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CHAPTER 1

Introduction

These are the notes of the lecture “Metric measure spaces with lower Ricci curvature bounds”
given by the author in winter term 2014/15 at the mathematical institute of Freiburg. The goal
of the lecture was to present an introduction for beginners to the theory of optimal transport for
metric measure space focussing on spaces that admit a lower Ricci curvature bounds. The main
result is that in context of smooth metric measure spaces one has equivalence of generalized lower
Ricci curvature bounds in the sense of optimal transport with the classical notion that is known
from Riemannian geometry.

1. Motivation

DEFINITION 1.1. Let us consider an arbitrary function f: X C R — R.

1. One says the f is convex if for all z,y € X and for all t € X we have (1 —t)xz +ty € X
and

F((=t)z +ty) < (1 =) f(x) +1f(y).

In particular, X is an interval of the form [a, b].
2. If we assume that f € C?[a,b], then f is convex if and only if " > 0.

REMARK 1.2. We summarize some aspects of the previous definition.
(i) (1) is a geometric property, that one can visualize easily.
(ii) (1) is stable. More precisely, assume X, converges to X in the Hausdorff sense and
fn + X5 = R converges to f : X — R in the way that for any € > 0 there exists Ng € N
and 0 > 0 such that |f,(x) — f(y)| < e for n > Ny and |z —y| < §. Then, if f,, is convex,
f is convex.
(iii) On the other hand, (2) is easy to check for C2-functions.
(iv) But (2) is not stable w.r.t. to pointwise or uniform convergence.
(2) yields (1). Additionally, there is a theorem by A.D. Alexandrov that tells us that any convex
function is twice differentiable almost everywhere.

THEOREM 1.3. Assume f : [a,b] — R is a convex function. Then f"(t) exists for L'-almost
every t € [a,b], and f" >0 in the distributional sense.

Riemannian geometry. Let (M, g) be a complete, connected Riemannian manifold. V denotes
its Levi-Civita connection. The Riemannian curvature tensor of the Riemannian metric g = (-, )
is defined as follows. Consider vector field X,Y on M.

R(X,Y)V = VxVyV = VyVxV = VixyV.






CHAPTER 2

General optimal transport theory

NOTATIONS. A Polish space X is a topological space where the topology comes from a metric
that is complete and separable. The space of probability measures on X is denoted by P(X). It
is equipped with the topology of weak convergence. For a sequence of probability measures (1)
we say that (u,) converges weakly to a probability measure p if

/ hdjiy, —>/ hdp for any f € Cp(X).
X X

Cy(X) denotes the set of bounded and continuous functions on X. Let Z = X x Y that is a Polish
space as well. The topology is the product topology inherited by X and Y. px : Z — X and
py : Z — Y will be the projection maps.

DEFINITION 0.4 (Monge problem). Let X and Y be Polish spaces. Let ¢: X x Y — RU {oo}
be a Borel measurable cost function. R U {xoo} is equipped with the extended Borel o-field. For
probability measure p € P(X) and v € P(Y') the Monge problem with respect to the cost function
¢ is to find a measurable map T : X — Y such that T,pu = v - we say that T is a transport map -
and T is a minimizer of

(1) S— /X c(x, S(x))dp(z) = Cost(S)

where S is any transport map between p and v. If T is a transport map and a minimizer of (1),
we call T an optimal map.

ExXAMPLE 0.5. Consider X =Y =R, p =6, and v = 21?:1 16y, and c(z,y) = |z — y|. Then,
there is no transport map between p and v. Hence, in general there is no solution for the Monge
problem. But we can generalize the concept of transport map in an appropriate way.

DEFINITION 0.6. Consider p € P(X) and v € P(Y). A probability measure 7 € P(Z) is a
coupling of p and v if (px)«m = p and (py )« = v, or equivalently
m(AXY) = p(A) for any Borel set A C X, and
(X x B) = v(B) for any Borel set B C Y.
The set of all couplings between p and v is denoted by Cpl(u, v). The total transportation cost of
a coupling 7w € Cpl(p, v) is

/Zc(x,y)dw(x,y) =: Cost(m).

A probabilistic formulation is: a coupling between p and v is a random variable W : (Q, A, P) — Z
on some probability space (2, 4, P) such that (pxoW).P = pand (py oW),P =wv. Then 7 € P(Z)
is obtained by W,P.

ExAmMPLE 0.7. (i) 7 := p® v is a coupling. Therefore, in the probabilistic formulation
we choose independent random variable U and V' with distributions p and v respectively

and set W = (U, V).
(ii) ¥ T : X — Y is transport map between p and v then (idy,T).u is a coupling of u and v.
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6 2. GENERAL OPTIMAL TRANSPORT THEORY

DEeFINITION 0.8 (Kantorovich problem). Find a coupling 7 € Cpl(y, v) such that
(2) / c(z,y)dn(z,y) = inf / c(z,y)dn(z,y) = inf  Cost(7) =: Cost(u,v).
z 7eCpl(p,v) J 7 TECpl(p,v)

Cost(u,v) is the minimal transportation cost between p and v. If w € Cpl(p,v) solves (2), we
say 7 is an optimal coupling of p and v. The set of optimal couplings of p and v is denoted by

OptCpl(u, v).

EXAMPLE 0.9 (Optimal couplings are not unique). Consider X = Y = R? and probability
measures (1 = 38(-1,0)+30(1,0) and v = 380, 1)+ 36(0,1). Then ™ = 35((-1,0).0.1)) +30(01.0),(0,-1))
and T = %5((1,0)’(0,,1)) + %6((,1’0)’(0,1)) are optimal couplings of p and v.

REMARK 0.10. Since (idx, T).p € Cpl(y, v) for any transport map T : X — Y between u and
v, we have Cost(u,v) < Cost(T).

The next theorem states that optimal couplings exists under mild assumptions on the cost
function.

THEOREM 0.11 (Kantorovich). If¢: X x Y — RU {oo} is lower semi-continuous, and there
are upper semi-continuous functions a,b: X, Y — RU{—o0}, then for any u € P(X) and for any
v € P(Y) there exists an optimal coupling. More precisely, there exists m € P(X x Y) such that

Cost(m) = /X><Y c(z,y)dr(z,y) = Cost(u,v).

The proof of the theorem is based on the following criterion for relative compactness in P(X x
Y') with respect to weak convergence. A subset I C P(X) is relatively compact if any sequence
in K has a subsequence that converges in P(X) with respect to weak convergence.

THEOREM 0.12 (Prohorov). Let X be a Polish space, and K C P(X). K is relatively compact
with respect to weak convergence if and only if K is tight. Tight means that for all € > 0 there
exists a compact subset K. C X such that p(X\K.) < € for all p € K.

Proor. Billingsley O

LEMMA 0.13. Let P; C P(X) and P2 C P(Y) be relatively compact subsets. Then
P={reP(X XxY):(p1)«m €P1 and (p2).7 € Pa}
is relatively compact in P(Z).

PRrROOF. By Prohorov’s criterion P; and Ps are tight. Therefore, we can find compact subsets
K! € X and K? C Y with respect to €/2 > 0 like in Prohorov’s theorem. Then, we consider
K.=K! x K2 If 7 € P, we have the following estimate.

T(Z\K.) < 7 ((X\KJ) x V) + (X x (Y\K2)) < /2 +¢/2.
Hence, P is tight, and by Prohorov’s theorem it is relatively compact. O

COROLLARY 0.14. For any p € P(X) and for any v € P(Y) the set of couplings Cpl(u,v) C
P(Z) is compact with respect to weak convergence.

