a shortest path γ between a
and b we write [ab] = Imγ.

4.9 Definition (Angle comparison condition). A length space X is a space of nonpositive
curvature if every point of X has a neighborhood such that for every triangle ∆abc con-
tained in this neighborhood, the angles ∠abc, ∠bac and ∠cba are well defined and satisfy
the inequalities

∠abc ≤ ∠̃abc, ∠bca ≤ ∠̃bca, ∠cab ≤ ∠̃cab.

For nonnegative curvature the inequalities ≤ are replaced with ≥, and we add the
following condition: For any two shortest paths [pq] and [xy] where x is an inner point of
[qp], one has that ∠pxy + ∠yxq = π.

Let α, β be two shortest paths parametrized by arclength starting at the same point
p. We refer to such a configuration as ”a hinge”. We introduce θ(s, t) = ∠̃α(s)pβ(t), i.e.
θ(s, t) is the angle at p̄ in a comparison triangle ∆ ¯α(s)p̄ ¯β(t).

4.10 Definition (Monotonicity condition). A length space X is a space of nonpositive
(nonnegative) curvature if it can be covered by neighborhoods such that for any two
shortest segments α and β contained in such a neighborhood and starting from the same
point p, the correspondingn function θ(s, t) is nondecreasing, i.e. ”θ(s, t) ↑ if s, t ↑”
(nonincreasing) in each variable s and t when the other one is fixed.

From the definition directly follows that:

4.11 Proposition. If X has nonpositive (nonnegative) curvature then the angle between
any two shortest paths in X is well-defined.

4.1 Equivalence of definitions

We first prove an elementary fact in Euclidean geometry. We consider R2 with the Eu-
clidean distance |xy| = |x− y|eucl, x, y ∈ R2.

4.12 Lemma (Alexandrov’s Lemma). Let a, b, c and d be points in R2 such that a and c
are in different halfplanes w.r.t. the line that goes through b and d. Consider a triangle
∆a′b′c′ in R2 such that

|ab| = |a′b′|, |bc| = |b′c′|, |ad|+ |dc| = |a′c′|
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and let d′ be a point in the side [a′c′] such that |ad| = |a′d′|. Note that in particular
|ad|+ |dc| = |a′c′| ≤ |ab|+ |bc| by the ∆-inequality.

Then ∠adb+∠bdc < π if and only if |b′d′| < |bd|. In this case, one also has ∠b′a′d′ <
∠bad and ∠b′c′d′ < ∠bcd.

And ∠adb+ ∠bdc > π if and only if |b′d′| > |bd|. In this case, one also has ∠b′a′d′ >
∠bad and ∠b′c′d′ > ∠bcd.

Proof. We use the following fact. If two sides of a planar triangle are fixed, then the
angle between these two sides is a monotone increasing function of the third side. More
precisely, if ∆xyz,∆x′y′z′ are Euclidean triangles such that |xy| = |x′y′| and |yz| = |y′z′|,
then ∠xyz > ∠x′y′z′ if and only if |xz| > |x′z′|, and vice versa.

Take a point c1 on the ray formed by a and d such that d is between a and c1, and such
that |dc| = |dc1|. Suppose ∠adb+∠bdc > π; then ∠bdc1 < ∠bdc. Hence |bc1| < |bc| = |b′c′|.

Now we apply the observation for the triangles ∆abc1 and ∆a′b′c′ for which |ab| = |a′b′|
and |ac1| = |a′c′|. Since |bc1| < |b′c′|, it follows ∠bac1 < ∠b′a′c′.

Hence, considering the triangle ∆bad and ∆b′a′d′, we get |bd| < |b′d′.
The case ∠adb+ ∠bdc < π works the same way, up to reversing the inequalities.

4.13 Theorem. All the definitions for nonpositive (nonnegative) curvature are equivalent.

Proof. The proofs for spaces of nonpositive and nonnegative curvature are similar up to
reversing the inequalities. We prove the case of nonpositively curved spaces and indicate
necessary modifications for the case of nonnegative curvature.

1. The distance condition and the triangle condition are equivalent.

It is clear that the distance condition implies the triangle condition. Assume the
triangle condition. Given p ∈ X let Up be the corresponding normal region. We can choose
ϵ > 0 small enough such that Bϵ(p) ⊂ Up and ∀x, y, z we have that every ∆xyz ⊂ Up.
Then it follows that Bϵ(p) satisfies the required properties.

2. Assume the triangle condition. Let us show the monotonicity condition.

Consider a hinge of two shortes paths α, β with Imα = [pa] and Imβ = [pb], and a
point a1 on [p, a]. Let ∆p̄āb̄ and ∆p̄ā1b̄ be comparison triangles for ∆pab and ∆pa1b.
Let ã be a point on [p̄ā] such that |p̄ã| = [pa1|. Then the triangle condition implies that
|b̄ã| ≥ |ba1| = |b̄ā1|. This means that ∠āp̄b̄ ≥ ∠ā1p̄b̄. This is the angle monotonicity.

3. The monotonicity condition implies the angle condition.

Let δabc be a triangle. The side [ba] and [bc] are given by shortest paths α and β with
α(0) = β(0) = b. By the monotonicity of angles we have

∠abc ≡ ∠(αβ) = lim
t→0

θ(t, t) ≤ θ(|ab|, |bc|)

where θ as before. Since θ(|ab|, |bc|) = ∠āb̄c̄, this is the angle condition.

4. The Angle condition implies the triangle condition.

Consider a triangle ∆abc and a point d in the side [ac]. Note that

∠bda+ ∠bdc ≥ ∠adc = π (3)
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by the angle triangle inequality. We place comparison triangle ∆āb̄d̄ and ∆c̄b̄d̄ in different
half planes w.r.t. the line b̄d̄ in R2. By the angle condition it follows for the comparison
angles

∠ād̄b̄+ ∠c̄d̄b̄ ≥ π.

Now we apply Alexandrov’s Lemma. Let ∆ā1b̄1c̄1 be a comparison triangle for ∆abc
and let d̄1 be the point on [ā1c̄1] such that |ā1d̄1| = |ad|. Alexandrov’s Lemma yields
|bd| = |b̄d̄| ≤ |b̄1d̄1|. This is the triangle condition for δabc and d ∈ [ac].

This finishes the proof of the equivalences.

Remark. For the proof in the case of nonnegative curvature we can just reverse all the
inequalities.

However we use the triangle inequality for angle for the inequality (3). This inequality
cannot be reversed.

However this property was included in the definition of the angle condition for non-
negative curvature.

Hence, to finish the proof on the equivalence of the definitions we only need to show
the following lemma.

4.14 Lemma. If a space X has nonnegative curvature in the sense of the monotonicity
condition, then for any shortest path, the sum of adjacent angles is equal to π. In other
words, if d0 is an inner point of a shortest path [a0b0] and [d0c0] is a shortes path, then
∠a0d0c0 + ∠c0d0b0 = π.
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Proof. By the triangle inequality for angles we always have ∠a0d0c0 + ∠c0d0b0 ≥ π.
To prove the opposite inequality let a, b and c be arbitrary points in the shortest paths

[a0d0], [d0b0] and [d0c0] respectively. We place comparison triangles ∆ād̄0c̄ and ∆c̄d̄0b̄ on
different sides of the line [c̄d̄0] in R2. Let ∆ā1c̄1b̄1 be a comparison triangle for the triangle
∆abc and let d̄1 be on [ā1b̄1] such that |ad0| = |ā1d̄1|. The monotonicity condition implies
that ∠c̄ād̄0 ≥ ∠c̄1ā1b̄1. Hence |d̄0c̄| ≥ |d̄1c̄1|. By Alexandrov’s Lemma it follows that
∠ād̄0c̄ + ∠c̄d̄0b̄ ≤ π. Passing to the limit in this inequality as a, b and c approach d0, we
get ∠a0d0c0 + ∠c0d0b0 ≤ π.

4.2 Analysis of the distance function

Recall the distance condition. A length space (X, d) is nonpositively curved (nonnegatively
curved) if every point x ∈ X has a neighborhood U = Ux such that the following holds:
∀p ∈ U and ∀γ that is a shortest path in U the comparison function g0 for the corresponding
g = dp ◦ γ satisfies

g0(t) ≥ g(t) (g0(t) ≤ g(t)) ∀t ∈ [0, L].

The comparison function is given by g0(t) = |p̄ − γ̄(t)| where γ̄ is a shortest segment in
R2 and ∆p̄γ̄(0)γ̄(1) is a comparison triangle for ∆pγ(0)γ(1). Notice that even without
curvature restrictions not every continuous functions can arise as a 1-dimensional distance
function. g must be nonnegative and nonexpanding, since dp is 1-Lipschitz because of the
∆-inequality.

We want a complete list of all possible functions g0 that can arise as comparsion
function. If γ̄ is a straight line in R2 and p̄ ∈ R2 is a point, then g0(t) = |p̄ − γ̄(t)| =√
(t+ c)2 + h2 where c is the parameter such that γ̄(−c) is the orthogonal projection of

p̄ to γ̄ and h = |p̄− γ̄(−c)|.
Observe now that d2

dt2
(g0(t))

2 = 2. If σ(t) = tL, then f(t) = (g0(σ(t)))
2 satisfies

f ′′ = 2L2(, f(0) = |p̄− γ̄(0)|2 = a2, f(1) = |p̄− γ̄(1)|2 = b2. (4)

Hence
f(t) = (1− t)a2 + tb2 + 2(1− t)tL2.

Note that a = |pγ(0)|, b = |pγ(L)| and L = |γ(0)γ(L)|.
The function f indeed has this form, since (1− t)a2 + tb2 + 2(1− t)tL2 is the unique

solution of (4).
It follows

g(t) ≥ g0(t) (≤) ∀t ∈ [0, L]

⇔ g(sL)2 ≥ f(s) (≤) ∀t ∈ [0, 1]

⇔ d(p, γ̂(s))2 ≥ (1− s)d(p, γ̂(0))2 + sd(p, γ̂(1))2 − (1− s)sL(γ̂) (≤) ∀s ∈ [0, 1]

where γ̂ : [0, 1] → X is the constant speed reparameterization of γ, i.e. γ̂(s) = γ ◦ σ(s)
with σ(s) = sL.
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Similar, we can choose σ(s) = (1− s)t0 + st1 and consider γ̂ = γ ◦ σ and (g0 ◦ σ)2. γ̂
is then the constant speed reparameterization of γ|[t0,t1]. Then we also get

dp(γ̂(s))
2 ≥ (≤)(1− s)dp(γ̂(0))

2 + sdp(γ̂(1))
2 − (1− s)s(t1 − t0)

2L2.

It follows that u(t) = g(t)2 satisfies

u′′ ≥ 2 (≤) in the distributional sense on (0, L)

⇔
∫ L

0

(
uφ′′ + 2φ

)
dt ≥ 0(≤)∀φ ∈ C2((0, L))

⇔ u(t)− t2 is convex (concave)

if X is a Riemannian manifold⇔ ∇2d2p ≤ 2gX where gX is the Riemannian metric.

4.15 Corollary. A length space X has nonpositive (nonnegative) curvature iff ∀x ∈ X
∃U neighborhood of x s.t. ∀p ∈ U and ∀γ : [0, L] → U shortest path u ◦dp(t)− t2 is convex
(concave).

4.16 Example. Consider X = (R2, ∥·∥1) where ∥x∥1 = |x1|+ |x2| (1-Norm).
X is a complete, locally compact length space. Straight lines are shortest paths because

L∥·∥((1− t)x+ ty) = ∥x− y∥1. But there are more shortest paths other than straight lines.
Claim: X is not a space of nonpositive, or nonnegative curvature.
Consider γ(t) = (1− t, t), t ∈ [0, 1]. Then g(t) = 1 ∀t ∈ [0, 1]. We have L∥·∥1(γ) = 2.
We have

f(t) = (1− t)12 + t12 − (1− t)t22 = 1− 4(1− t)t = 1− 4t+ 4t2.

(What is the comparison distance function g0?)
Henc g(t2)2 = 1 ≥ f(t) = g0(t2)

2. Hence X is not of nonpositive curvature.
On the other hand, we consider γ(t) = ((1 − t)12 + t12 , (1 − t)12 − t12) = (12 ,

1
2 − t) for

t ∈ [0, 1].

It follows that L∥·∥1(γ) = 1 and g(t)2 = d0(γ(t)) = ∥γ(t)∥21 =
(
1
2 + |12 − t|

)2
. We have

g(0)2 = 1 = g(1)2 and g(12)
2 = 1

4 .
The distance comparison function is

g0(t)
2 = (1− t)12 + t12 − (1− t)t12 ⇒ g0(

1

2
)2 = 1− 1

4
=

3

4
.