PROOF. It is trivial that the sets {u} = Py and {v} = P, are relatively compact, and by the
previous lemma Cpl(u, v) is relatively compact as well. Therefore for any sequence (7;) C Cpl(y, v)
there is a subsequence (7;) that converges weakly in P(Z) to some probability measure m. If we
consider an arbitrary function f € Cp(X), then fop; € Cp(Z), and we see that

const:/de,u:/Zfopﬂﬁi—>/Zfopld?T:/Zfd(Pl)*7r

We conclude that (p1)«m = p, and similar (p2).m = v. Hence, 7 is a coupling of p and v and
Cpl(u, v) is compact. O
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LEMMA 0.15. Consider Polish spaces X and Y and ¢ : X xY — R U {oco} like in Theorem
0.11. Then
m € P(Z) — Cost(m)
1s lower semi-continuous with respect to weak convergence.
PRrROOF. We can assume that the cost function is non-negative by replacing ¢ with ¢ —a — b.
If the cost function c¢ is continuous and bounded, then the assertion follows directly from the
definition of weak convergence. For the general case we assume that the topologies of X and Y

are Ninduced by finite metrics dy and d, respectively. Otherwise, we can replace dy for instance
by dx = IJT that is finite and induces the same topology as dy. Consider

ckl(z,y) = inf {min{e(z,y),k} +kldx(z,7) +dr (g, 5)]}

(Exercise.) The sequence (cy) satisfies

(i) For each k € N ¢ : Z — R is bounded and continuous with respect to dx + dy.
(ii) ¢x < ¢ and ¢ — ¢ pointwise everywhere.

Consider a weakly converging sequence m; — w. Then the theorem of monotone convergence
implies

/ clz,y)dr(z,y) = lim lim [ cx(x,y)dm(z,y) < liminf/ c(x,y)dm;(x,y)
VA k—001—00 [ 7 e — i—oo  Jn
<c(=,y)
O

PROOF OF THEOREM 0.11. Choose a sequence 7; sucht Cost(w;) converges to Cost(u,v). By
Corollary 0.14 Cpl(u, v) is compact. Hence, a subsequence of 7; converges weakly to w € Cpl(y, v).
The sub-sequence is also denoted with ;. Since the total cost Cost is lower semi-continuous, it
follows

Cost(m) < lim inf/ c(x,y)dm;(z,y) = Cost(u, v).
71— 00 A
Hence, 7 is an optimal coupling for p and v. (]

THEOREM 0.16. Let X, Y, p, v and ¢ be as in Theorem 0.11 such that Cost(u,v) < oo.
Consider m € OptCpl(u,v). If 7 < m (i.e. T(C) < 7(C) for any Borel set C C X xY ) and if
7(Z) > 0, then ' = 7(Z) ™7 is an optimal plan between (p1).7’ =: 1/ and (p2).7' =: V.

PROOF. Let us assume that 7’ is not optimal. Then there exists 7" € Cpl(y/, ') such that
Cost(n") < Cost(n"). Consider

= (r—7)+7(2) 7"
—— =
>0 >0
It is immediate that #(Z) = 1, and therefore # € P(Z). # is also a coupling for p and v since
FAXY)=(r(Ax X)-7(Ax X)) +7(Z)r" (A x X) = n(A).
————
n(A)

Similar #(X x B) = v(B). We can compute the following.

/cdwf/cdwf—/cd%+7~r(Z)/cdw"f/cd%+/cd7~r:0.
z z z

<fZ cdm’

Hence Cost(7) < Cost(rm). This contradicts the optimality of 7. O

Question: How can we improve a plan such that it becomes optimal?
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DEFINITION 0.17. Let X and Y be sets, and let ¢ be a measurable cost function. We say that
a subset I' C X x Y is c-monotone if

N N
ZC(UCi,ya(i)) 2 ZC(T@,%)
i=1 i=1
whenever {(z1,41),...,(@zn,yn)} C I' and 0 € Sy. We say that a coupling is c-montone if

suppm C X X Y is c-montone. The support of a Borel measure p is the intersection of all closed
sets C such that u(C°) = 0.

EXAMPLE 0.18. Let X C Rand Y =R"™. Let V : X — Y be a C'-vector field, and consider
I'={(r,y) e X xY :y=V(z) for some z € X} C X xY.

We consider the cost function ¢(z,y) = —x - y. Then I' is c-monotone if and only if

[v=o
y

for any closed curve v in X. Hence, there exists u € C?(R™) such that Vu = V.

REMARK 0.19. If 7 € OptCpl(u,r) with respect to some continuous cost function ¢, then
supp 7 is c-monotone.

DEFINITION 0.20. Let X and Y be Polisch spaces, and let ¢ : X XY — RU{+00} be measurable
cost function. Consider u € P(X) and v € P(Y).
(1) We say a pair of functions (p,) : X x Y — (RU {£oco})? is competitive if p € L'(u)
and ¢ € L'(v) such that o(z) + ¥ (y) < c(x,y) for any (z,y) € Z.
(2) The dual Kantorovich problem is to find a competitive pair (¢, ) that maximizes

D@ D)= [ pdn+ [ dav
where (@, zZ) is a competitive pair.

REMARK 0.21. If 7 € Cpl(u,v) and (p,%) is a competitive pair and ¢ € L*(u) and o € L(v)

then
/gpdu+/wdu</cdﬂ'

DEFINITION 0.22 (Riischendorf). Let X and Y be sets, and let ¢ : X x Y — RU {co} be a
function.

(1) A function ¢ : X — RU {—o0} is c-concave relative to X and Y if it is not identically
—oo and there exists £ : Y — R U {—oc} such that

pla) = inf e(a.y) — £(v)]

(2) For a c-concave function ¢ : X — RU{—o0} its c-transform ¢°: Y — RU{—o0} relative
to X and Y is given by

¢°(y) = inf [c(z,y) — p(2)].

Similar, we define the c-transform ¢°: X - RU{—o0} of ¢y : Y — RU {—o0}.

(3) The c-subdifferential d.¢ of a c-concave function ¢ : X — R U {—o0} relative to X and
Y is the set

Oep ={(z,y) € X XY 1 pp(z) + ¢°(y) = c(z, )} .

In the following we often omit the phrase relative to if the meaning is clear from the
context.

REMARK 0.23. (i) The pair (¢, ¢°) satisfies p(z) + ¢°(y) < c(x,y).
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(ii) The c-subdifferential d,u C X x Y of a function u is c-monotone.
(iii) If ¢ is c-concave, then ()¢ = ¢, or

p(r) = ylgg [c(z,y) — ¢“(y)] -

EXAMPLE 0.24. (i) Consider X =Y = R" and let ¢(z,y) = |z — y|. Then a function
¢ : X — R is c-concave if and only if it is 1-Lipschitz, and ¢ = —¢.
(ii) Consider X =Y = R"™ and let ¢(z,y) = —z - y. Then a function ¢ : X — R is c-concave
if and only if it is concave.
Exercise: Proof the statements in the previous remark and the previous example.

THEOREM 0.25 (Varadarajan). Let Y be a Polish space, and let X; : (2, A,P) = Y be i.i.d.
random variables such that (X;)«P = p. Then P-almost surely

1 n
- Z(SXi(UJ) =: iy, — 1 weakly in P(X).
i=1

PrOOF. From the law of large number we get that for fixed f € Cy(X)

/X fdu, = iif(Xz) = E[f(X;)] = /f o X;dP = /fd,u almost surely.

Since X is separable, this implies weak convergence of u,, almost surely. O

THEOREM 0.26 (Kantorovich). Assume the cost function c is real-valued and continuous, and
there exist cx € L'(n) and ¢y € LY (v) such that c(z,y) < cx(x) + ¢y (y). Then

(1) There exists a c-concave function ¢ such that o € L*(u) and ¢° € L' (v) and

/ cpdu—i—/ e°dv = sup D(p,¢) = Cost(u,v).
X Y (1h)€ZL(c)

(2) For some coupling w € Cpl(u,v) the following statements are equivalent.
(i) ™€ OptCpl(p,v),
(ii) 7 is c-monotone,
(iii) sptm C Qe for any c-concave ¢ such that (¢, ¢°) is an optimal pair.
PROOF. 1. First, we assume that = 13" &, andv=213"4,.
Then 7w € Cpl(p, v) if 7= Y7, @i j0(a,,y,) such that 27" a; ;= Y" a;; = &. We have
sptm = {(z4,v:) : ai; > 0}
and Cost(m) = 321", c(i,y;)a; ;. Assume, that 7 is optimal but not c-monotone. Then there
exist points (2., Y5, )s -+, (Zin,Yjn) € sptw such that
N N

Z C(xik 5 yia(k)) < Z C(ink ) Z/u)

k=1 k=1
for some permutation ¢. Then we can modify 7 in the following way.