Hence g0(
1
2) =

√
3
2 ≥ 1

2 = g(12).
Therefore X is not nonnegatively curved.

4.17 Theorem. Let X be a length space of nonpositive (nonnegative) curvature. Suppose
sequences of shortest paths [aibi]i∈N and [aici]i∈N converge uniformly to shortest paths [ab]
and [ac] respectively. Then

1. ∠bac ≥ lim supi→∞∠biaici for nonpositive curvature,

2. ∠bac ≤ lim infi→∞∠biaici for nonnegative curvature.
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Proof. For r > 0 let b′ ∈ [ab], c′ ∈ [ac] and b′i ∈ [aibi], c
′
i ∈ [aici] points at distance r > 0

from a and ai respectively.
We denote with θ(r) and θi(r) the comparison angles ∠̃b′ac′ and ∠̃b′iaici]. We have

|aib′i| = |ab′| = |aic′i| = |ac′| = r and |b′ic′i| → |bc| (where r is fixed). Hence

lim
i→∞

θi(r) = θ(r) ∀r > 0.

If the curvature is nonpositive, then θ, θi are nondecreasing functions. Hence θi(r) ≥ αi

and consequently
θ(r) ≥ lim sup

i→∞
αi ∀r > 0.

Thus α ≥ lim supi→∞ αi.
If the curvature is nonnegative, then θ, θi is nonincreasing. Hence θi(r) ≤ αi. So

θ(r) ≤ lim inf
i→∞

αi ∀r > 0.

Thus α ≤ lim infi→∞ αi.
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4.3 First variation formula

Consider γ̄ : [0, L] → R2 and p ∈ R2, and let l(t) = |p − γ̄(t)|. Then the following first
variation formula holds

dl

dt
= − cos∠(p− γ̄(t), γ′(t)) = −⟨p− γ̄(t), γ′(t)⟩.

We show that a similar formula holds in spaces of nonpositive or nonnegative curvature.
Let X be a length space, γ : [0, T ] → X a unit speed shortest path, a = γ(0) and

γ(T ) = d, and p ∈ X\{a}. For every t ∈ [0, T ] we set l(t) = |pγ(t)| and we fix a shortest
path σt between γ(t) and p.

4.18 Proposition. If the angle α = ∠pad between γ and [ap] = σ0 exists, then

lim sup
t↓0

l(t)− l(0)

t
≤ − cosα.

4.19 Remark. The left hand side of the previous inequality does not depend on σ0. Hence
we get

lim sup
t↓0

l(t)− l(0)

t
≤ − cosαmin

where αmin is the infimum of angles between γ and all possible shortest paths from a = γ(0)
to p.

4.20 Lemma. Let ∆abc be a triangle in R2, α = ∠bac, t = |ac|. Then∣∣∣∣cosα− |ab| − |bc|
t

∣∣∣∣ ≤ t

|ab|
.

Proof. Denote |ab| = y and |bc| = z. The cosine rule gives

cosα =
t2 + y2 − z2

2ty
=
y2 − z2

2ty
+

t

2y
=
y − z

t

y + z

2y
+

t

2y
.

Then ∣∣∣∣cosα− y − z

t

∣∣∣∣ = ∣∣∣∣y − z

t

y + z

2y
+

t

2y
− y − z

t

∣∣∣∣
≤

∣∣∣∣y − z

t

∣∣∣∣ ∣∣∣∣y + z

2y
− 1

∣∣∣∣+ t

2y
≤ 1 · t

2y
+

t

2y
≤ t

y
.

The last inequality follows by the triangle inequality. Indeed
∣∣y−z

t

∣∣ ≤ 1 and
∣∣∣y+z

2y − 1
∣∣∣ =

|z−y|
2y ≤ t

2y .

Proof of the proposition. We consider two variable points b on [ap] = σ0 and c on Imγ, i.e.
c = γ(t). The triangle inequality implies

|ab| − |bc| = |ap| − (|bp|+ |bc|) ≤ l(0)− l(t).
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Then we apply the previous lemma to the comparison triangle ∆abc. This yields

cos ∠̃bac ≤ |ab| − |bc|
t

+
t

|ab|
≤ − l(t)− l(0)

t
+

t

|ab|
.

We let the points b and c converge to a so fast such that t
|ab| → 0. The the statement

follows by passing to the limit in the last inequality.

4.21 Theorem. Let X be a space of nonpositive (nonnegative) curvature, let γ, σt and l(t)
be as above ,and assume that a sequence σt converges to σ0 for some sequence {ti}i∈N → 0
as i→ ∞. Then there exists a limit

lim
ti→0

l(ti)− l(0)

ti
= − cosα

where α is the angle at a between σ0 and γ.

Proof. We only need to show that

lim inf
i→∞

l(ti)− l(0)

ti
≥ − cosα.

We fix r > 0 such that |ap| > 5r and B5r(a) is a normal region for the triangle condition
for nonpositive or nonnegative curvature. We may also assume that γ(ti) ∈ Br(a) for all
i ∈ N. We set ci = γ(ti) ∀i, and let bi be the point on the shortest path [cip] = σti such
that |bici| = r. We will prove that

lim sup
i→∞

∠̃acibi ≤ π − α.

This implies the theorem. Indeed, applying the previous lemma it holds

l(0) = |pa| ≤ |pbi|+ |bia| ≤ |pbi|+ |bici| − ti cos ∠̃acibi +
t2i

|bici|
.

Since |pbi|+ |bici| = l(ti), it follows that

l(ti)− l(0)

ti
≥ cos ∠̃acibi −

ti
|bici|

= cos ∠̃acibi −
ti
r
.

It follows that

lim inf
i→∞

l(ti)− l(0)

ti
≥ lim inf

i→∞
cos ∠̃acibi ≥ cos(π − α) = − cosα.

Hence the theorem follows.
The proof of the missing inequality is different for nonpositively and nonnegatively

curved spaces.

1. Let X be a space of nonnegative curvature. Then

∠̃acibi ≤ ∠acibi = π − ∠bicid

by the angle condition. Then, by semi-continuity of angles we have

lim inf
i→∞

∠bicid ≥ α.
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2. LetX be of nonpositive curvature. Denote b the point in [ap] = σ0 such that |ab| = r.
Then ∠babi ≤ ∠̃babi and ∠̃babi → 0 as i→ ∞ because |bib| → 0 while |ab| and |abi|
stay bounded away from zero. Hence, we also have ∠babi → 0 for i→ ∞.

Byt the triangle inequality ofr angles it follows

|∠ciabi − ∠ciab| ≤ ∠babi → 0 for i→ ∞.

Hence ∠ciabi → α as i→ ∞. Then

lim inf
i→∞

∠̃ciabi ≥ lim inf
i→∞

∠ciabi = α

by the angle condition.

On the other hand ∠̃ciabi+∠̃acibi → π as i→ ∞ because ∠̃ciabi+∠̃acibi+∠̃abici = π
and ∠̃abici → 0. Thus

lim sup
i→∞

∠̃acibi = π − lim inf
i→∞

∠̃ciabi ≤ π − α.

This finishes the proof.

4.22 Corollary. Let X be nonpositively or nonnegatively curved complete locally compact
space, γ : [0, T ] → X a geodesic p.b.a.l. p ∈ X with p ̸= γ(0). Then the function t 7→ l(t)
has the right derivative and

lim
t↓0

l(t)− l(0)

t
= − cosαmin

where αmin is the minimum of angles between γ and shortest paths connecting γ(0) and p.

Proof. Choose a sequence {ti} such that

l(ti)− l(0)

ti
→ lim inf

t↓0

l(t)− l(0)

t
.

Fix shortest paths σti between p and γ(ti). By the Arzela-Ascoli Theorem σti subconverges
to a shortest path σ0. Then by the previous Theorem we have

lim
i→∞

l(ti)− l(0)

ti
= − cosα

where α is the angle between γ and σ0. Thus

lim inf
t↓0

l(t)− l(0)

t
= − cosα ≥ − cosαmin.

Note that in this last inequality we actually have equality, so α = αmin and this minimal
angle is indeed attained (by σ0).

52



4.4 Nonzero curvature bounds

4.23 Definition. Let k ∈ R. The k-plane Mk is one of the following spaces.

1. R2, if k = 0;

2. S21√
k

, the Euclidean sphere of radius 1√
k
, if k > 0;

3. H2
1√
−k

, the hyperbolic plane of curvature k < 0.

Remark. Recall that S21√
k

= {v ∈ R3 : |v|2eucl = (v1)2 + (v2)2 + (v3)2 = 1
κ}, the sphere of

radius 1√
k
in R3. The shortest paths are segment of great circles

cos(t)v + sin(t)w = γ(t), v ⊥ w ∈ S21√
k

.

The −1-plane can be defined as the −1-ball in the 3-dimensional Minkowski space
(R3, ⟨·, ·⟩1) where ⟨v, w⟩1 = −(v1)2 + (v2)2 + (v3)2 = −1. Other models of the hyperbolic
plane are the half-space and the Poincaré model. The k-plane for k < 0 is then obtained
by rescaling M−1 with −k.

Remark. The k-plane is bounded if and only if k > 0. We denote the diameter of the
k-plane by πk, i.e.

πk =

{
π/

√
k if k > 0;

∞ if k ≤ 0;

We need the following elementary property of the k-plane. For a, b, c > 0 such that
a+ b+ c < 2πk there exists a unique triangle in the k-plane with the sides a, b and c, up to
rigid motions, i.e. an isometry of the k-plane to itself. Hence for every sufficiently small
triangle in a length space, there is a unique (up to rigid motions) comparison triangle in
the k-plane. For k ≤ 0 we can drop the word ”sufficiently small”.

4.24 Remark (Comparison configuration in the k-plane). Let X be a length space and let
p, x, y ∈ X, γ : [0, L] → X a shortest path between x, y and g(t) = dp ◦ γ(t). We assume
that |px|+ |py|+ |xy| < 2πk.

Consider the k-plane Mk with the induced Riemannian distance |·, ·|. We choose x̄, ȳ ∈
Mk such that |x̄ȳ| = L and let γ̄ : [0, L] → Mk be a shortest path between x̄, ȳ ∈ Mk with
constant speed.

We choose a reference point p̄ ∈ Mk such that |p̄x̄| = |px| and |p̄ȳ| = |py|. This
comparison configuration is unique up to isometries of Mk.

We call gk(t) := |p̄γ̄(t)| the comparison function for g in the k-plane.
Similarly, for a triangle ∆xyz ⊂ X with |xy|+ |yz|+ |zx| < 2πk we can choose points

x̄, ȳ and z̄ in Mk such that |x̄ȳ| = |xy|, etc. and shortest paths [x̄ȳ], etc. The collection of
these shortest paths in Mk is called a comparison triangle ∆x̄ȳz̄ in k-plane for ∆xyz.

4.25 Definition. Let X be a length space and k ∈ R. The following statements are
equivalent.
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(i) Triangle condition.
For every point x ∈ X ∃ a neighborhood Ux ⊂ X such that for any triangle ∆abc
with |ab|+ |bc|+ |ca| ≤ 2πk contained in Ux and for any point d ∈ [ac] the inequality
|bd| ≥ |b̄d̄| (|bd| ≤ |b̄d̄|) holds where ∆āb̄c̄ is a comparison triangle in the k-plane and
d̄ ∈ [āc̄] is the point such that |ād̄| = |ad|.

(ii) Distance condition.
Every point q ∈ X has a neighborhood U such that the following holds: ∀p ∈ U and
∀γ : [0, L] → X that is a shortest path in U such that |pγ(0)|+ |pγ(L)|+ |γ(0)γ(L)| <
2πk the comparison function gk in k-plane for the corresponding g = dp ◦ γ satisfies

gk(t) ≥ g(t) (gk(t) ≤ g(t)) ∀t ∈ [0, L].

4.26 Definition (Generalized trigonometric functions). We define cosk, sink : [0,∞) → R
for k ∈ R as the solutions of

u′′ + ku = 0

u(0) = 1

u′(0) = 0


u′′ + ku = 0

u(0) = 0

u′(0) = 1

More precisely

cosk(t) =


cos(

√
kt)

1

cosh(
√
−kt)

sink(t) =


1√
k
sin(

√
kt) k > 0

t k = 0
1√
−k

sin(
√
−kt) k < 0

4.27 Remark. Consider a triangle ∆xyz in Mk for k > 0 with sides a = |yz|, b = |xz| and
c = |xy|. Then the following cosine rule hold. For k > 0 we have

cosk c = cosk a cosk b+ k sink a sink b cos∠kxzy

where ∠kxzy = ∠σ0σ1 is the angle at z of two shortest paths σ0 and σ1 between z and x,
and z and y. In particular, if ∠kxzy = π/2 the spherical Theorem of Pythagoras holds

cosk c = cosk a cosk b.