N
T=T +a Z |:6(£zk 7yio(k)) - 5(-"51%7?/1%)]
k=1

where a := miny, {a;, ;,}. One can check that 7 is a coupling of 1 and v such that Cost(7) <
Cost(r) (Exercise).

2. Let pp € P(X) and v € P(Y). By the previous theorem we can find probability measures of
the form p,, = %Z;;l 05, which converge weakly to p, and in the same way it holds for v. A
straightforward application of Prohorov’s theorem implies that there exists a converging sequence
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m; € Cpl(uk,, Vi), and the limit 7 is a coupling of p and v. From the first part of the proof we
know that ; is c-monotone for all i. Therefore, and since the cost function is continuous, the set

C(N):= {(ac“yH N Z c(zi, vs) Z (i, Yo () foranyaESN}C(XxY)N

is closed and satisfies 7 N (C(N)) = 1. Hence, the weak convergence m; — 7 implies

hfrlsolipw‘g’N(C(N)) < 7®N(C(N)).

It follows that sptr®Y C C(N) for any N € N, and therefore 7 is c-monotone.

3. Consider m € Cpl(u,v) that is c-monotone. We will construct a c-concave function ¢ : X —
R U {—00} such that spt[r] =:T' C .. Pick a point (xg,yo) € I' and define

() := %IéfN { inf {[c(xl,yo) —c(zo,y0)] + [c(x2,y1) — c(z1,91)] + - -

+ (6@, Ym) = e(@m, ym)] : {(@0,9) Fy €T} € RU {00}

If we choose m = 1 and (z1,y1) = (o, Y0), we get () < 0. On the other hand, the c-monotonicity
implies ¢(x¢) > 0. In particular, ¢ is not just identically —oco. This is the only point where we use
the c-monotonicity. By renaming y,, = y the definition of ¢ immediately gives

plo) = inf {e(z,y) —£y)}
where £ : X — RU {—o0} is defined via

£(y) ::Jféfw { inf {[c(z1,90) — c(zo,y0)] + [e(x2, y1) — c(z1,91)] + - ..

+[e(@m, Ym—1) = (@m—1,Ym-1)] — <(Tm,y) : (X1,91)5 -5 (Tm—1,Ym—-1), (Tm, y) € F}}

Hence, ¢ is c-concave. ¢ is also measurable since it is the supremum of a family of continuous
functions.
If (z,y) € T is arbitrary, and if we set (2, ym) = (T,7), then we see that

p(z) < @(T) + e(2,9) - (7, 7)
by the definition of ¢. Hence
o(7,9) — () < c(,9) — p(x) = (T, 7) — 0(T) < ().
Since the converse inequality is always true we obtain (Z,y) € 0. and sptmw C O.p.
4. We show ¢ € L'(u) and ¢¢ € L(v). This follows from

o(z) = inf [c(z,y) — §(y)] < ex(@) + v (Yo) — €(vo)
—_———

<oo

for yo € Y as in 3. and since cy is p-integrable. Similar we can prove ¢¢ € L'(v). Finally, we
can integrate ¢ + ¢ with respect to the c-monotone coupling 7 between p and v. But since the
support of 7 is contained in the ¢-subdifferential 0. of ¢, we get

/godu—k/gocdu = /cdw.

From this identity we can draw several consequences. First, the coupling 7 has to be optimal.
Therefore, c-monotonicity of 7 implies sptr C d.¢ that implies optimality of 7. Second, the pair
(¢, ¢°) is a maximizer of the dual Kantorovich problem. On the other hand, an optimal coupling
has to be c-monotone if the cost function is continuous. This can be seen as follows. Assume the
contrary. There are points (z;,1;)Y.; C supp7 that violate c-monotonicity. This completes the
proof of the theorem. O



CHAPTER 3

Optimal transport on Riemannian manifolds

Let (M, g) be connected, complete Riemannian manifold without boundary. Let d,, be the
induced intrinsic distance of (M, g,,). Let X, Y C M be compact subsets.

LEMMA 0.27. Let (Z,d,) be a metric space such that diam, < oo, and let X, Y C Z be compact.

Consider the cost function ¢ = %dz : X XY — R and a c-concave function ¢ : X — RU{—o0}

(relative to X and 'Y ). Then, ¢ is real-valued and Lipschitz continuous.

PROOF. We observe that ¢ is bounded on X x Y. If ¢(x) = —oo for some = € X, then ¢© must
be unbounded from above, and consequently we already have ¢ = —oo. Hence, we can assume
that |¢| < co. Let z € X. Then for any € > 0 there is y € Y such that ¢(z) + € > ¢(z,y) — ¢°(y).
Since for any = € X we have ¢(z) < ¢(z,y) — ¢°(y), we obtain

1.
o) — plz) = el y) — clz,y) + ¢ < 5 diam, d (2, 2) + .
Since € > 0 was arbitrary and since we can switch the role of x and z, we obtain the result. (|

DEFINITION 0.28. Let U C X be an open set.
(i) A function ¢ : U — R is super-differentiable at x € U if there exist p € T M, such that

3) plexp, (v)) < () + (p,v)e + o(|v])
for all v € TM, such that ¢(exp,(v)) € U. In the same way, we can define sub-
differentiability.
(ii) If (3) holds for p € TM,, p is a super-gradient of ¢ at z, and we denote with VT ¢|, the
set of super-gradients of ¢ at x. In the same way, we define sub-differentiability and the
set of subgradients V™~ ¢|, of ¢ at x.

It is obvious, that if V|, NV~ p|, # 0, then ¢ is differentiable at z.
LEMMA 0.29 (Chain rule). Let U be open, and let v : U — R and h : R — R have supergradients

p e VT, and T € VTh|yy at x € U and p(x) respectively. If h is non-decreasing then ho ¢ is
superdifferentiable at x and has super-gradient T -p € V*t(ho ¢)|,.

PROOF. Since h non-decreasing,
h(p(exp,(v)) < h(e(x) + (P, v)o + 0(|v])) < ho@(z) + (T, v} + T0(Jv]) + 0(0)
which is the statement. g
PROPOSITION 0.30. Consider ¢ : U — R with ¢(z) = §dy(z,y) = c(z,y) for some y € M

and U C M open. Then ¢ is super-differentiable at any x € U, and if o : [0,1] = M is a geodesic
between y and x, then ¢(1) € VT pl,.

PROOF. Let x € U. There exists € > 0 and a neighbourhood W of = such that for all z € W
the map exp, [p_(0) is a diffeomorphismus onto a open set U, where W C U.. (see Milnor Morse
theory, 10.3).

1. Now choose y € W and a minimal geodesic o between y and x. We show that ¢ is differentiable
at x and V|, = a(1).

11
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Let exp, [, (0) =: F': Bc(0) = Uy and v € T'M,, such that [v| < e. Then

Plexp, (0) = 5 du (F(0),0)? = 5 (F o F™ exp, 0),)* = S 1F ™ exp, ()3
—_————

weT M,
1 _
= 5| F~(exp,(0)) +DF; " (DF)ou +o([v])];
—_——— ——

(0) =v
1. . _
= 516(0)f; +(6(0), DF; v}y + ofJvly)

= JI6(0) + (DF; (DF)os(0), DF; v}y + o(Jtl,)
—_—

=&(1)
_ %\d(O)ﬁ, +(5(1), v)y + ol|ul,)

where we used the Gauss Lemma in the last equality, and the standard identification T'(T M, )o =
TM, in the second equality. Application of the chain rule with A(t) = V2t implies that d m(sy) is
differentiable in z and V, d,, (z,y) = |5(1)|7'&(1) is its gradient at .

2. Now, we choose y € M arbitrarily. Consider again a minimal geodesic o between y and x, and
choose z on ¢ such that z € W. Apply the previous step to d, (-, z). It follows

da(y, exp, v) < da(y,2) +du(2,exp, v)
< du(y, 2) +du(z 2) + (6(1)/[6(1)],v) + o(|v]).