4.28 Remark. Alexandrov’s lemma is still true in Mk (and has the same proof) if the
0-plane is replaced with the k-plane.

4.29 Lemma. Consider the k-plane Mk, k > 0, and gk(t) = |p̄γ̄(t)| for a shortest path γ̄
in Mk. Then cosk gk(t)) = u(t) satisfies

u′′ + ku = 0, u(0) = cosk gk(0), u(L) = cosk gk(L).

Proof. By the law of Pythagoras we have cosk(t − t0) = cosk a cosk gk(t) where γ̄(t0) = q
is the point on γ̄ closest to p, and a = gk(t0). Note that for γ(t0) that is closest to p, by
the first variation formula in Mk, we have 0 = d

dt t0
|p̄γ̄(t)| = − cos∠kpγ̄(t0)γ̄(L). Hence u

satisfies the desired ODE with u(0) = cosk g(0) and u(L) = cosk g(L).
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4.30 Corollary. The inequality gk ≥ g (≤) in the distance conditions holds if and only if

cosk gk ≤ cosk g (≥).

By similar arguments as for the case k = 0 this holds if and only if cosk g = v satisfies

v′′ + kg ≤ 0 (≥), v(0) = cosk g(0), v(L) = cosk g(L) in the distributional sense.

4.31 Definition. We define mdk : [0,∞) → R for k ∈ R as the solutions of
u′′ + ku = 1

u(0) = 0

u′(0) = 0

More precisely

mdk(t) =


1
k (1− cosk(t)) k > 0
1
2 t

2 k = 0
1
k (cosk(t)− 1) k < 0

4.32 Fact. A length space X has curvature bounded from above (below) by k iff the follow-
ing holds: Every point q ∈ X has a neighborhood U such that the following holds: ∀p ∈ U
and ∀γ : [0, L] → X that is a shortest path in U such that |pγ(0)|+ |pγ(L)|+ |γ(0)γ(L)| <
2πk the function g = dp ◦ γ satisfies

mdk ◦g + kmd ◦g ≥ 0 (≤ 0).

4.5 Globalisation theorems

4.33 Theorem. 1. Globalisation for nonpositive curvature: Every complete simply
connected space of curvature ≤ k ≤ 0 is a space of curvature ≤ k in the large.

2. Toponogov’s globalization theorem. For any k ∈ R, every complete space of curvature
≥ k is a space of curvature ≥ k in the large.
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5 The Gromov-Hausdorff topology

5.1 Uniform convergence

Recall that a sequence of real-valued functions (fn)n∈N on a set X is said to converge
uniformly to a function f if

sup
x∈X

|fn(x)− f(x)| → 0 as n→ ∞.

A metric on X can be considered a a real-valued function on X ×X. Hence, we say that
a sequence of metrics dn on X converges uniformily to a metric d on X if

sup
x,x′∈X

|dn(x, x′)− d(x, x′)|︸ ︷︷ ︸
=:∥dn−d∥∞

→ 0 as n→ ∞.

Let X be a topological space and let (Y, dY ) be a metric space. If f : X → Y is a
homoeomorphism, then he pull-back metric f∗dY on X is defined via

(f∗dY )(x1, x2) = dY (f(x1), f(x2)).

f∗dY is indeed a metric on X and the induced toplogy coincides with the topology of X.
Indeed, f is an isometry w.r.t. f∗dY and dY . In particular, f is an homeomorphism w.r.t.
to the induced topologies.

5.1 Definition. A sequence of metric spaces (Xn, dn), n ∈ N, converges uniformly to a
metric space (X, d) if

sup
fn:Xn→X homeomorphism

sup
x,y∈Xn

|f∗nd(x, y)− dn(x, y)| → 0 as n→ ∞.

5.2 Hausdorff distance

Let X be a metric space. Consider two subsets A,B ⊂ X.
Question: How can we compare A and B? What is a distance between A and B?
Consider S ⊂ X. The r-neighborhood of S in X is defined as

Br(S) =
⋃
x∈S

Br(x) = {y ∈ Y : d(y, S) < r}

where d(z, S) := infx∈X |zx|.

5.2 Definition. The Hausdorff distance between subsetsA andB inX, denoted dH(A,B),
is defined by

dH(A,B) = inf{r > 0 : A ⊂ Br(B) and B ⊂ Br(A)}.

We call r ∈ (0,∞] in the infimum on the RHS an Hausdorff bound for A and B.

5.3 Fact. Let A and B be subsets of a metric space and r > 0. The following holds.

1. dH(A,B) = max{supa∈A d(a,B), supb∈B d(b, A)}.
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2. dH(A,B) ≤ r if and only if d(a,B) ≤ r ∀a ∈ A and d(b, A) ≤ r ∀b ∈ B. This fails
if one replaces ≤ with <.

Proof. Exercise.

5.4 Proposition. Let X be a metric space. Then

1. dH is a semi-metric on 2X , the set of all subsets in X.

2. dH(A,A) = 0 for any A ⊂ X where A is the closure of A.

3. If A and B are closed subsets in X, then dH(A,B) = 0 if and only if A = B.

Proof. 1. The triangle inequality follows from the following observation: for A ⊂ X and
r1, r2 > 0 one has that Br1(Br2(A)) ⊂ Br1+r2(A) by the triangle inequality in X.

2. d(x,A) = 0 if x ∈ A since A ⊂ A. For x ∈ A we have d(x,A) = 0 by the definition
of closure. Hence dH(A,A) = 0.

3. Assume this is not true. Then ∃x ∈ A\B. Since B is closed there is r > 0 such that
Br(x) does not intersect with B. Hence x /∈ Br(B) and therefore dH(A,B) ≥ r > 0.

We denote with M(X) the set of closed subsets in X equipped with the Hausdorff
distance. Hence (M(X), dH) is a ∞-metric space.

5.5 Proposition. If X is a complete metric space, then M(X) (equipped with dH) is
complete.

Proof. Let {Sn}n∈N be a Cauchy sequence in M(X). Let S be the set of all points x ∈ X
such that for any neighborhood U of x one has U ∩ Sn ̸= ∅ for infinitely many n.

Claim: Sn
H→ S.

We fix ϵ > 0 and let n0 be such that dH(Sn, Sm) < ϵ ∀n,m ≥ n0. If suffices to show
that dH(S, Sn) < 2ϵ for any n ≥ n0.

1. We have d(x, Sn) < 2ϵ ∀x ∈ S and ∀n ≥ n0. Indeed: ∃m ≥ n0 such that
Bϵ(x) ∩ Sm ̸= ∅. In other words ∃y ∈ Sm such that |xy| < ϵ. Since dH(Sm, Sn) < ϵ, one
has d(y, Sn) < ϵ and therefore d(x, Sn) ≤ |xy|+ d(y, Sn) < 2ϵ.

2. Moreover d(x, S) < 2ϵ ∀x ∈ Sn. Let n1 = n and for any k > 1 choose nk
such that nk > nk+1 and dH(Sp, Sq) <

ϵ
2k

for all p, q ≥ nk. Then define a sequence
(xk) where xk ∈ Snk

as follows. Let x1 = x and xk+1 is a point in Snk+1
such that

|xkxk+1| < ϵ/2k for all k. Such a point can be found because dH(Snk
, Snk+1

) < ϵ/2k. Since∑∞
k=1 |xkxk+1| < ϵ <∞ the sequence (xk) is a Cauchy sequence and hence it converges to

a point y ∈ X. Then |xy| = lim |xxn| ≤
∑n

k=1 |xkxk+1| < ϵ. Since y ∈ S by construction,
it follows that |xS| < 2ϵ.

With 1. and 2. it follows that dH(S, Sn) < 2ϵ ∀n ≥ n0.

5.6 Theorem (Blaschke). If X is compact, then M(X) is compact.

Proof. Since we already know that M(X) is complete, it suffices to show that M(X) is
totally bounded. Let S be a finite ϵ-net in X. We will show that 2S is an ϵ-net in M(X).
Let A ∈ M(X). Consider

SA = {x ∈ S : d(x,A) ≤ ϵ}.
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Since S is an ϵ-net in X, for every y ∈ A there exists x ∈ S such that |xy| ≤ ϵ. Since
d(x,A) ≤ |xy| ≤ ϵ, this point x ∈ S belongs to SA, hence d(y, SA) ≤ ϵ for y ∈ A. Since
d(x,A) ≤ ϵ for any x ∈ SA (by the definition of SA), it follows that dH(A,SA) ≤ ϵ. Since
A is arbitrary, this proves 2S is an ϵ-net in M(x).

Remark. The set of compact convex subsets in any fixed ball in Rn is compact w.r.t. dH .

5.3 Gromov-Hausdorff distance

Idea: We want to compare metric spaces by introducing a distance dGH on the family of
all metric spaces. We require

1. If X and Y are metric spaces that are are subsets in a metric space Z, then
dGH(X,Y ) ≤ dZH(X,Y ).

2. If X and Y are isometric metric spaces, then dGH(X,Y ) = 0.

The Gromov-Hausdorff distance dGH is defined as the maximal metric on the class of
metric spaces satisfying these properties.

5.7 Definition. Let X and Y be metric spaces. The Gromov-Hausdorff distance between
X and Y , denoted by dGH(X,Y ), is defined as follows. For r > 0, we require that
dGH(X,Y ) < r iff there exists a metric space Z and subspaces X ′ and Y ′ of Z that are
isometric, w.r.t. to the restriction of the metric of the ambient space Z, to X and Y such
that dZH(X ′, Y ′) < r.

In other words, dGH(X,Y ) is the infimum of all r > 0 such that there exists a
metric space Z and distance preserving maps ιX : X → Z, ιY : Y → Z such that
dZH(ιX(X), ιY (Y )) < r.

Remark. If X and Y are isometric, then dGH(X,Y ) = 0. Indeed, let f be an isometry.
Choose Z = X and ιX = idX and ιY = f .

5.8 Remark. Note that X ′ and Y ′ are not equipped with the induced intrinsic metric in
Z, but with the induced metric. If X is a sphere with the Standard Riemannian metric,
one cannot choose Z = R3 and X ′ ≃ S2 ⊂ R3 in the definition of dGH . X ′, with the
restricted metric of R3, is not isometric to X!

Remark. In general, it is a hard problem to compute the GH distance between explicitly
given metric spaces.

5.9 Example. Recall: an ϵ-net Y in a metric space X is defined by the property that
∀x ∈ X ∃y ∈ Y such that |xy| < ϵ. Hence dXH(X,Y ) ≤ ϵ and therefore dGH(X,Y ) ≤ ϵ.
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5.10 Remark. The definition of dGH deals with a huge classs of metric spaces, namely
all Z that contain isometric copies of X and Y . It is possible to reduce this class. It is
enough to consider the infimum of r > 0 such that there exists a semi-metric d on the
disjoint union X∪̇Y such that d|X×X = dX and dY×Y = dY and dH(X,Y ) < r in the
space (X∪̇Y, d).

Proof. Let Z,X ′, Y ′ be an admissible triple in the infimum of the definition of dGH(X,Y ).
We fix isometries ιX : X → X ′ and ιY : Y → Y ′. Then we define a distance d′ on X∪̇Y
as follows. For x, x̃ ∈ X define d′(x, x̃) = dX(x, x̃). Analogously for y, ỹ ∈ Y . If x ∈ X
and y ∈ Y , we set d′(x, y) = dZ(ιX(x), ιY (y)). This yields a semi-metric on X∪̇Y such
that dH(X,Y ) < r (if X ′ ∩ Y ′ ̸= ∅, it may happen that d′(x, y) = 0). The quotient metric
space X∪̇Y/d′ is isometric to X ′ ∪ Y ′ (in Z) equipped with dZ |X∪Y×X∪Y .

To obtain a metric on X∪̇Y , define d(x, y) = dZ(ιX(x), ιY (y)) + δ where δ > 0 is
arbitrary. Then dH(X,Y ) < r + δ in (X∪̇Y, d).

5.11 Proposition. dGH satisfies the triangle inequality, i.e.

dGH(X1, X3) ≤ dGH(X1, X2) + dGH(X2, X3)

for any metric spaces X1, X2, X3.