Hence d,(y,-) is super-differentiable. Again by application of the chain rule to h(t) = $t* and

@ = hody(-,y), we obtain that ¢ is super-differentiable with super-gradient (1) € V*|,. O
LEMMA 0.31. Consider U C M open such that U =: X is compact, and let Y C M be compact.

Let 1 be c-concave relative to X and Y. Assume ¢ is differentiable at x € U. Then (x,y) € 0.9
relative to X and Y if and only if y = exp,(—V|.).

PROOF. “=": Let y € Y such that (z,y) € O.¢. It follows that
c(@,y) — (@) —P(y) = 0 < c(z,y) —¥(2) —9°(y)

for all z € X by definition of c-concavity relative to X and Y. For z € X we can choose v € T M,
such that exp,(v) = z. We define (2) = % dy(z,9)* = ¢(2,y). Then

p(exp, v) = c(z,y) > c(z,y) + ¥(2) — ¥(x)
= p(x) — Y(x) + P(x) + Vs, v) + o(|v])

Therefore, ¢ is sub-differentiable at z with sub-gradient V|, € V™ ¢|,. On the other hand, the
Hopf-Rinow theorem asserts that there is a minimal geodesic between y and x. Thus, the previous
lemma tells us that (1) € V*y|,. Hence, ¢ is actually differentiable at 2 with

Vi dM('vy)2‘m = VT/)\x = 0(1)
and y = 0(0) = exp, (= V)[z).

13

<=": Since ¢ is Lipschitz by Lemma 0.27 and Y is compact, there exists a y € Y such that
inf, [c(z,y) — ¥°(y)] = ¥(z), and following the previous step we obtain y = exp,(—V;). O

THEOREM 0.32 (Brenier, McCann). Let X = U and Y be as in the previous proposition. Let
p € Pa(X) be absolutely continuous with respect to voly such that sptp C U, and let 1) be c-concave
relative to X and Y. Then ¢ : X — R is differentiable volg-almost everywhere, x € X — Vi, is
Borel measurable, and T : X — Y with T(x) = exp,(—Vy) is a solution of the Monge problem
relative to X and Y, for ¢ = %d?w wand v :=Teu. We have Cost(u, Tup) < 0o. If T' is another
solution, then T' =T p-a.e. .
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Proor. 1. By Lemma 0.27 ¥ and ¢° are Lipschitz on X and Y respectively, and therefore
integrable with respect to probability measures on X and Y respectively. Rademacher’s theorem
yields v is differentiable volg-a.e. on U and T is well-defined and Borel measurable. Hence
T.p € P2(Y) is well-defined. (3, 1°) is a competitive pair
(4) ¥(@) +9°(y) < clz,y)

Integration of (4) with respect to (idx,T).p € Cpl(u, Tp) yields
[ wdnt [ wedt < Costu T < [ el T(a)dutz)
X Y X

The previous proposition yields that for all z € X there exist y(z) € Y such that ¢(z) +¢(y(x)) =
c(z,y(x)), and if ¢ is differentiable at z, then y(z) = exp,(—Vv,) = T(x). Hence, for volg-a.e.
x € X (and therefore for p-a.e. x € X) ¥(x) + (T(x)) = c(z,T(z)). Integration with respect to
w yields

00>/Xz/}dqu/chdT*u=/XC(567T(36))du=Cpl(u,T*u)

and T': X = Y is an optimal map between p and T p.
2. If S: X — Y is another optimal transportation map (S.p = T.p), then [y c(z, S(z))dp(z) =
Jx e(z, T(x))dp(x). It follows

() + vE(S()) = e, S(a).
But the previous proposition tells us that if ¢ is differentiable at z, we get that S(z) = T(z).
Hence, S =T p-ae. . O

THEOREM 0.33. Let pn € P(M) be absolutely continuous such that spty C X, and let v € P(M)
with sptv € Y. Then, there exists a c-concave function 1) : X — R such that T'(z) = exp,(Vi);) is
an optimal transportation map between p and v, and Cost(p,v) < oo. T is unique up to a set of
p-measure zZero.

ProoF. 1. Clearly, the assumptions of Theorem 0.26 are satisfied. Therefore, it tells us
that there is a c-concave function 1 such that the pair (1, 1°) is optimal in the dual Kantorovich
problem. By Lemma 0.27 we know that ¢ and ¢ are real-valued and Lipschitz. It is also clear
that ¥ and ¢° are integrable with respect to p and v respectively. In particular

Cost(u, 1/):/ wd;H—/ Yedr < oo.
X X

The previous theorem yields that T'(z) = exp, (—V,) is an optimal transportation map between
wand Ty pu. We still have to show that T,u = v.

2. Consider h € Cp(Y) and |e| < 1. We define ¢ (y) = ©°(y) + eh(y) (po = ¢°), and
() ve(z) = inf [c(z,y) — o(y) — eh(y)]

(o = ¢). Let us fix € U where 9 is differentiable. Compactness of Y yields that (5) attains its
minimum in y. where yo = T'(z). The map € — y, is continuous. Therefore

c(@,y) = o(y) — ehly) = Ye(x) = c(2,yc) — p(ye) — ehlye) =z, T(x)) — p(T(x)) — eh(ye)-
If we choose y = T'(x), then
Ye(x) = c(z,T(x)) — o(T(x)) — eh(T(x)) + ofle])

where o(|e]) — 0 uniform in . The pair (¢, p.) is competitive by construction, and D (1., p.)
attains its maximum in D(%), ¢). Hence

d d
0= &D(wea‘pe)‘ezo:/Xiwekzodu""k/yh(y)dyz —/Xh(T(x))du(x)+/Yh(y)du(y)

Hence, Typ = v. The uniqueness statement follows precisely as in the previous theorem. O
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COROLLARY 0.34 (Stability).



CHAPTER 4

Wasserstein distance

Let X be a Polish space.

DEFINITION 0.35. (i) LP-Wasserstein space:
PAX) = {,u eP(X): / dx (zo, z)Pdp(x) = MP () < oo for some xq € X} .
X

(ii) LP-Wasserstein distance between p,v € PP(X):

147 - inf d g
(1, V) Lecﬂ?l(#,u)/xz x(,9) ﬂ(w,y)]

REMARKS 0.36. (i) If MP (p) < oo for some zq, then MP(u) < oo for all y € X.
(if) Wp(p,v) < oo for all p, v € PP(X), since
W (p, v)P < M7 (1) + Mg, (v).
(i) W, < W, if p < ¢ € (0,0].
(iv) Wp(0,9y) = dx(x,y) for all z,y € X.
(v) Kantorovich duality:

Wi(p,v) = sup (/sodu—/wh/>~
Lip o<1

PROPOSITION 0.37. (PP(X),W,) is a metric space.

PROOF. We already have that W,(u,v) € [0, 00) for all p, v € PP(X).
1. p=v <= Wp(p,v) =0. Assume Wy,(u,v) = 0. Consider h € Cy(X). Then (h,—h) is
a competitive pair in the dual Kantorovich problem with cost function d? : X2 — [0,00). By
Theorem 0.26 it follows that

0=Wy(p,v) > /hd,u—/hdy.

Hence, [ hdv > [ hdu. Replacing h by —h yields equality, and therefore u = v.

On the other hand, if ¢ = v, 7 = (idy,idyx)s«p is a coupling. Since dx(z,z) = 0, it yields
W (s ) = 0.

2. A-inequality. Claim: If m € Cpl(u,v), then there exist Markov kernels Q, Q" : X x Bx — [0,1]

such that
wax8) = [ [ Qu.dputan) = [ [ @.deian)

A Markov kernel is a map Q : X X By — [0,1] such that x — Q(z, B) is measurable for any
B € By, and such that Q(z,dy) is a probability measure for any r € X.

Now, consider i1, uz2, 3 € P?(X), optimal couplings 71 2 € OptCpl(u1, p2) and w2 3 € OptCpl(ua, 13),
and Markov kernels Q1 2, Q/1,2 and Q2 3, Q/Q’g with respect to m 2 and mo 3 as described above. We
define a probability measure 7 23 on X2 as follows:

m23(Ax B xC) = /A/B/CQ2,3(y,dZ)Ql,z(Ivdy)Hl(Ch)

15



16 4. WASSERSTEIN DISTANCE

One can easily check that (p12)«m123 = 712, (P23)«T123 = 23 and (p13)«m123 € Cpl(p1, u3) where
Dij : X3 — X? are the projections to the product of the sth and jth marginal. For instance, we
have

7T123(A x B x X) = /A/B/X Q23(y,d2) ng(x,dy)ul(dx) = AQ12($7B)u(d$) = 7T12(A X B)
| S

=1

Then

W, (n, pi3) < /dx (z, 2)Pdmis(a, z)} C = st dx(x,z)”dmgg(x,y,z)}
/e

(29) +d(y, 2))" dm(ac,y,z)}

1
P

s =

IN

X3

P P
< /dx 96 y Pdmzs} + |:/dx(y72)pd7T123

< /dx(xay) dﬂlz} + [/dx(y,z)pdw%} = Wp(u1, p2) + Wp(pz, pis).

3. Wp(p,v) = Wp(v, ) comes from the symmetry of dy(z,y). O

LEMMA 0.38. If (ur)ren C PP(X) is a Cauchy sequence w.r.t. Wy, then {uy}, oy s tight.

PROOF. Since W, > W; for p > 1, we assume (p) is Cauchy w.r.t. Wi. It is clear that
for all € > 0 there is N € N such that {ug} C U;V:1 Bg/l (1) {mj}t;— v is tight since finite.
Hence, there exists a compact set K C X such that p;(K¢) < e for all j = 1,...N. We can
also find points 1, ..., Ty E X st. K C UL, Be(w;) =: U.. Consider U, = B.(U) and p(z) =
max(1 — 2 dy(z,U),0). ¢ is i-Lipschitz. It follows

px(Ue) > /soduk

=/wduj+/wduk—/<ﬁduj21—e—e
N——

>pji(K) >— 1wy (pg,ny)

for any k € Nand j € {1,...,N}.

If choose € = 27P¢ in the previous proof with p € Ny, we obtain UP open such that

pr(UP) > 1 —27P e for all k € N.

Now, we define S = m;‘;oﬁ that is closed and satisfies

oo

1k (X\S) ukUUp <> (T <Z:2p+1
— p=0

p=0
S is totally bounded (Exercise), closed subset of complete metric space and therefore compact.

This proves that {u} is tight. O

THEOREM 0.39. (p)ren C P*(X) — p w.r.t. Wy, if and only if (pr)ken — p weakly and

limsup / Ao, 20)Pdput < / . (&, 7o) dp
k—o00 X X

for some xg € X.



4. WASSERSTEIN DISTANCE 17

Proor. "= The W, is lower semi-continuous w.r.t. weak convergence. To see that we
consider (pux), 1, v € P?(X) such that (ux) — p weakly. Let m, 7 be optimal couplings between
i, 1 and v, respectively. Then (m;) — 7 weakly. The claim follows since the total cost Cost is
lower semi-continuous on P(X).

Let (pr) converge to pu w.r.t. Wy. (ug) is tight by the previous lemma. Hence, a subsequence (f:)
converges weakly to . Hence

W (s pr) < lim inf W (e, ) = 0

and consequently iz = p. We remind on the following elementary estimate. For all € > 0 we can
find C, > 0 such that

(a+b)P < (1+¢€)aP + CbP
Let 7, € OptCpl(p, p). Hence

/ dy (w0, 2)Pdy < (14 €) / dy (o, )P dmy, +C. / d (2, y)dmy

| S —
MZ, (1) MZ, (1) W (k)P

If £ — oo, we obtain

limsup M2 (ux) < (14 €)ME (p).

k—o0
for € > 0 arbritrary.

7<="* (Sketch): Assume (uy) converges weakly to pu, and ME (1) > limsup MZ (ux). Let m be an
optimal coupling between pj and p. By Prohorov’s theorem {uy : k € N} and p are tight. Then
by a previous lemma {7y : k € N} is also tight. Then, up to extraction of sub 7 converges weakly
to an optimal coupling 7 between p with itself. Hence, m concentrated on {(z,x)}. Then we can
show

Wy (1, i) = /dx(x,y) A Rdmy, —|—/|dx(a:,y)p — RP|dmy.

THEOREM 0.40. (P,(X),W,) is complete and separable.

ProOOF. 1. Consider a Cauchy sequence (uy). By the previous lemma (uy) is tight. Hence,
there is a subsequence (i) converging to p € P(X) weakly. As before, we check that

M2 (p) < liminf MP (py:) < oo.

0

Since W, is lower semi-continuous w.r.t. weak convergergence and since (uy) is a Cauchy sequence,
we have

W (1t pore) < liminf Wy, (pgi, pis) — 0 if k& — oo.
1—> 00

Henc p € P?(X) and py, — p w.r.t. Wp.
2. Let D C X be dense and countable. We will show that

N
{I/G’PP(X)II/ZCLZ'(SM where z; € D, a; GQ,NEN} =M.

i=1

Since p € PP(X), there is K C X compact such that

/ dx (zo, z)Pdp < €.
X\K
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This follows since we can apply Prohorov’s theorem to the finite measure dx(xg,)Pdp. We
can find finitely many points {z;},_; y C D such that K C UY, B(z;). Define U =
Be(zi)\U!Z] B(z;) and f: X — X via

r, faxeUg
fx) = .
xo ifxe X\K.

f is measurable and a transport map between u € P?(X) and f.u = ngvzl w(By N K)b,,. Addi-
tionally

Wolis fo < [ e S+ [ e S <200
<eP

Finally, we can approximate the elements of {u(ék NK )} by rational numbers arbitrarily close
to obtain a v € M that is close to p w.r.t. W, ]
1. Geometric properties

First, let (Y, d,) some arbitrary metric space.

DEFINITION 1.1. (i) We call a continuous map 7 : [a,b] = Y a parametrized curve. The
length of a curve 7 is
N
L(’y) = sup ZdX(,Y(tk)a,Y(tk-i-l)) € [0,00]
a=to<--<tn=b,; )

We say that a curve v is rectifiable if L(vy) < oc.
(ii) A metric space (Y, dy ) is a length space if for all z,y € Y

dx(z,y) = inf {L(7y) : v : [a,b] = Y such that y(a) = z,v(b) = y}.

(iii) A length space (Y, d, ) is a geodesic space if for all z,y € Y there exist a curve v : [a,b] —
Y such that L(y) = dx(z,y) and each such minimizer is called geodesic between = and
y. The set of all geodesics is denoted by G(Y').

REMARK 1.2. Each rectifiable curve admits a ”constant speed reparametrization“. More pre-
cisely, there exist ¢ : [a,b] — [0,L(y)] continuous and non-decreasing, and ¥ : [0,L(y)] — Y such
that v =7 o ¢ and L(7|(4,¢) = (t — a)c for some ¢ > 0.

Proor (SkeTcH). Consider p(t + a) = L(7|(q,9)- O
In the following we will always assume [a,b] = [0,1], and curves are parametrized by constant
speed.

PROPOSITION 1.3. Let (Y,dy) be a complete metric space. Then, (Y, dy) is a length (geodesic)
space if and only for all x,y € Y and for all e > 0 (for e = 0) there is z(e) € Y such that

1
dy(z,2),dy(2,y) < 3 dy(z,y) + e
We say z is an e-midpoint between x and y.

THEOREM 1.4. If (Y,dy) is a length space that is complete and locally compact, then (Y,dy)
is geodesic.