Proof. Let d12 and d23 be metrics on X1∪̇X2 and on X2∪̇X3 respectively, extending the
metrics on X1, X2 and X3. We define a distance between x1 ∈ X1 and x3 ∈ X3 by

d13(x1, x3) = inf
x2∈X2

{d12(x1, x2) + d23(x2, x3)}.

One can check that d13 is a metric on X1∪̇X3 that extends the metrics on X1 and X3.
Consider r1, r2 such that dH(X1, X2) ≤ r1 and dH(X2, X3) ≤ r2. Hence, ∀x1 ∈ X1

∃x2 ∈ X2 such that d12(x1, x2) ≤ r1 and ∃x3 ∈ X3 such that d23(x2, x3) ≤ r2. Together
with the definition of d13 it follows that ∀x1 ∈ X1 ∃x3 ∈ X3 such that d13(x1, x3) ≤ r1+r2
and the same statement for X1 and X3 in reversed roles. From the definition of the
Hausdorff distance we get dH(X1, X3) ≤ r1+r2, and since r1 and r2 are arbitrary numbers
larger than dH(X1, X2) and dH(X2, X3), it follows

dH(X1, X3) ≤ dH(X1, X2) + dH(X2, X3).

If we take the infimum over all d12 and d23 we obtain the desired inequality.

5.12 Definition. Let X and Y be two sets. A correspondence between X and Y is a set
R ⊂ X × Y satisfying the following. ∀x ∈ X ∃y ∈ Y such that (x, y) ∈ R, and ∀y ∈ Y
∃x ∈ X such that (x, y) ∈ R.

5.13 Example. A surjective map f : X → Y defines a correspondence R between X and
Y via

R = {(x, f(x)) : x ∈ X}.

Remark. Not every correspondence is associated to a map.

5.14 Definition.
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1. Let X and Y be metric spaces and f : X → Y a map. The distortion of f is defined
by

dist f = sup
x,x′∈X

∣∣dY (f(x), f(x′))− dX(x, x′)
∣∣ .

2. Let R be a correspondence between metric spaces X and Y . The distortion of R is
defined by

distR = sup{|dX(x, x′)− dY (y, y
′)| : (x, y), (x′, y′) ∈ R}.

5.15 Remark. � The definition of distortion of map resembles the one dilatation of a
Lipschitz map. The difference is that the latter measures relative changes while the
former measures absolute changes.

� For the correspondence R associated to a map f , one has distR = dist f .

� If R is a distortion between metric spaces X and Y , then distR = 0 if and only if
R is induced by an isometry from X to Y .

5.16 Theorem. For any two metric spaces X and Y it holds that

dGH(X,Y ) =
1

2
inf
R

distR

where the infimum is taken over all correspondences R between X and Y .

Proof. 1. We show: ∀r > 0 with dGH(X,Y ) < r ∃R correspondence with distR < 2r.

Since dGH(X,Y ) < r, we may assume that X and Y are subspaces of some metric space
(Z, d) and dH(X,Y ) < r in Z. Define

R = {(x, y) ∈ X × Y : d(x, y) < r}.

That R is a correspondence follows from dH(X,Y ) < r. Then we have for (x, y), (x′, y′) ∈
R, that

|d(x, x′)− d(y, y′)| ≤ d(x, y) + d(x′, y′) < 2r.

2. We show that dGH(X,Y ) ≤ 1
2 distR for any correspondence R.

Pick a correspondence R and let distR = 2r. We show there exists a semimetric d on
X∪̇Y such that d|X×X = dX and d|Y×Y = dY , and dH(X,Y ) ≤ r in (X∪̇Y, d). For this
we define for x ∈ X and for y ∈ Y

d(x, y) = inf{dX(x, x′) + d(y′, y)}+ r

where the infimum is w.r.t. all (x′, y′) ∈ R. On X and Y we set the distance d as dX and
dY , respectively. d is a semi-metric. In particular the triangle inequality is easy to check.
Note that the choice of the constant r in the definition of d as 1

2 of the distortion of R is
necessary for the triangle inequality.

For x ∈ X there exists y ∈ Y such that (x, y) ∈ R. Hence d(x, y) = r and it follows
that dH(X,Y ) ≤ r w.r.t. d.

...
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5.17 Definition. Let X and Y be metric spaces and ϵ > 0. A map f : X → Y is called
ϵ-isometry if dist f ≤ ϵ and f(X) ⊂ Y is an ϵ-net in Y .

Remark. 1. Recall that an isometry between metric spaces X and Y is a map that
is distance preserving (dist f = 0) and surjective. In this sense we have that an
ϵ-isometry generalizes the concept of isometry.

2. Recall that an ϵ-net S in Y is a family of points such that dY (y, S) ≤ ϵ forall y ∈ Y .

5.18 Corollary. Let X and Y be metric spaces and ϵ > 0. Then

1. If dGH(X,Y ) < ϵ, then there exists a 2ϵ-isometry from X to Y .

2. If there exists an ϵ-isometry from X to Y , then dGH(X,Y ) < 2ϵ.

Proof. 1. Let R be a correspondence between X and Y with distR < 2ϵ. ∀x ∈ X we
choose f(x) ∈ Y such that (x, f(x)) ∈ R. This defines a map f : X → Y . Then
dist f ≤ distR < 2ϵ. Hence we only need to show that f(X) is an 2ϵ-net. For y ∈ Y
we consider x ∈ X such that (x, y) ∈ R. Since both y and f(x) are in correspondence
with x it follows

dY (y, f(x)) ≤ d(x, x) + distR < 2ϵ.

Hence d(y, f(X)) < 2ϵ.

2. Let f be an ϵ-isometry. We define R ⊂ X × Y by

R = {(x, y) ∈ X × Y : d(y, f(x)) ≤ ϵ}.

Then R is a correspondence because f(X) is an ϵ-net in Y . Moreover, if (x, y) ∈ R
and (x′, y′) ∈ R, one has∣∣dY (y, y′)− dX(x, x′)

∣∣ ≤ ∣∣dY (f(x), f(x′))− dX(x, x′)
∣∣+ ∣∣dY (y, y′)− dY (f(x), f(x

′))
∣∣

≤ dist f + dY (y, f(x)) + dY (y
′, f(x′)) ≤ 3ϵ.

Hence distR ≤ 3ϵ and therefore dGH(X,Y ) ≤ 3
2r < 2r.

5.19 Theorem. The Gromov-Hausdorff distance defines a finite metric on the space of
isometry classes of compact metric spaces, i.e. it is nonnegative, symmetric, satisfies the
triangle inequality and dGH(X,Y ) = 0 if and only if X and Y are isometric.

Proof. We only need the check the very last statement. Let X and Y be compact metric
spaces such that dGH(X,Y ) = 0. Hence, given a sequence (ϵn)n∈N with ϵn ↓ 0 for every
n ∈ N there exists an ϵn-isometry fn : X → Y . Let S ⊂ X be a countable dense set in X.
Using the Cantor diagonal procedure, we can choose a subsequence (fnk

)k∈N of (fn) such
that fnk

(x) converges in Y as k → ∞ ∀x ∈ S. W.l.o.g. we assume that this holds already
for (fn). Then we can define a limit map f : S → Y by setting f(x) = limn→∞ fn(x)
∀x ∈ S. Since

|dY (fn(x), fn(y))− dX(x, y)| ≤ dist fn ≤ ϵn → 0 ∀x, y ∈ X

61



it follows that dY (f(x), f(y)) = dX(x, y) for all x, y ∈ S. Hence f : S → Y is distance
preserving from the entire X to Y . Similar, we can construct a distance preserving map
from Y to X. Hence, we have that the composition f ◦ g is distance preserving from Y to
itself. Since Y is compact, the map f ◦ g is bijective. Hence f is surjective and therefore
an isometry.
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5.20 Remark. A sequence {Xn}n∈N of compact metric spaces converges to a compact
metric space X in Gromov-Hausdorff sense if dGH(Xn, X) → 0 as n → ∞. Since dGH is

a metric the limit X is unique. We write Xn
GH→ X.

We have Xn
GH→ X if there are numbers {ϵn} and ϵn-isometries fn : X → Xn such that

ϵn ↓ 0.

5.21 Example. The Hausdorff convergence of compact subsets An to A in a metric space X
implies Gromov-Hausdorff convergence of these subsets An, A equipped with the induced
metric they inherit from X. The converse is in general false.

If a sequence {Xn}n∈N converges uniformly to X then Xn
GH→ X. Indeed, by uniform

convergence there exist homoemorphisms fn : Xn → X such that

sup
x,y∈Xn

|f∗dX(x, y)− dXn(x, y)| = dist fn → 0 as n→ ∞.

Since fn is a surjective map, it gives a correspondence such that the distortion vanishes.

5.22 Example. Let {dn} be a sequence of metrics on a fixed set X which converges uni-
formly to some function d : X × X → R. Then d is obviously a semi-metric, and the
quotient metric space X/d is the Gromov-Hausdorff limit of the spaces (X, dn). Not that
if X is a finite set, it suffices to require dn(x, y) → d(x, y) for every pair x, y ∈ X.

5.23 Example. Every compact metric space X is a limit of finite spaces. To see this, take
a sequence ϵn ↓ 0 of positive numbers and choose a finite ϵn-net Sn in X for every n.
Since ∀y ∈ X ∃x ∈ Sn such that d(x, y) ≤ ϵn, it follows that dXH(X,Sn) ≤ ϵn and hence
dGH(X,Sn) ≤ ϵ where Sn is equipped with the induced metric.

Remark. Recall that X is compact iff X is complete and totally bounded, i.e. ∀ϵ > 0 there
exists a finite ϵ-net.

By taking appropriate ϵ-nets one can essentially reduce GH convergence of compact
metric spaces to convergence of finite subsets.

5.24 Definition. Let X,Y be two compact metric spacees, and let ϵ, δ > 0. X and Y
are (ϵ, δ)-approximations of each other if there exist finite collections of points {xi}i=1,...,N

and {yi}i=1,...,N in X and Y , respectively, such that

1. The set {xi : 1 ≤ i ≤ N} is an ϵ-net in X, and {yi : 1 ≤ i ≤ N} is an ϵ-net in Y .

2. |dX(xi, yj)− d(yi, yj)| < δ ∀i, j = 1, . . . , N.

If δ = ϵ, we call an (ϵ, δ)-approximations and ϵ-approximation.

5.25 Proposition. Let X,Y be compact metric spaces.

1. If Y is an (ϵ, δ)-approximations of X, then dGH(X,Y ) < 2ϵ+ δ.

2. If dGH(X,Y ) < ϵ, then Y is a 5ϵ-approximation of X.

Proof. 1. Let X0 = {xi}i=1,...,N and Y0 = {yi}i=1,...,N be as in the previous definition.
The second point in the definition means that the correspondence {(xi, yi) : i = 1, . . . , N}
between these two finte sets has distortion less than δ. If follows that dGH(X0, Y0) ≤ δ/2.
Moreover since X0 and Y0 are ϵ-nets in X and Y , respectively, we have that dGH(X,X0)
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and dGH(Y, Y0) are less than ϵ. The claim follows from the triangle inequality.

2. By assumption there is a 2ϵ-isometry f between X and Y . Let X0 = {xi}i=1,...,N be a
finite ϵ-net in X and define yi = f(xi), i = 1, . . . , N . Then it follows that

|d(xi, xj)− d(yi, yj)| < 2ϵ < 5ϵ

for all i, j. We have to show that Y0 = {yi}i=1,...,N is a 5ϵ-net in Y . We have f(X) is
2ϵ-net in Y . Hence, for y ∈ Y there exists x ∈ X such that dY (y, f(x)) ≤ 2ϵ. Since X0 is
an ϵ-net, there exists xi ∈ X0 such that dX(x, xi) ≤ ϵ. Then

dY (y, f(xi)) ≤ d(y, f(x)) + d(f(x), f(xi)) ≤ 2ϵ+ d(x, xi) + dist f ≤ 5ϵ.

Hence dY (y, Y0) ≤ 5ϵ.

5.26 Corollary. Let X,Xn be compact metric spaces. Xn
GH→ X if and only if the following

holds. ∀ϵ > 0 there exists a finite ϵ-net S in X and ϵ-net Sn in each Xn such that Sn
GH→ S.

Moreover, we can choose Sn and S to have the same cardinality.

Proof. If such ϵ-nets exists, then Xn is an ϵ-approximation of X for n sufficiently small.

Then Xn
GH→ X by the previous Proposition. For the other implication we pick a ϵ/2-net

S in X and construct corresponding nets Sn in Xn. For this we pick a sequence of ϵn-

approximations fn : X → Xn with ϵn ↓ 0 and define Sn = fn(S). Then Sn
GH→ S and Sn

are ϵ-nets as in the previous proof.

Remark. Let finite metric spaces Sn converge in GH sense to a finite metric space S,
i.e. the distances between points in Sn converge to distances between points in S. It
follows that all geometric characteristics of the set Sn converge to those of S, for instance
diameter.

5.4 Compactness Theorem

Since the GH topology is very weak, we expect that there are many compact sets.
The results of the previous propositions imply that if a sequence of compact metric

spaces Xn converges in GH sense, the spaces must contain ϵ-nets of uniformily bounded
cardinality for every ϵ > 0. It follows that if a family of compact metric spaces X is pre-
compact w.r.t. GH convergence, then the sizie of a minimal ϵ-net is uniformily bounded
over all elements of X. In fact, together with a uniform diameter bound for elements in X
this is sufficients for precompactness.

5.27 Definition. We say a family of X of compact metric spaces is uniformly totally
bounded if

1. There is a constant D > 0 such that diamX ≤ D for all X ∈ X.

2. For every ϵ > 0 there exists a natural number N = N(ϵ) such that every X ∈ X
contains an ϵ-net consisting of no more than N points.

5.28 Theorem. Any class X of uniformly totally bounded compact metric spaces is pre-
compact in the GH topology. That is, any sequence of elements of X contains a converging
subsequence.
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Proof. Let D and N(ϵ) as in the previous definition. Define inductively Nk = Nk−1+N( 1k )
for all k ≥ 2 and N1 = N(1). Let {Xn}n∈N be a sequence of metric space in X. In every
Xn we consider the union of all 1

k -nets with k ∈ N. This is a countable, dense subset
Sn := {xn,i}i∈N in Xn such that ∀k ∈ N the first Nk points of Sn form an 1

k -net in Xn.
The distances |xn,ixn,j | do not exceed D, i.e. belong to the interval [0, D]. By the Cantor
diagonal procedure we can extract a subsequence of n such that |xn,ixn,j | converge for all
i, j ∈ N. We assume n ∈ N is already this subsequence.

We constrcut a limit space X̄ for {Xn} as follows. Consider N =: X and define

d(i, j) = lim
n→∞

|xn,ixn,j | ∀i, j ∈ X.

d is a semi-metric on X and the quotient X/d is a metric space. Let ī ∈ X/d be the point
obtained from i. This quotient space may not be complete, so let X be the completion of
X/d.

We have to show that {Xn} converges in GH sense to X̄, and that X̄ is compact. For
this consider the set S(k) = {̄i : 1 ≤ i ≤ Nk} ⊂ X̄.

Claim: S(k) is an 1
k -net in X. Indeed S

(k)
n = {xn,i : 1 ≤ i ≤ Nk} is an 1

k -net in the
respective space Xn. Hence, for every xn,i there exists j ≤ Nk such that |xn,ixn,j | ≤ 1

k .
Since Nk is finite and does not depend on n, for every i ∈ N fixed there is j ≤ Nk such
that |xi,nxj,n| ≤ 1

k for infinitely many indices n. Hence, since |xn,ixn,j | converges to d(̄i, j̄),
we have d(̄i, j̄) ≤ 1

k . Thus S(k) is an 1
k -net in X/d and hence in X̄. Since X̄ is complete

and has an 1
k -net for every k ∈ N, X̄ is compact.

Futhermore, by construction S(k) is the uniform (hence GH) limit of the finite sets S
(k)
n

as n → ∞. Thus, for every k ∈ N we have an 1
k -net in X̄ which is a Gromov-Hausdorff

limit of some 1
k -nets in Xn. Hence Xn

GH→ X̄.
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5.5 Convergence of length spaces

5.29 Theorem. Let {Xn}n∈N be a sequence of length spaces, X a complete metric space,

and Xn
GH→ X. Then X is a length space.

Remark. Compare the theorem with the fact that convexity is preserved w.r.t. Hausdorff
convergence.

Proof. By Theorem 2.34 it suffices to prove that any two points x, y ∈ X possess an
ϵ-midpoint ∀ϵ > 0.

Let n ∈ N be such that dGH(Xn, X) < ϵ
10 . Then there exists a correspondence R

between X and Xn such that distR ≤ ϵ
5 . Take points x̃ and ỹ in Xn that correspond to x

and y. Since Xn is a length space there exists and ϵ
5 -midpoint z̃ for x̃ and ỹ. Let z ∈ X

be a point that corresponds to z̃. then

|xz| − 1

2
|xy| ≤ |x̃z̃| − 1

2
|x̃ỹ|+ 2distR ≤ ϵ

5
+

2ϵ

5
< ϵ.

Similar for y in place of x. Hence max{|xz|, |zy|} ≤ 1
2 |xy| + ϵ. Hence z is a 2ϵ-midpoint

for x, y.

5.30 Examples. � Let Xn be the sphere S2 with a geodesic ball of radius 1
n removed

and equipped with the induced intrinsic metric. The sequence {Xn}n∈N converges
to S2.

� Let Xn be obtained the same way from the circle S1. Then {Xn}n∈N does not
converge to S1.

� Let X be a straight line segment in R2, such as [0, 1]×{0}× {0}, and let Xn be the
boundary of its 1

n -neighborhood equipped with the induced length metric from R3.

Then Xn
GH→ X as n→ ∞.

� Let X be a planar disc in R3, i.e. X ≃ B1(0)×{0}, and again let Xn be the boundary
of its 1

n -neighborhood as before. The sequence {Xn}n∈N converges in GH sense, but
the limit is not X.

Metric Graphs A metric segment of length a is a metric space isometric to the segment
[0, a] ⊂ R.

5.31 Definition. A metric graph is the result of gluing a disjoint collection of metric
segments {Ei} and points {vj} (both regarded with the length metric of the disjoint
union) along an equivalence relation R defined on the union of the set {vj} and the set of
endpoints of the segments. The segments {Ej} are called edges and the equivalence classe
of the endpoints are called vertices of the graph. The length of an edge is the length of
the corresponding sement.

5.32 Proposition. Every compact length space can be obtained as a GH limit of finite
graphs.
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Proof. Pick ϵ > 0 and δ > 0 small, such that δ ≪ ϵ. Let S be a finite δ-net in X. We
define a graph G a follows. The set of vertices of G is S, and two points x, y ∈ S are
connected by an edge if and only if |xy| < ϵ. The length of this edge is |xy|.

We show that the graph G is an ϵ-approximation of X if δ > 0 is small enough, say
δ < 1

4
ϵ2

diamX . We consider S as a subset of S and of X. Obviously S is an ϵ-net in both
spaces, and |xy|G ≥ |xy| for all x, y ∈ S where | · |G denotes the distance in G.

It remains to show that |xy|G ≤ |xy|+ ϵ.

Let γ be a shortest path in X between x and y. We choose n points x1, . . . , xn with n ≤
2L(γ)/ϵ, deviding γ into n intervals of lengths not greater than ϵ

2 . Let x = x0, y = xn+1.
For every i = 1, . . . , n there exists yi ∈ S such that |xiyi| ≤ δ. Moreover we set x = y0
and y = yn+1. Note that |yiyi+1| ≤ |xixi+1|+ 2δ < ϵ for all i = 0, . . . , n. In particular, yi
and yi+1 are connected by edge in G. Then

|xy|G ≤
n∑

i=0

|yiyi+1| ≤
n∑

i=0

|xixi+1|+ 2δn = |xy|+ 2δn.

Recall n ≤ 2L(γ)/ϵ ≤ 2 diamX/ϵ. Hence

|xy|G ≤ |xy|+ δ
4 diamX

ϵ
< |xy|+ ϵ

if δ < 1
4ϵ

2/ diamX.
Thus we have a finite graph that is an ϵ-approximation of X. Passing ϵ to zero yields

a sequence of graphs converging to X in GH sense.

5.6 Pointed Gromov-Hausdorff convergence

5.33 Definition. A pointed metric space is a pair (X, o) consisting of a metric space X
and a point o ∈ X.

A sequence {(Xn, on)}n∈N of pointed metric spaces converges in the Gromov-Hausdorff
sense to a pointed metric space (X, o) if the following holds. ∀r > 0 and ∀ϵ > 0 there exists
n(r, ϵ) ∈ N such that for every natural n > n(r, ϵ) there is a map f := f r,ϵn : Br(on) → X
(not necessarily continuous or measurable) such that the following hold:

1. f(on) = o,

2. dist f < ϵ,

3. Bϵ(f(Br(on)) ⊃ Br−ϵ(p).

We write (Xn, on)
GH→ (X, o).

5.34 Remark. The first two requirements in the definition imply that f(Br(on)) ⊂ Br+ϵ(o).
Hence, together with third condition, one has that the ball Br(on) in Xn lies within GH
distance of order ϵ > 0 from a subset K ⊂ X such that Br−ϵ(o) ⊂ K ⊂ Br+ϵ(o). If X

is a length space, this is true for K = Br(o). In other words, (Xn, on)
GH→ (X, o) then

Br(on)
GH→ Br(o) ∀r > 0, provided X is a length sapce (exercise). This may fail if X is

not a length space. To see this, construct a sequence of compact metric spaces {Xn}n∈N
that converges to X, but no sequence of closed unit balls in Xn converges to a closed ball
in X.
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5.35 Remark. The property that the balls Br(on) converge to Br(o) does not yet imply
pointed GH convergence. The first requirement puts the points on and o into a special
position. To illustrate this consider the following that is left as an exercise: Construct
a compact metric space X with two points p, q ∈ X such that for every r > 0 the balls
Br(p) and Br(q) are isometric in X (hence Br(p) converges to Br(q) ∀r > 0), but there
is no isometry from X to itself that maps p to q. The latter statement means that (X, p)
does not converge in pointed GH sense to (X, q).

5.36 Fact. Let Xn, X be compact metric spaces. Then

� (Xn, on)
GH→ (X, o) implies Xn

GH→ X.

� If Xn
GH→ X and o ∈ X, then one can choose on ∈ Xn such that (Xn, on)

GH→ (X, o).
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Remark. If (Xn, pn)
pGH→ (X, p), then the same sequence also converges in pointed GH

sense to the completion.

5.37 Definition. We say that 2 pointed compact metric spaces (X, p) and (X ′, p′) are
isometric if there is an isometry f : X → X ′ such that f(p) = p′. Such a map is called a
pointed isometry from (X, p) to (X, p′).

5.38 Theorem. Let (X, p), (X ′, p′) be two complete pointed Gromov-Hausdorff limits of
a sequence {(Xn, pn)}∞n=1 and assume that X is boundedly compact (i.e. every closed and
bounded set is compact). Then (X, p) and (X ′, p) are isometric.

Proof. Let r > 0 and ϵ > 0. From the definition of pointed GH convergence we can
construct a correspondence between sets Yr,ϵ ⊂ X and Y ′

r,ϵ ⊂ X ′ such that Yr,ϵ and Y ′
r,ϵ

contain the balls of radius r − ϵ and are contained in the balls of radius r + ϵ centered at
p and p′ respectively. We have that p and p′ are in correspondence to each other and the
distortion distRr,ϵ < ϵ.

Choosing one point corresponding to a point in Yr,ϵ yields a map fr,ϵ : Yr,ϵ → Y ′
r,ϵ that

maps p to p′ and has distortion < ϵ. By a Cantor diagonal argument, first for ϵ ↓ 0, then
for r ↑ ∞, we can construct a distance preserving map f from a dense subset S in X to
X ′ with f(p) = p′. Hence f extends to a distance preserving map on X. It maps every
ball of radius Br(p) in X to the corresponding ball in Br(p

′).
Because of compactness of the closure of the balls we can procede with the same

argument as in Theorem 5.19 and we obtain f is surjective, hence an isometry.

5.39 Remark. Assume {(Xn, pn)}n∈N is boundedly compact and (Xn, pn)
GH→ (X, p) where

(X, p) is complete. Then (X, p) is boundedly compact.
In the following we usually consider spaces that are boundedly compact.

Like for GH convergence one can prove the following theorems.

5.40 Theorem. Let (Xn, pn)
GH→ (X, p) where Xn are length spaces and X is complete.

Then X is a length space.

5.41 Theorem. Let X be the class of pointed metric spaces with the following property.
∀r > 0 and ∀ϵ > 0 there exists N(r, ϵ) such that for (X, p) ∈ X the ball Br(p) in X admits
an ϵ-net of no more than N(r, ϵ) points. Then the class X is precompact in the sense that
any sequence of spaces in X contains a converging subsequence in pointed GH sense.
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6 Alexandrov spaces with curvature bounded from below

Throughout this section Alexandrov spaces are complete, connected, strictly intrinsic
spaces with curvature bounded from below by k for k ∈ R.