PROOF (SKETCH). From the assumptions it follows that Br(x) = {y : dy(z,y) < R} compact
for all x € Y and all R > 0. Then the theorem of Arzela-Ascoli implies the result. O

THEOREM 1.5. Let (X,dx, myx) be a complete metric measure space. Then, X is a length space
if and only if PP(X) with W), is a length space.
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ProOOF. 7<= We already know that X isometrically embed in PP(X). Then, if z,y € X, we
can find p € PP(X) such that

fd (xy)+e>[/d 2, 2P du(z ] Ud 2 y)Pdu )}

Then, there has to be zg € sptu that is e-midpoint between z and y. This can be seen as follows.
Imagine there is no such point. Then there is € > 0 such that

1 1
gdx(x,y) + e < dx(z,2) and §dx(9€,y) +e<dx(z,y)

for all z € X. Integration with respect to p yields a contradiction.
"= Let p,v € PP(X) and € > 0. Choose i = Zf\;l a0y, V= Zszl b;jd,, € D that are e-close to
pand v wrt. Wy Let m = Zi,j:l i j0(z,,y;) e an optimal coupling between i and v. Since X

is a length space, we can find for all ¢, j an emidpoint z; ; of «; and y; for € > 0. Then, we define
iy = Zm w0; € PP(X).

We can check that
% ZWZ’75(1“27 5 € Cpl(,u,ul)

i,

It follows that

1

-~ 2 1
Wp(,fiy) < {E dx(xiazi,j)pﬂi,j} < {E (3 dx(i ) + )P mig| <
i

.3

1
2

W, (7, 7) + Ce

N |

% dx (z,y)P+ceP

Similar for v. O

THEOREM 1.6. (1) X compact if and only if PP(X) is compact.
(i1) X locally compact if and only if PP(X) is compact.

PRrOOF. (i) ”=* This follows, since X embeds isometrically into PP(X), and X is closed.
7<= Apply Prohorov’s Theorem.

(ii) Ambrosio, Gigli, Savaré: Gradient flows, Remark 7.1.3. |
COROLLARY 1.7. If X is a compact length space, then PP(X) is a geodesic space.
More generally:
THEOREM 1.8. X is a geodesic space then PP(X) is a geodesic space.

PROOF. First, we remark that there is a measurable map ¢ : (z,y) — Yz, € G(X) such that
v(0) = z and (1) = y. This follows from a measurable selection theorem (references will be
given). Then, (e1) o ¢ is measurable as well, and we can consider (e1 o ¢).m = p1 € P(X) where
7 is an optimal coupling between po, 1 € PP(X). e : G(X) — X denotes the evaluation map
ei(7) = 7(t). Then, we can define ((e;,e1) o ¢).m = m; for i = 0,1 that are coupling between 1
and [ We compute

Wiy )P < /dx(w,y)”dm(%y)
= /dx(x7y)pd((€i,€%) o @)*77(377y)
— [dxteiopt@v)ey o ol p)Pdniay)

= /2”’ dx (2, y)Pdm(2,y) = 27" Wp(po, p1)” < oo.
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In particular, it follows that p; € PP (X), and p 1 is a midpoint.



CHAPTER 5

Ricci curvature bounds for metric measure spaces

DEFINITION 0.9. Let (Y,dy) be a general metric space. We consider f : Y — RU {400} and
D(f)={y €Y : f(y) < oo}
(i) Wesay f is k-convex if f > —oo and for all v € G(D(f)) with constant speed parametriza-
tion

(6) F07(t) < (1= 1) 03(0) + £ 0 7(1) = 3 (1~ Dtk s (5(0), 7(1))*.

(ii) We say f is weakly k-convex if for all x,y € D(f) there exists v € G(D(f)) such that
fovy > —o0, v(0) = z and y(1) = y and (6) holds. In particular, D(f) is a geodesic
space.

DEFINITION 0.10 (Metric measure space). (i) Let (X, dx) be complete, separable metric
space, and let my be a locally finite Borel measure. Locally finite means that for all z € X
there exists € > 0 such that m(B.(z)) < co. Then, we say the triple (X,dx,my) is a
metric measure space.

(ii) PP(X,m) = {p € PP(X) such that g = pm with p: X — [0,00)}.

REMARK 0.11. Let (M, g,,) be a Riemannian manifold. Consider the Riemannian distance d,,
and the Riemannian volume vol,. Then (M, dy, voly) is a mm space.

DEFINITION 0.12 (Relative entropy). The relative entropy functional of a metric measure space
(X,dx, my) is given by Enty,, : P*(X) — R U {00}, where

li log pdu  if dp = pd
Enty, (1) = { ims o [¢,55y log pdp if dp pdmx
00 otherwise .
If f{p21} log pdp < 0o, then
lim log pdp = /log pdu € [—00,0)
00 J{p>5)
or if not = oo.
REMARK 0.13. 1. If my € P?*(X) = Enty, > 0. This follows since by Jensen’s

inequality
Enty,, (1) = /log(p)pdmx > /pdmx log/pdmx =0.

2. If my satisfies the growth condition fe’CdX(mO’I)Qde < 00 (GC) then Enty,, > —oo.
Consider m = %e’CdX(I“’m)z my € P?(X). Then

0 < Enti () = / Flog pift = / log 7d
X

:/ logpd,u—/logZd,u—i—c/ dy (20, )% dp
X X

Entm (n) const Mﬁo(”)<oo

21
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DEFINITION 0.14 (Lott, Sturm, Villani). A metric measure space (X,dy,my) satisfies the
curvature dimension CD(K, co) if the relative Entropy Enty, , is weakly K-convex.

REMARK 0.15. If y, v € P?(X, my) then the condition CD(K, oco) implies that there is geodesic
pe in P?(X, my) between p and v.
THEOREM 0.16. Let (M, g,,) be a Riemannian manifold. Then
ric,, > K <= (M,d,,voly) satisfies CD(K, 00).
For simplicity we assume M is compact. It follows that we can always assume X =Y = M.

REMARK 0.17. Consider pg, 1 € P?(M,my) (otherwise there is nothing to prove) and the
corresponding Brenier-McCann map T (z) = exp, (—tVp,) that induces the unique L2-Wasserstein
geodesic (T}) .o = pt in P2(M). ¢ is c-concave function.

THEOREM 0.18. Let ¢ : U — R be a semi-concave function on some open set U C M, then
it admits a Hessian voly-almost everywhere in the following sense. More precisely, ¢ admils a
Hessian at x € U if it is differentiable at x and there is a self-adjoint operator A : TM, — TM,
such that

(7) sup P10 = Vipr — Aul| = o([ul).

VEV T Pexp,u
In particular, one gets
(8) plexp, () = (@) + (Vor, v) + (Au, u) + offul).
Conversely, (8) also implies (7) again.
Proor. [CEMSO01, Theorem 3.10]

PROPOSITION 0.19. A c-concave function o is semi-concave on M, and hence admits a Hessian
volg-almost everywhere in M.

Proor. [CEMSO01, Proposition 3.14]

PropPOSITION 0.20. Consider ¢ : M — R c-concave. Let x € M be a point such that ¢ admits
a Hessian at x. Then the optimal map T that is induced by ¢ is differentiable at x. More precisely,
there is a map dT : TMy — T Mp(y) such that
sup {||v —dT(u)] : (exp, v, expyu) € Op, [v| = du (y, exp, v)} = o(|ul).

dT is non-singular for all t.
Proor. [CEMSO01, Proposition 4.1]

THEOREM 0.21. Consider po, p1 € P*(M,vol,) and the induced optimal map T and a cor-
responding d*-concave function . Set p; = pidvoly. Then the following Monge-Ampére-type
equation holds pg-a.e.:

po(z) = p1(T(x))det dT|,, # 0.
ProoOF. [CEMSO01, Theorem 4.2)

THEOREM 0.22. Consider po and p1 as in the previous theorem, and the Wa-geodesic py that
is induced by the one parameter family of optimal maps Ty between pg and py. Then {/‘t}te[o,l] C

P2(X, voly).