In the case of positive k we exclude the following exceptional 1-dimensional spaces: R,
[0,∞) as well as segments and circles with diameter larger than π/

√
k.

Recall Toponogov’s Globalization Theorem:

Theorem. Any Alexandrov space with curvature bounded from below by k is an Alexan-
drov space with curvature bounded from below by k in the large.

Remark. ”In the large” means that the curvature comparison conditions are satisfied for all
triangles for which comparison triangles exists and is unique (uniqueness is understood
up to rigid motions of the k-plane). The latter requirement is essential only for the case
of curvature ≥ k > 0, i.e. we have the following cases

� if the the perimeter of the triangle ∆abc is strictly smaller than 2π/
√
k, then there

exists a unique comparison triangle.

� if the perimeter is equal to 2π/
√
k and each side is strictly smaller than π/

√
k, then

there exists a unique comparison triangle. More precisely the comparison triangle is
given by a great circle in the k-plane.

Otherwise, we have |ac| = π/
√
k or |ab| + |bc| = π/

√
k and in this case comparison

triangles are not unique in the k-plane.

Recall: If a, b, c are different points in a length space, then we denote with ∆āb̄c̄ the
comparison triangle in the k-plane if it exists and is unique. The comparison angle ∠̃kabc
is the angle ∠kāb̄c̄ of the comparison triangle ∆āb̄c̄ in b̄ in the k-plane. The angle ∠kāb̄c̄
is a function of the 3 distances |ab|, |bc| and |ca|. It is well defined if |ab|+ |bc|+ |ca| < πk
where πk is the diameter of the k-plane.

6.1 Quadruple Condition

6.1 Proposition. A locally compact length space X is a space of curvatre ≥ k iff ∀x ∈ X
∃U ⊂ X a neighborhood of x such that every collection of 4 different points a, b, c, d ∈ U
the following condition is satisfied:

∠̃kbac+ ∠̃kcad+ ∠̃kdab ≤ 2π.

We call this inequality the quadruple condition for the quadruple (a; b, c, d). Note that a is
in a special position.

Remark. Note that this condition does not rely on the existence of shortest paths, so it
can be used unmodified for not strictly intrinsic metric spaces.

Proof. 1. Assume the quadruple condition holds for all quadruples. Pick a triangle ∆abc
and d ∈ X on the shortest path [ac] between a and c. Apply the quadruple condition for
(d; a, b, c). Since ∠̃kadc = π, it follows ∠̃kbdc+ ∠̃kbda ≤ π. By Alexandrov’s Lemma (for
the k-plane) it follows that

|bd| ≤ |b̄d̄|
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where ā, b̄, c̄ is a comparison triangle in the k-plane and d̄ is point on [āc̄] with |ād̄| = |ad|.
This is exaclty the distance condition for curvature ≥ k.

2. Let X be a space with curvature ≥ k, let (a; b, c, d) be a quadruple and let a′ be a
point in a shortest path [ab] between a and b. Then

∠̃kba
′d+ ∠̃kda

′c+ ∠̃kca
′b ≤ ∠ba′d+ ∠da′c+ ∠ca′b

≤ (∠kba
′d+ ∠kda

′a) + (∠kaa
′c+ ∠kca

′b) = 2π

where we used the angle condition, the triangle inequality for angles and the fact that the
sum for adjacent angle equals π in spaces with curvature ≥ k.

Now let a′ converge to a. Continuity of comparison angles implies the statement.

6.2 Corollary. Shortest paths in a space of curvature bounded from below by k do not
branch. Namely, if two shortest paths γ : [0, L] → X and γ′ : [0, L′] → X with L′ ≤ L and
γ(0) = γ′(0) satisfy γ|[0,ϵ] = γ′|[0,ϵ] then γ′([0, L′]) ⊂ γ([0, L]).

Proof. Assume w.l.o.g. that γ and γ′ are parametrized by arc length and L = L′. Assume
further that γ(L) = b ̸= γ′(L) = c, γ(0) = γ′(0) = d and γ|[0,ϵ] = γ′|[0,ϵ] with γ(ϵ) =

γ′(ϵ) = a for some ϵ > 0. From the quadruple condition it follows that ∠̃kbac = 0. Hence
|bc| = 0.

6.3 Theorem (Bonnet’s Theorem for Alexandrov spaces). Let X be an Alexandrov space
with curvature ≥ k > 0. Then diamX ≤ π/

√
k.

Proof. Assume ∃a, b ∈ X such that |ab| > π/
√
k. We may assume there exists ϵ ∈ (0, π/4)

such that |ab| = (π + ϵ)/
√
k. Let c be the midpoint on the shortest path [a, b] and let

U = Bϵ/(8
√
k)(c).

1. Claim. U contains a point which does not belong to [ab].
Otherwise: ∀x ∈ X let γ be a shortes path from x to c. Hence the image of γ has

nonempty intersection with U . Hence, a subsegment of γ coincides with [ab] close to
c. Since geodesics do not branch, it follows that x belongs to the unique geodesics that
contains the segment [ab]. Hence, all of X is covered by two shortes paths starting in c
and passing through a and b. We conclude that X would be one of the one-dimensional
exceptional spaces.

2. Choose x ∈ U\[ab] and let y be the nearest point to x on [ab]. Then we have
|ay| > π/2

√
k and |by| > π/2

√
k. For this note that |xy| < ϵ/(8

√
k) (since already

|xc| < ϵ/(8
√
k)) and

|ay| ≥ |ac| − |cy| ≥ |ac| − (|cx|+ |xy|) ≥ (π + ϵ)/(2
√
k)− ϵ/4

√
k = (π/2 + ϵ/4)/

√
k.

Let γ be a parametrization of [ab] (by arclength) and let l(t) = |xγ(t)|. We showed that l
is differentiable for t ∈ [0, L] and argmin l(t) = y. Let γ(t0) = y. Hence l′(t0) = 0 and by
the first variation formula we have that

∠xya = ∠xyb = π/2.

We consider a comparison triangle ∆x̄ȳā for ∆xya in the k-plane. By Toponogov’s theorem
we have ∠x̄ȳā ≤ ∠xya = π/2. Since |ȳā| > π/(2

√
k), it follows that |x̄ā| < |ȳā|. Thus

|xa| < |ya|. Similarly we prove |xb| < |yb|. Hence

|ya|+ |yb| > |xa|+ |xb| ≥ |ab|.
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But since y belongs to the geodesic path [ab], we have a contradiction.
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6.4 Corollary. Let X be an Alexandrov space with curvature ≥ k > 0. Then every
triangle in X has perimeter not greater than 2π/

√
k.

Proof. Assume first that diamX < π/
√
k, and assume there are points x, y, z such that

|xy|+ |yz|+ |yz| > 2π/
√
k. Fix shortest paths between these points. By continuity of the

distance function we find points y′ ∈ [xy] and z′ ∈ [xz] such that |xy′| + |xz′| + |y′z′| =
2π/

√
k. Consider a triangle ∆xy′z′ (with shortest paths between the points). Since

diamX < π/
√
k, each side is strictly shorter than π/

√
k. Hence a comparison triangle

∆x̄ȳ′z̄′ in the k-plane is defined and unique, and equal to a great circle. It follows that all
comparison angles are equal to π. Since y′ and z′ are points on the shortest path from x
to y, and x to z respectively, it follows by the triangle comparison condition for curvature
≥ k that ∠y′z′z = ∠z′y′y = 0. Since shortest paths are nonbranching it follows that
y, z ∈ [y′z′] and in particular |yz| ≤ |y′z′|, as well as the segment [y, z] is contained in
[y′z′]. It follows that the perimeter of ∆xyz is equal to 2π/

√
k. This is a contradiction.

In the general case, we pick ϵ ∈ (0, k). Hence diamX ≤ π/
√
k < π/

√
k − ϵ. Moreover,

by monotonictity of condition ”curvature bounded from below by k” in k ∈ R we have
that X has curvature ≥ k − ϵ. Then we can apply the previous step and obtain the
every triangle has perimeter bounded from above by 2π/

√
k − ϵ. Sending ϵ to 0 yields the

result.

6.5 Remark. The (local) quadruple condition is equivalent to the following modified quadru-
pel condition:

For every x ∈ X there exists an open neighborhood U such that for any quadruple
(a; b, c, d) in U there exists a quadruple (ā; b̄, c̄, d̄) in the k-plane such that the segments
[ā, b̄], [ā, c̄] and [ā, d̄] devide the full angle at ā into 3 angles less than or equal to π where
|āb̄| = |ab|, |āc̄| = |ac|, |ād̄| = |ad|, and |b̄c̄| ≥ |bc|, |c̄d̄| ≥ |cd| and |d̄b̄| ≥ |db|.

6.6 Proposition. Let Γ be group that acts by isometries on a metric space (X, d) such that
the orbits O(p) = {f(p) : f ∈ Γ} are closed. We consider the quotient Q = X/Γ equipped
with the quotient topology. Let π : X → Q be the projection map that is continuous. A
metric ρ on Q given by ρ(π(p), π(q)) = inf{d(p, r) : r ∈ o(q)}.

If (X, d) is a locally compact length space (hence strictly intrinsic) with curvature ≥ k,
then (Q, ρ) is also a space with curvature ≥ k.

Proof. Let p ∈ X and U = Br(p) a region where the quadruple condition is satisfied for
every quadruple. We show the same is true for U0 = Br/2(π(p)) ⊂ Q.

Let (a0; b0, c0, d0) be a quadruple in U0. Since X is locally compact and the orbit
π−1(a0) is closed, there exists a point a ∈ π−1(a0) nearest to p. In particular |pa| =
|π(p)a0|. Similarly we can now find points b, c, d ∈ U such that |ab| = |a0b0|, |ac| = |a0c0|
and |ad| = |a0d0|. Note that a, b, c, d ∈ U (by triangle inequality). By the definition of
the quotient metric we also have |bc| ≥ |b0c0|, |c, d| ≥ |c0d0| and |db| ≥ |d0b0|. Hence
the quadruple condition in the form of the previous remark on X implies the quadruple
condition on Q (in the form of the remark).

6.7 Example. Let Z2 = {e, g} act on R3 by symmetries: g(x) = −x for all x ∈ R3. Then
Q = R3/Z2 is a space of nonnegative curvature. Q is isometric to the Euclidean cone
C(P2) over the projective space P2 equipped with the metric induced from the canonical
Riemannian metric of constant curvature 1.
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Example: Euclidean cones Recall the Definition 3.17 for the Euclidean cone over a
metric space X.

6.8 Theorem. Let X be a locally compact, connected length space. The following two
statements are equivalent.

1. X has curvature ≥ 1,

2. C(X) is not a straight line and is a space curvature ≥ 0.

Proof. First we note that if C(X) is a straight line, then X consists of 2 points at distance
π and hence X would not be connected.

Consider a triangle ∆abc in C(X) whose sides do not pass through the origin o. Its
projection to X is a triangle ∆a′b′c′ in X with side lengths less than π. The sides of ∆abc
are contained in convex flat sectors, the sub-cones over the sides of ∆a′b′c′ .

1. Claim: ∆abc in K satisfies the triangle condition for curvature ≥ 0 iff ∆a′b′c′ in X
does so for curvature ≥ 1, provided the perimeter of ∆a′b′c′ is not greater than 2π.

Let ∆ā′b̄′c̄′ be a comparison triangle for ∆a′b′c′ in the 1-plane S2 ⊂ R3. Place points
ā, b̄, c̄ in the rays through 0 and ā′, b̄′ and c̄′ ∈ R3 such that |0ā| = |oa|, |0b̄| = |ob| and
|0c̄| = |oc|. The resulting triangle ∆āb̄c̄ is a comparison triangle for ∆abc by the definition
of the cone metric.

Pick a point d in [ac] and let d′ ∈ [a′c′] be the projection of d to X. Let d̄ and d̄′

be the corresponding points in the Euclidean segment [āc̄] and [ā′, c̄′] respectively. The
subcone over [a′c′] in C(X) is isometric to the planar sector in R3 spanned by the spherical
segment [ā′c̄′]. An isometry from this sub-cone to this sector sends [ac] isometrically to
[āc̄], in particular it sends d to d̄. Furthermore this isometry sends the segment [a′c′] in X
isometrically to the spherical segment in [ā′c̄′], d′ is sent so d̄′. It follows that d̄ belongs
to the ray through 0 and d̄′ and |0d̄| = |od|.

Assuming the distances |ob| and |od| fixed, the distance |bd| in C(X) is an increasing
funnction of |b′d′|. If |b′d′| = |b̄′d̄′|, then |bd| = |b̄d̄|, because |0b̄| = |ob| and |0d̄| = |od| (for
this recall the formula of distances in the Euclidean metric cone). Hence |b′d′| ≥ |b̄′d̄′| if
and only if |bd| ≥ |b̄d̄|. This proves the desired statement about the distance conditions
for ∆abc and ∆a′b′c′, i.e. the claim.

2. Here we finish the proof.
Every triangle with side lengths less than π in X is a projection of some triangle in

C(X). Thus, from the claim we get that, if C(X) has curvature ≥ 0, then X has curvature
≥ 1.

Similar, a projection of a sufficiently small region in C(X)\{0} for the triangle condi-
tion (normal region) is a region for the triangle condition in X. Conversely, a sub-cone
over sufficiently small normal region in X is a normal region in C(X)\{0}.

Let us consider triangles ∆abc in X such that no side passes through o, but whose
projection to X, ∆a′b′c′ has perimeter L > 2π. Then sub-cone over ∆a′b′c′ in C(X) is an
image under an arcwise isometry of the cone C(S) over the circle S of length L. Moreover
∆abc is the image of a triangle in C(S). Since an arcwise isometry is a nonexpanding map
and C(S) has nonpositive curvature, the triangle ∆abc satisfies the condition for curvature
≤ 0.

On the other hand, this triangle in C(S) corresponding to ∆abc does not satisfy the
condition for curvature ≥ 0 (because the origin of C(S) is contained in one of the sides
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of this triangle, because L > 2π). Hence neither does ∆abc. Consequently, if we assume
C(X) has curvature ≥ 0, then X cannot contain a triangle with perimeter > 2π.

The case when ∆a′b′c′ in X has sides greater than π are considered similarly. Such
triangle correspond to triangle in C(X) with sides passing through o, and the later is the
image under an arcwise isometry of a triangle in a nonpositively but not nonnegatively
curved cone over a segment L > π.

As before we conclude that, assuming C(X) has curvature ≥ 0, then X cannot contain
triangles with side length greater or equal to π.

Example: k-cones Let k ∈ R and X be a metric space with diamX ≤ π. The k-cone
over X, denoted by Ck(X) consist of the origin o and pairs (r, x) where x ∈ X and r > 0
(r ≤ π/

√
k if k > 0). The distance from (r, x) to the origin is r and the distance between

(r0, x0) = a0 and (r1, x1) = a1 is defined as the side |ā0ā1| of a triangle ∆ā0ōā1 in the
k-plane with |ōāi| = ri, i = 0, 1, and ∠ā0oa1 = |x0x1|.

If k > 0, the point (x, π/
√
k) should be identified because their distance is 0. In this

case the k-cone is called k-spherical cone or k-suspension.
By the definition one has that Ck(S1) is isometric to k-plane, and similarly Ck(Sn) is

isometric to the standard (n+ 1)-dimensional space of constant curvature k.

Theorem. Let X be a locally compact, connected length space and k ∈ R. The following
statements are equivalent.

1. X has curvature ≥ 1,

2. Ck(X) is not a straight line or a circle and has curvature ≥ k.
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6.2 Strainers

Let X be a complete, connected, strictly intrinsic space with curvature ≥ k

6.9 Definition. Let m ∈ N and fix ϵ0 = 1
100m . Let ϵ ∈ (0, ϵ0). A point p ∈ X is an

(m, ϵ)-strained point if ∃m pairs of points (ai, bi) in X such that ∀i, j ∈ {1, . . . ,m}

∠̃aipbi > π − ϵ,

∠̃aipaj > π/2− 10ϵ,

∠̃aipbj > π/2− 10ϵ,

∠̃bipbj > π/2− 10ϵ.

The collection (ai, bi)i=1,...m is called an (m, ϵ)-strainer. ∠̃ denotes the comparison angle
in the k-plane. If ϵ > 0 is given, we call an (m, ϵ)-strained point an m-strained point.

Remark. Given an (m, ϵ)-strainer (ai, bi) the quadruple condition

∠̃aipaj + ∠̃ajpbi + ∠̃bipai ≤ 2π

for (p; ai, aj , bi) yields ∠̃aipaj ≤ π + 11ϵ and ∠̃aipbj ≤ π + 11ϵ ∀i, j ∈ {1, . . . ,m}. The set
of points that are (m, ϵ)-strained by (ai, bi), i = 1, . . . ,m, is open.

6.10 Definition. The strainer number of X is the supremum of m ∈ N such that there
exists an (m, ϵ)-strainer for some ϵ ∈ (0, ϵ0). A strainer number at a point p ∈ X is the
supremum of numbers m such that every neighborhood of x contains an m-strained point.

Remark. X admits a (1, ϵ)-strainer for all ϵ > 0 unless X = {pt}. Pick a, b ∈ X and let p
be a δ-midpoint for δ > 0 small enough (a, b) is a (1, ϵ) -strainer of p.

6.11 Proposition. 1. If (ai, bi) is an (m, ϵ)-strainer for p ∈ X and a′i ∈ [p, ai] and b
′
i ∈

[p, bi], i = 1, . . . ,m, where [p, ai], [p, bi] are shortest paths, then (a′i, b
′
i) is an (m, ϵ)-

strainder for p as well. In particular, there exists an (m, ϵ)-strainder arbitrarily close
to p.

2. If (ai, bi) is an (m, ϵ)-strainer for p then ∀i, j ∈ {1, . . . ,m}

∠aipbi > π − ϵ,

∠aipaj > π/2− 10ϵ,

∠aipbj > π/2− 10ϵ,

∠bipbj > π/2− 10ϵ.

Conversely, if these inequalities hold for p, (ai, bi) and ϵ ∈ (0, ϵ0), then p is (m, ϵ)-
strained.

Proof. The statements are a direct consequence of the comparison angle monotonicty.
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Coordinates at strainer points. Let (ai, bi) be an (m, ϵ)-strainer at p. Define f :
U → Rm via

f(x) = (|xa1|, . . . , |xam|)

where U is a small neighborhood of p. f is a Lipschitz map because x 7→ |xai| are Lipschitz
functions. Since the set S of points that are (m, ϵ)-strained by (ai, bi), we assume that
U ⊂ S.

6.12 Example. Consider X = Rm. Then a family of pairs (ai, bi), i = 1, . . . ,m, such that ai
and bi are on the same straight line through 0, and such that ⟨ai, bj⟩ = ⟨ai, aj⟩ = ⟨bi, bj⟩ =
0, is an (m, ϵ)-strainer and 0 ∈ Rm is (m, ϵ)-strained. The level set functions f̂(x) = |x−ai|
in intersect almost orthogonally. Hence, for (r1, . . . , rm) near (|x − a1|, . . . , |x − am|) the
level set spheres have a unique intersection point near p.

We omit the proof of the following proposition.

6.13 Proposition. Let p ∈ X be (m, ϵ)-strained with ϵ ∈ (0, ϵ0). Then there exists a
neighborhood U of p such that f : U → Rm from above is an open map.

6.14 Corollary. The strainer number of X is not greater than the Hausdorff dimension.

Proof. Let p be an (m, ϵ)-strained point as in the previous proposition. It follows that
there exists a map f : U ∋ p → Rm that is open and Lipschitz. Assume U is open. Then
f(U) is open. Hence Proposition 1.25 implies

m = dimH f(U) ≤ dimH U ≤ dimH X.

We also omit the proof of the following theorem.

6.15 Theorem. If p ∈ X is an (m, ϵ)-strained point such that m equals the strainer
number at p. Then p has a neighborhood which is bi-Lipschitz homeomorphic to an open
region in Rm. The bi-Lipschitz map is provided by the map f from above.

6.16 Corollary. All finite dimensional Alexandrov spaces with curvature ≥ k (complete,
connected, (strictly) intrinsic) are locally compact.

Remark. Strictly intrinsic is not need for the statement. It follows from the claim and
since X is intrinsic (a length space) by metric Hopf-Rinow theorem.

We need the following lemma

6.17 Lemma. Let X be a complete locally compact Alexandrov space with curvature ≥ k,
p ∈ X, and 0 < λ < 1. We define a map f : X → X as follows. Let f(x) be the point in
a shortest path [px] such that |pf(x)| = λ|px|. Then

1. If k ≥ 0, then |f(x)f(y)| ≥ λ · |xy| for all x, y ∈ X.

2. If k < 0, then for every R > 0 there is a positive number c(k, λ,R) such that
|f(x)f(y)| ≥ c(k, λ,R)|xy| for all x, y ∈ BR(p).
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Proof of the lemma. Consider comparison triangles ∆x̄p̄ȳ and ∆f(x)p̄f(y). By the angle
monotonicity condition for lower curvature it follows that

∠̃kf(x)pf(y) ≥ ∠̃kxpy.

In particular, it follows that |f(x)f(y)| = |f(x) f(y)| ≥ |x̃ỹ| where x̃, ỹ are the points on
the segments [p̄x̄] and [p̄ȳ] such that |p̄x̃| = λ|p̄x̄| and |p̄ỹ| = λ|p̄ȳ|.

For the case k = 0, we have that |x̃ỹ| = λ|x̄ȳ| = λ|xy|. This is the first claim.
For k = −1 < 0 a straightforward computation on 2-dimensional k-plane (using Jacobi

fields or Fermi coordinates) yields the optimal estimate

|x̃ỹ| ≥ sinh(λR)

sinR
|x̄ȳ| = sinh(λR)

sinR
|xy|.

This proves the second claim.

Proof of the corollary. Let m be the strainer number of X: m ≤ dimH X <∞. Let p ∈ X
be m-strained. Hence, ∃ U that is homeomorph to an open set in Rm. Hence U is locally
compact. In particular, ∃r > 0 such that Br(p) ⊂ U is pre-compact.

We show that BR(p) is pre-compact ∀R > 0. This implies X is locally compact.
Assume there exists R > 0 such that BR(p) is not pre-compact. Consequently ∀ϵ > 0

∃ infinite ϵ-separated set S ⊂ BR(p).
The previous lemma yields a homothety map f : BR(p) → Br(p) for λ = r

R , i.e.

|f(x)f(y)| ≥ c(λ, k,R)|xy|

and for all x, y ∈ S we have

|f(x)f(y)| ≥ c(λ, k,R)

2
|xy| ≥ C(λ, k,R)/2ϵ.

Hence Br(p) contains an infinite set that is ϵ′-separated for ϵ′ ∈ (0, C(λ, k,R)/2ϵ), hence
Br(p) is not pre-compact.

6.18 Corollary. Let X be a Alexandrov space with curvature ≥ k (complete, connected,
strictly intrinsic). Then the Hausdorff dimension of X equals the strainer number.

In particular, every Alexandrov space X has integer or infinite Hausdorff dimension.

Proof. Let m ∈ N ∪ {∞} be the strainer number. We know that m ≤ dimH X. If m = ∞
we are done.

Assume first that dimH X < ∞. Then X is locally compact and ∃U ⊂ X open bi-
Lipschitz homeomorphic to V ⊂ Rm. It follows that m = dimH U , and ∃Br(x) ⊂ U and
dimH Br(x) = dimH U .

Hence, it suffices to show that dimH(Br(x)) = dimH(X). We will show that dimH(Br(x)) =
dimH(BR(x)) for all R > r. The theorem then follows because X can be obtained as union
of balls BR(x) with R = r + 1, r + 2, . . . . If the Hausdorff dimension of all these balls is
equal to dimH(Br(p)), it follows by Proposition 1.25 that dimH(X) = dimH(Br(x)).

For ∀R > 0 ∃ a homothety map f : BR(x) → Br(x) such that f−1 : f(BR(x)) → BR(x)
is Lipschitz.

The Proposition 1.25 yields

dimH(BR(p)) ≤ dimH(f(BR(p)) ≤ dimH(Br(p)) ≤ dimH BR(p).

This finishes the proof of the Theorem.
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Recall that a space form is a simply connected complete space of constant curvature,
i.e. a sphere, Euclidean space, or a hyperbolic space. For an integer n ≥ 2 we denote the
n-dimensional space form of curvature k by Mn

k . We set M1
k = R if k ≤ 0 and M1

k = S1
1/

√
k
.

For n ≥ 1 fixed let V k
r and Sk

r be the volume of the r-ball and the (n − 1)-dimensional
area of the r-sphere in Mn

k .