Let x € M be a point such that the ¢ admits a Hessian at z. Let (e;) € T M, be an orthonormal
frame. The Hessian A =: V2 of ¢ induces a bilinear form on T M, via

b(u,v) = (Au,v)

and we set A; ; = (Ae;, e;).
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REMARK 0.23. We add some general considerations.
Consider « where T is differentiable. Then T} is differentiable at « for all t € (0, 1]. Set y(t) = Ty(z).
Let (€;)i=1,...n be an orthonormal frame in TM,, and E;(t) = P}_,,e; where P]_,, is the parallel
transport along «. If  such that 7(0) = e; we can calculate DT;e; explicitely. Let W : (=4,d) —
TM be a vector field along 7 such that W(0) = V¢, and W’ (0) = Ae;.

d
DTt'xei = %

By construction

d d
T; 0 0is=0 = exp,,,( s.)(tho mi(s))]s=0 = o expm(s)(th(s)Ms:o =: J;(¢).

ds

(i, EY (O E;(t) =Y Ji j () E;(1)
i =1

is Jacobi field. The matrix J(t) = (J;;(t))i,j=1,..,n represents the differential of T} w.r.t. the
orthonormal frame (E;) along . Each J; satisfies

n

1

J{' + R(Ji, %)y = 0 with J;(0) = e; and J;(0) = Ae; = ZA”E

Therefore, J = (J; ;)i j=1,..,
J"+ R-J =0 with J(O) = F, and J’(O) = (Ai,j>i,j=1,4..,n
where R = (Ri,j(t))i,j:L--.,n and Ri,j(t) = <R(E157)77EJ>

» Satisfies

PROPOSITION 0.24. Consider x € M as in the previous remark. We set DTy, = J(t) and
det J(t) = J(t) and log J (t) =: y(t). Then

1 -
Y0+ ) +rietie) <0
where y(t) = Ty(x) is the geodesic between x and T'(x). A simple reformulation of that is
1" K 1
1 < 2 sk
7%] @ < -ShPT?
where ric(¥(t)) > K and dimy; < N.

PRrROOF. The differentiation rule for det yields

J'(t) =T () te(J(t) - J())

and differentiation of U yields
U'(t) =J"()J (1)~ = (J'()J ()1 = —R(t) - (Ut))*.
Taking the trace gives us
(trU)'(t) + tr(U(t)?) + ric(t) = 0.
Consider U(0) = J'(0)J(0)~! = A. Since A is symmetric, the identity & ((J/, J;) — (J;, J})) yield

3l J
that U(t) is symmetric for any ¢ € [0, 1]. Hence, we can consider the Hilber-Schmidt inner product

for symmetric matrices and the corresponding Cauchy—Schwarz inequality for U and E,:
trU-E, =trU =(U,E,)us < Vn||U||gg = V/trU?tr E2.
It yields
1
(trU) (t) + = tr(U(t))? + ric(¥(t)) < 0.
n

Since (log J) = J'/J = tr U, we obtain the first result. An easy computation yields the second
one. g
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PROOF OF THEOREM 0.16. “==": As before we consider pg, 141 and the unique Wo-Wasserstein
geodesic pi; that is induced by d*-concave function ¢. For all ¢t p, is absolutely continuous w.r.t.
vol,. Hence, we can write p1; = p;du for some measurable function p; > 0. We consider the entropy.

Ent(;) = / log prdps = / log prd(T) « 1o

— [ ogp(Ti(w)dro(a)

_ / log (po(x)/ det T, (t)) dpto (x)

- / log po(z)dpio () — / v (t)dpio

< /logpo(z)duo(x) - —t)/yx(O)dMo(x) +t/yx(1)duo(x) - %K(l —t)t/dx(%T(@)dﬂO

=0 =Wa(po,p1)?

= (1—1) [ 108 po(e)dola) + t [ 10g (po (1)) diofi) ~5 K (1 = Wl )?

=/ log prdps
1
= (1 —t)Ent(uo) + t Ent(u1) — §K(1 — ) tWa(po, 1)
Therefore Ent = Entye, is weakly K-convex. O

REMARK 0.25. Consider the metric measure space (R™, |- |2, e~I"2dL"). Tt satisfies CD(1, 00)
for all n € N.

1. Curvature-dimension condition
DEFINITION 1.1. We define the so-called distortion coefficients for K € R, # > 0 and ¢ € [0, 1].

) (g — b:;i((%t)) if °K <
oy (0) = .
00 otherwise,
where the generalized sin-function sing are given by

sin(vVKs) if K>0
sing(s) =< s it K=0
sinh(v—Ks) if K <0.
We also set cosy = sin,.

LEMMA 1.2. Let f : [a,b] — [0,00) be continuous, and let K € R. Then the following state-
ments are equivalent.

(1) f" < —=Kf in the distributional sense. More precisely, for all ¢ € C*((a,b))

b b
/ fo'dx < —K/ feoda.
(2) For all x,y € [a,b]

(1=t +ty) > ol (| -y f(@) + oDz —y]) f(y)-

In particular, the case K = 0 implies convezity of f.
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DEFINITION 1.3. We set UEQN(Q) = JQ?N (0). The modified distortion coefficients are defined

as follows.
1-1/N
o) =N ol @]
We have the conventions 7 - co for r > 0, and (00)* = oo for @ > 0. In particular, if K > 0, we
have 7',(:)1(9) < oo iff # = 0, and r}fl(e) =tif K <0.
DEFINITION 1.4 (N-Renyi entropy). Given a metric measure space (X,dx,my) and N €
[1,00), we define the N-Renyi entropy functional with respect to my as

Sy i PA(X) = [~00,0],  Sy() = - /X p YN dy

where p denotes the density of the absolutely continuous part of x4 in the Lebesgue decomposition
of with respect my.

DEFINITION 1.5 (Curvature-dimension condition). A metric measure space (X,dy, my) satis-
fies the curvature-dimension condition CD(K, N) for K € R and N € [1,00) if Sy > —oco and for
all pug, 11 € P?(X,my) there exists a Wa-geodesic (u¢)iejo,1] € P?(X, mx) and an optimal coupling
m € Cpl(po, p1) such that for all N’ > N

Syr(pe) < —/

[P @om ) @ ) |t y)
X

where p; = p;dmy for i = 0,1 and dy := dx(z,y). We say (X,dx, my) satisfies the reduced

curvature-dimension condition CD*(K, N) if we replace TS)N (dx) by aﬁf,)N(dx).

REMARK 1.6. Since o'y (dy) < 7% (dy), we have CD(K, N) implies CD* (K, N).
REMARK 1.7. The definition implies that the support of u; for i = 0,1 is contained in the

support of my.

REMARK 1.8. By definition of T[(;?l (0) a connected metric measure space satisfies the condition

CD(K,1) for K > 0 if and only if it consists of only one point.

THEOREM 1.9 (Sturm). Let (M, g) be a complete Riemannian manifold. Then
(M, d,, voly) satisfies CD(K,N) <= ricy > K and dimy; < N.

PRrROOF. For simplicity assume (M, g) is compact. We remind on the following facts. For
po, 1 € P?(X,vol,) there exist a c-concave function ¢ such that Ti(z) = exp,(—tV,) is the
optimal map between pg and (T}).po = pt, and py is the unique geodesic between pp and g in
P2(M). Ty and ¢ have the following properties.

(i) ¢ admits a Hessiann pg-almost everywhere.

(ii) DT; exists pg-a.e. for all ¢, and DTy|, is regular for all .

(iii) p is absolutely continuous w.r.t. vol, for all ¢.

(iv) f(z) = det DTi|x fi(Ti(x)) mp-a.e.
We know that

U'(t)+U*t)+R(t) =0
where U(t) = J'(t)J(t)~! and R; ;(t) = (R(E;,7)%, E;). The matrix R has the following form
0 0

R(t) = (o R(t))

where R is a (n — 1) x (n — 1)-matrix. Hence

n
9) uyy + Z“%z =0 = uj; +uj; <0
i1
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Taking the trace yields
tr U’ + tr U? + ric = 0.

where ric(t) = rlc( ). The Jacobi determinant J satisfies J'/J = trU = u11 + Y, ti;. There-
fore, if we set A(t fo u11(s)ds, we see

j(t) — eA(t)efot [ZZL:z uii(s)]d«‘»‘

The factor efo 11 = L(t) describes volume distortion in direction of the transport geodesics. From
(9) follows L"(t) < 0. We remove this part and consider

J(t) =T (t)/L(t).
We study J in more detail. A straightforward computation yields J' = JtrU where U =
(Uij)i,j:2,...n- Set y = log J. Then

7'(t) =y"(t) = X'(t) = —tr U(t)? — rie(t) — ufy (1) = — Z ug; () —rie(t) + Z u1i(t)

Z 12~ ric(t) = trU(t)Q—ric(t)S—%(trU(t))Q—ric(t)

COROLLARY 1.10.