6.19 Theorem. Let X be a locally compact Alexandrov space of curvature ≥ k and n ∈ N.
Then for every p ∈ X the ratio

Hn
X(Br(p))

V k
r

is nonincreasing in r where Hn
X is the n-dimensional Hausdorff measure. In other words,

if R ≥ r > 0 then
Hn

X(BR(p))

V k
R

≤
Hn

X(Br(p))

V k
r

.

Proof for k = 0. Let f : X → X be the (r/R)-homothety map at p. f maps BR(p) to
Br(p). f is injective and its inverse f−1 is Lipschitz with Lipschitz constant R/r. Hence

Hn
X(BR(p)) ≤

(
R

r

)n

Hn
X(Br(p)).

This is the claim.

Remark. Note that for k ̸= 0 the same argument proves an inequality of the form

X n
X(BR(p)) ≤ C(r,R, k, n)Hn

X(Br(p))

for some nonoptimal constant C(r,R, k, n).

6.20 Corollary. The Hausdorff measure of a finite dimensional, bounded Alexandrov
space is positive and finite.

Proof. Let n ∈ N be the dimension of X. Then there exists an n-strained point p and
consequently a bi-Lipschitz map f : U ∋ p → V ⊂ Rn for an open set U . Hence, the
Hausdorff measure of a ball Br(p) ⊂ U is finite.

Consider R > 0 such that BR(p) = X. Then the Bishop-Gromov volume monotonicity
implies Hn

X(X) <∞. Moreover 0 < Hn
X(Br(p)) ≤ Hn

X(X).

For k ∈ R, D > 0 and n ∈ N we define

M(n, k,D)) = {X : X is n-dimensional Alexandrov space with curv ≥ k, diamX ≤ D}.

In particular, for k > 0 we set M(n, k, π/
√
k) =: M(n, k).

6.21 Theorem (Gromov’s compactness theorem). The class M(n, k,D) is pre-compact
w.r.t. the GH topology.
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Proof. We fix ϵ > 0. By the Bishop-Gromov inequality there exists c(n, k,D, ϵ) > 0 such
that

Hn
X(Br(p)) ≥ c(n, k,D, ϵ)Hn

X(BD(p)) = c(n, k,D, ϵ)Hn
X(X).

for every p ∈ X. It follows, if Bϵ(pi) is a finite collection of N disjoint balls, then

Hn
X(X) ≥

N∑
i=1

Hn
X(Bϵ(pi)) ≥ Nc(n, k,D, ϵ)Hn

X(X).

Hence, N ∈ N cannot be larger than c(n, k,D, ϵ)−1 = N0, or, in other words, a 2ϵ-separated
set cannot contain more than N0 points. Since a maximal 2ϵ-separated set is an 2ϵ-net,
we have that for every ϵ > 0 we find a finite ϵ-net. Thus M(n, k,D) is uniformly totally
bounded, and hence GH precompact.

6.22 Proposition. Let {Xn} be a sequence of Alexandrov spaces with curvature ≥ k and

assume Xn
GH→ X for a complete metric space. Assume X is locally compact. Then X

is an Alexandrov space with curvature ≥ k. The same is true for GH limits of pointed
spaces.

Proof. By Theorem 5.29 we have that X is a length space. Since X is locally compact it
is strictly intrinsic. Hence it is enough to show the quadruple condition.

Consider a quadruple (a; b, c, d) in X. Since Xn
GH→ there exists a sequence of quadru-

ples (an; bn, cn, dn) in X such that |anbn| → |ab|, |acn| → |ac| etc. Then the quadruple
condition in the limit follows since the comparison angles ∠̃k(· · · ) depend only and con-
tinuously on the distance between the involved points.

6.23 Corollary. A GH limit of compact Alexandrov spaces with curvature ≥ k and di-
mension not greater than n ∈ N is an Alexandrov space with curvature ≥ k and dimension
not greater than n.

The same is true for GH limits of pointed spaces.

Remark. In particular M(n, k,D) is compact w.r.t. the GH distance.

Proof. Let {Xi} be a sequence of Alexandrov spaces with curvature ≥ k, dimH(Xi) ≤ n

∀i ∈ N such that Xi
GH→ X as i→ ∞. We have that X is compact and has curvature ≥ k.

Assume that dimH(X) > n. Since dimH X is equal to the strainer number of X. There
exists an (n + 1)-strained point p ∈ X. We fix an (n + 1, ϵ)-strainer {(aj , bj)}j=1,...,n+1

for p and ϵ ∈ (0, 1
100(m+1)). If the GH distance between Xi and X is small enough, we

can find points p′, aj , bj in Xi whose distances from one another are almost equal to the
respective distances between p, aj , bj in X. In particular the comparison angles involving
these points in Xi are almost equal to the corresponding comparison angles in X (because
∠̃ is a continuous function of the distances). Hence, provided i is large enough, Xi contains
an (n+ 1, ϵ)-strained point for the same ϵ > 0 as above and hence dimH Xi ≥ n+ 1 for i
large enough. This is a contradiction.
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6.3 Space of directions

Let X be an Alexandrov space with curvature ≥ k, k ∈ R, and dimH X = n ∈ N, and let
p ∈ X.

Given two shortest paths γ, σ, parametrized by arc length and starting in p, we can
define

∠γσ = lim
s,t→0

∠̃0γ(t)pσ(s) = lim
s,t→0

∠̃kγ(t)pγ(s) ≤ π.

We set γ ∼ σ if and only if ∠γσ = 0 and define

Σ′
p{[γ] : γ : [0, ϵ] → X shortest path, ϵ > 0, γ(0) = p}.

Then Σ′
p equipped with ∠ is a metric space.

The space of directions Σp at p is the completion of Σ′
p w.r.t. ∠.

Remark. There can be x ∈ Σp that are not represented by a shortest path. For instance, let
X = B1(0) ⊂ R2. The space of directions at p = (1, 0) ∈ X is Σp ≃ [0, π] ≃ S1∩(−∞, 0]×R
but there are no geodesics in derection of (0, 1) or in direction of −(0, 1).

We can define expp : [γ] ∈ Σ′
p 7→ γ(1) whenever [γ] is represented by a geodesic

γ : [0, ϵ] → X for ϵ ≥ 1.
More generally, one can consider the Euclidean cone C(Σ′

p) and define (r, [γ]) 7→ γ(r)
whenever [γ] is represented by geodesic γ : [0, ϵ] → X such that ϵ ≥ r.

The logarithm map logp : X → C(Σp) is define via x 7→ (|px|, [γx]) where γx is a
shortest path between p and x, parametrized by arc length. The logarithm map is in
general multivalued.

Remark. � logp : X → C(Σp) is noncontracting if k ≥ 0. Indeed, let x, y ∈ X, then

|xy|2 = |px|2 + |px|2 − 2|px||py| cos ∠̃xpy
≤ |px|2 + |px|2 − 2|px||py| cos∠γxγy = | logp x logp y|2.

� If k < 0, one defines logkp : X → Ck(Σp) where C
k(Σp) is the k-cone over Σp. Then

logkp is noncontracting.

6.24 Proposition. Let X be a finite dimensional Alexandrov space with curvature ≥ k.
Then Σp is compact ∀p ∈ X.

We first prove the following lemma.

6.25 Lemma. Let R > 0 and r ∈ (0, R). ∃C = C(n, k,R) > 0 such that the following
holds if X is an n-dimensional Alexandrov space of curvature ≥ k, p ∈ X, ϵ, r ∈ (0, 1),
then the ball Br(p) cannot contain an ϵr-separated set of more than C/ϵn points.

Proof. 1. We first consider Rn and a ball Br(0) ⊂ Rn. Let {pi}i=1,...,N be an ϵr-separated
set in Br(0). It follows that Bϵr/2(pi) is a family of disjoint balls in B2r(0). Moreover

Hn(Bϵr/2(pi)) = c(n)
(
ϵr
2

)n
= 1

2ϵ
nHn(B2r(0)). Then

Hn(B2r(0)) ≥
N∑
i=1

H(Bϵr/2(pi)) = N
1

2
ϵnHn(B2r(p)).
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Hence N ≤ 2
ϵn .

2. Let p ∈ X be (n, ϵ)-strained and let f : U = Br(p) → f(U) ⊂ Rn be bi-Lipschitz with
dil f, dil f−1 ≤ c1.

If S ⊂ Br(p) is ϵr-separated, then f(S) is ϵr
c1
-separated in Rn in a ball of radius c1r.

Hence, by the first step f(S) cannot have more than 2c2n1
1
ϵn points.

3. Finally let p ∈ X be arbitrary. The set of (n, ϵ)-strained points is dense in X. Hence,
we can choose an (n, ϵ)-strained point q arbitrarily close to p.

We apply the previous step for δ = r and U = Bδ(q) with δ ∈ (0, r) small. Let
f : B2r(q) → Bδ(q) be the δ

2r -homothety map, i.e.

|f(x)f(y)| ≥
sinh(

√
−k δ

2rr)

sinh(
√
−kr)

|xy| ≥
sinh(

√
−k δ

2)

sinh(
√
−kR)︸ ︷︷ ︸

=:C(δ,k,R)

|xy|.

If S is ϵr-separated in Br(p) ⊂ B2r(q), then we have that f(S) is c(δ, k,R)ϵr-separated

in Bδ(q). Hence the cardinality of S is not larger than
2c2n1

c(δ,k,R)
1
ϵn .

Proof of proposition. Let S = {xi}i=1,...,N be an ϵ-separated set in Σp and assume xi = [γi]
(recall Σ′

p is dense in Σp).

For t ↓ 0 we have ∠̃γi(t)pγj(t) → ∠γiγj = |xixj | ≥ ϵ.

There exists r > 0 such that for t ∈ (r, 2r) we have ∠̃γi(t)pγj(t) ≥ ϵ
2 and

|γi(t)γj(t)|2 = 2t2(1− cos ∠̃γi(t)pγj(p)) ≥ 2r2(1− cos
ϵ

2
) = 2r22 sin2

ϵ

4
.

Hence
|γi(t)γj(t)| ≥ r sin

ϵ

4
≥ r

ϵ

2
.

Consequently {γi(t)}i=1,...,N is 2r ϵ
4 -separated in B2r(p). By the previous lemma we have

that N ≤ C(k, n,R)/( ϵ4)
n (for some R > r).

It follows that a maximal ϵ-separated set has finitely many points. Hence we found
finite ϵ-net in Σp.

6.26 Definition. A GH-tangent cone (K, o) in p ∈ X is the pointed GH limit of (1rX, p)
for r ↓ 0 (if the limite exists).

6.27 Theorem. Let X be as before. Then the GH tangent cone exists at every p ∈ X
and is isometric to C(Σp).

Proof. Let B be the unit ball in C(Σp). We show that (Br(p),
1
rdX , p) =

1
rBr(p) converges

to B in GH sense for r ↓ 0.

It suffices to show that ∀ϵ > 0 ∃ ϵ-nets {xi} in B and {yi} in 1
rBr(p) and {yi}

GH→ {xi}
as r ↓ 0.

We pick an ϵ-net {xi} such that xi = (ri, [γi]) ∈ Σ′
p such that γi has speed one.

Let r > 0 be small enough such that γi(rri) = pi is defined ∀i. We then have

|xixj | = r2i + r2j − 2rirj cos∠γiγj
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as well as
|pipj |2 = r2

(
r2i + r2j − 2rirj cos ∠̃pippj

)
.

Since ∠̃pippj → ∠γiγj for r ↓ 0, it follows that∣∣∣∣ |pipj |r
− |xixj |

∣∣∣∣ < δ ∀r > 0 sufficiently small.

Let yi be the points in 1
rBr(p) that correspond to xi. Then

||yiyj | − |xixj || < δ for all r > 0 sufficiently small.

Hence {yi} ⊂ 1
rBr(p)

GH→ {xi} ⊂ B what was to prove.

6.28 Corollary. The space of directions Σp is an (n− 1)-dimensional Alexandrove space
with curvature ≥ 1.

Proof. The rescaled space 1
rX is an n-dimensional Alexandrov space with curvature ≥ rk.

Hence the pointed limit of (1rX, p), i.e. (C(Σp), o) has curvature bouned from below by
rk for every r > 0, and hence has curvature bounded from below by 0. It follows that Σp

has curvature ≥ 1.
Moreover dimH C(Σp) ≤ n. On the other hand logp : B1(p) → B satisfies

| logp x logp y| ≥ C(k)|xy|.

Hence n dimH B1(p) ≤ dimH B. Hence C(Σp) has Hausdorff-dimension n and by another
contradiction argument involving strainers we get dimH Σp = n− 1.

Remark. The corollary allows to prove statements about finite dimensional Alexandrov
space via induction over the dimension.
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