_ " K _
LAl LA

where ric(¥(t)) > K and dimy; < N. By Lemma 1.2 we obtain an integrated inequality for J of
the form

T6F > oD (ANT0) 7T + 0D (4)T (1) 7

COROLLARY 1.11.

2\

T >IN TOF + (3T () F

where ric(¥(t)) > K and dimy; < N.

PROOF.
T0* = (FwLw)t = (7)) T ey
> (a;K (RDTO + o (3D =) ™ (1= 0z0)+ () ¥
> (05T ™) T (- oLO)F + (GO iDT W) T (L)

= ”)(Ivl) <>% + T AT () F

In the second inequality we use Holder’s ineqality for p = % and g = N. O
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Now, we can complete the proof of the Theorem. Consider po, p1, ¢, Ty and puy = pidvoly as
before. Then

Su(u) == [ pu(@) dyus(a) = = [ u(T)) ¥ dpo(a)
=~ [ 00/ Z.0)F do =~ [ pla) ¥ Tute) ¥
/ [P 13D 0/ To(0)F + 7N (3D (po (@) /T2 (1)~ | dpo )
=- / (P37 (A (2, Ty (@) (po (@)™ + i (A (2, Ty (0))) (01 (T1(2)) ™ | dpo )
/1

A (2 9) (po(@) ¥ + 7N (A (@, 9) (o1 (1) | d (1, 7)o, )

—q
Since T3 is an optimal map between uo and p1, ¢ = (id, T})«po is an optimal coupling. Hence, we
verified the curvature-dimension condition CD(K, N). O

2. Geometric consequences of the curvature-dimension condition

LEMMA 2.1. For all K,K' € R, all N,N' € (0,00), all t € [0,1] and all 6 € (0,00), it holds
that

O (0)Y 0 0) = 0l (0

K’ N’ = YK+4+K' N+N'

and, if N > 1,
TN T O 2 (O

K’ N/ = "K+K' ,N+N'

PROPOSITION 2.2 (Curved Brunn-Minkowski inequality). Assume the metric measure space
(X,dx, my) satifies the condition CD(K,N) for K € R and N > [1,00). Then for all measurable
sets Ag, A1 C X with positive mass, we have

m(A4) % > e (@) m(Ag) ¥ + Ty () m(A)) ¥,
forallt € [0,1] and N’ > N, where Ay = {z € X : y(t) = z,v € G(X),t € [0,1],v(¢) € A; fori=0,1}
and
6 — ianEeAO,yEAl dx($7y) ZfK Z O
Supxer,yeAl dX (ﬂf, y) Zf K < 0
In particular, if K >0,
m(A4)¥ > (1 t)m(Ag) ¥ +tm(A;).

PROOF. First, assume m(Ap),m(A4;) < oo and set pu; = m(A;) " m|4, for i = 0,1. The
curvature-dimension yields

/ o iy > 7050(0) m(Ag) ¥ + 70y (0) m(Ay)
Ay

where (u; = pidmy); denotes the absolutely continuous geodesic that connects po and py. By
Jensen’s inequality the left hand side of the previous inequality is smaller than my (At)ﬁ. The
general case follows by approximation of A; by sets of finite measure. O

DEFINITION 2.3 (Minkowski content). Consider zo € X and B,(z9) C X. Set v(r) =
my (Br(zo)). The Minkowski content of 0B, (xo) (the r-sphere around z) is defined as

s(r) 1= limsup 3 mx(Bra(20)\ By (w0).
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THEOREM 2.4 (Bishop-Gromov volume growth inequality). Assume (X, dx, my) satisfies CD(K, N)
for K € R and N € [1,00). Then, each bounded set has finite measure and either my is by one
point or all points and all sphere have mass 0.

More precisely, if N > 1 then for each x¢ € suppmy and for all0 <r < R < m, /%,
we have

s(r) Sing (vony T

s(R) ~ siny v ) R

and
v(r) fOT sing v, tdt

v(B) T [Fsind A tdt

If N =1 and K <0, then

) o, o)
T (R
Proor. If K > 0 and N = 1, then the definition of CD(K, N) implies that the support of
my consist of just one point, and nothing is to prove.
Let us prove the other cases. Fix a point xg € supp my, assume m (J:o) and put t = % € (0, 1).
Choose € > 0 and § > 0. We apply the curved Brunn-Minkowski inequality to Ag = B(zo) and
Ay = Brysr(z0)\Br(7o). One verifies easily that

Ay C BT+6T+€T/R(IO)\BT—ST/R(‘/EO) and R—e<O© <R+ 0R+e

,
P

=y

Hence, the curved Brunn-Minkowski inequality implies that

i (Bypsryer/m(@0)\Brcr/r(20)) ¥ >701" 1 (0) my (Be(wo)) ¥ +
0 (0) mx (Brysr(ro)\Br(20)) ™.
If € — 0, it yields
M (Bri50(20)\Br— (20)) ¥ > 7V (R + 6R) my (Brysr(z0)\Br(z0)) ¥ .
or equivalently

(10) o(r+6r) —v(r) > (R £ 6R)N (v(R+ 6R) — v(R)).

s

Since we assume that my is locally finite, the left hand side (and therefore also the right hand side)
of the previous inequality is finite for r sufficiently small. Then, v(R) is finite for all R > 0, and
v(R) = v(R*) for R > R* = /(N — 1)/max {K,0} since TI(E?N(G) = oo if § > R* by definition.
Moreover, v is right continuous by construction. It is non-decreasing, and therefore it has only
countably many discontinuities. In particular, there will be arbitrarily small » > 0 and § > 0 such
that v is continuous on the intervall [r, (1 + ¢)r]). Hence, (10) implies that v is continuous on
(0,00). Therefore, my (0B, (o)) = 0 for all r > 0, and also my ({z}) = 0 for all x # z(. (10) can
be restated as

1 1

o (ol +8r) — o) > ==

In the limit this yields the first claim.

Sing,v_1,((1 £ 0)r)V !
sing,v_1((1 £ R)N-1"

(0(R+ 0R) — v(R))

We will show that v is locally Lipschitz contiuous in R. Let r,§ > 0 as before. If we consider a
diadic subdiffision of [r,r + d), one can show that for any n € N there is r,, € [r,r 4 dr) such that

n

0< 2 (ura +270) ~ (1) € - 0l 57) — o0) =+
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It follows with (10)

v(R+27"6R) — V(R) <

R < sing (v-y) (1 £ 6)R)
rn \ Sk, v 1 (1 £ )ry)

<TEND (1£8)R)=(N =D

> v(ry +270r) —v(r,) < C27"0R

This implies that v is locally Lipschitz. For instance, consider r < R < R’ such that R’ — R = ¢
is small. Then we can choose n such that v(R 4+ 27"6R) — v(R') < 4. Hence, v is differentiable
almost everywhere in R. Hence, for a.e. R the limit s(R) exists and s is the weak differential of v.
The fundamental theorem of calculus implies that

sing/(v—1) (A£&Hr) V!
sing /(v —1)((1£6)R)N 1

Now, we treat case where my({zo}) > 0. If suppmy \{zo} # 0, there has to be z; €
suppmy \ {0} with my (z1) = 0. Otherwise, pick any x; # xg. The curvature dimension condition
implies the existence of a geodesic vz C suppmy between xy and x;. Since my is locally finite,
this yields a contradiction. Hence, we repeat the previous proof for x; instead of xy. This implies

my ({zo}) = 0 what is a contradiction again. Hence, there was no z; # x¢ and X = {x¢}. O

By Gromov’s lemma this implies the volume estimate.
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