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CHAPTER 1

Introduction

These are the notes of the lecture “Metric measure spaces with lower Ricci curvature bounds”
given by the author in winter term 2014/15 at the mathematical institute of Freiburg. The goal
of the lecture was to present an introduction for beginners to the theory of optimal transport for
metric measure space focussing on spaces that admit a lower Ricci curvature bounds. The main
result is that in context of smooth metric measure spaces one has equivalence of generalized lower
Ricci curvature bounds in the sense of optimal transport with the classical notion that is known
from Riemannian geometry.

1. Motivation

Definition 1.1. Let us consider an arbitrary function f : X ⊂ R→ R.

1. One says the f is convex if for all x, y ∈ X and for all t ∈ X we have (1− t)x + ty ∈ X
and

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

In particular, X is an interval of the form [a, b].
2. If we assume that f ∈ C2[a, b], then f is convex if and only if f ′′ ≥ 0.

Remark 1.2. We summarize some aspects of the previous definition.

(i) (1) is a geometric property, that one can visualize easily.
(ii) (1) is stable. More precisely, assume Xn converges to X in the Hausdorff sense and

fn : Xn → R converges to f : X → R in the way that for any ε > 0 there exists N0 ∈ N
and δ > 0 such that |fn(x)− f(y)| < ε for n ≥ N0 and |x− y| < δ. Then, if fn is convex,
f is convex.

(iii) On the other hand, (2) is easy to check for C2-functions.
(iv) But (2) is not stable w.r.t. to pointwise or uniform convergence.

(2) yields (1). Additionally, there is a theorem by A.D. Alexandrov that tells us that any convex
function is twice differentiable almost everywhere.

Theorem 1.3. Assume f : [a, b] → R is a convex function. Then f ′′(t) exists for L1-almost
every t ∈ [a, b], and f ′′ ≥ 0 in the distributional sense.

Riemannian geometry. Let (M, g) be a complete, connected Riemannian manifold. ∇ denotes
its Levi-Civita connection. The Riemannian curvature tensor of the Riemannian metric g = 〈·, ·〉
is defined as follows. Consider vector field X,Y on M .

R(X,Y )V = ∇X∇Y V −∇Y∇XV −∇[X,Y ]V.
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CHAPTER 2

General optimal transport theory

Notations. A Polish space X is a topological space where the topology comes from a metric
that is complete and separable. The space of probability measures on X is denoted by P(X). It
is equipped with the topology of weak convergence. For a sequence of probability measures (µn)
we say that (µn) converges weakly to a probability measure µ if∫

X

hdµn →
∫
X

hdµ for any f ∈ Cb(X).

Cb(X) denotes the set of bounded and continuous functions on X. Let Z = X×Y that is a Polish
space as well. The topology is the product topology inherited by X and Y . pX : Z → X and
pY : Z → Y will be the projection maps.

Definition 0.4 (Monge problem). Let X and Y be Polish spaces. Let c : X × Y → R ∪ {∞}
be a Borel measurable cost function. R ∪ {±∞} is equipped with the extended Borel σ-field. For
probability measure µ ∈ P(X) and ν ∈ P(Y ) the Monge problem with respect to the cost function
c is to find a measurable map T : X → Y such that T∗µ = ν - we say that T is a transport map -
and T is a minimizer of

S 7−→
∫
X

c(x, S(x))dµ(x) = Cost(S)(1)

where S is any transport map between µ and ν. If T is a transport map and a minimizer of (1),
we call T an optimal map.

Example 0.5. Consider X = Y = R, µ = δx and ν =
∑2
i=1

1
2δyi and c(x, y) = |x− y|. Then,

there is no transport map between µ and ν. Hence, in general there is no solution for the Monge
problem. But we can generalize the concept of transport map in an appropriate way.

Definition 0.6. Consider µ ∈ P(X) and ν ∈ P(Y ). A probability measure π ∈ P(Z) is a
coupling of µ and ν if (pX)∗π = µ and (pY )∗ = ν, or equivalently

π(A× Y ) = µ(A) for any Borel set A ⊂ X, and
π(X ×B) = ν(B) for any Borel set B ⊂ Y.

The set of all couplings between µ and ν is denoted by Cpl(µ, ν). The total transportation cost of
a coupling π ∈ Cpl(µ, ν) is ∫

Z

c(x, y)dπ(x, y) =: Cost(π).

A probabilistic formulation is: a coupling between µ and ν is a random variable W : (Ω,A,P)→ Z
on some probability space (Ω,A,P) such that (pX ◦W )∗P = µ and (pY ◦W )∗P = ν. Then π ∈ P(Z)
is obtained by W∗P.

Example 0.7. (i) π := µ ⊗ ν is a coupling. Therefore, in the probabilistic formulation
we choose independent random variable U and V with distributions µ and ν respectively
and set W = (U, V ).

(ii) If T : X → Y is transport map between µ and ν then (idX , T )∗µ is a coupling of µ and ν.
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6 2. GENERAL OPTIMAL TRANSPORT THEORY

Definition 0.8 (Kantorovich problem). Find a coupling π ∈ Cpl(µ, ν) such that∫
Z

c(x, y)dπ(x, y) = inf
π̄∈Cpl(µ,ν)

∫
Z

c(x, y)dπ̄(x, y) = inf
π̄∈Cpl(µ,ν)

Cost(π̄) =: Cost(µ, ν).(2)

Cost(µ, ν) is the minimal transportation cost between µ and ν. If π ∈ Cpl(µ, ν) solves (2), we
say π is an optimal coupling of µ and ν. The set of optimal couplings of µ and ν is denoted by
OptCpl(µ, ν).

Example 0.9 (Optimal couplings are not unique). Consider X = Y = R2 and probability
measures µ = 1

2δ(−1,0) + 1
2δ(1,0) and ν = 1

2δ(0,−1) + 1
2δ(0,1). Then π = 1

2δ((−1,0),(0,1)) + 1
2δ((1,0),(0,−1))

and π̃ = 1
2δ((1,0),(0,−1)) + 1

2δ((−1,0),(0,1)) are optimal couplings of µ and ν.

Remark 0.10. Since (idX , T )∗µ ∈ Cpl(µ, ν) for any transport map T : X → Y between µ and
ν, we have Cost(µ, ν) ≤ Cost(T ).

The next theorem states that optimal couplings exists under mild assumptions on the cost
function.

Theorem 0.11 (Kantorovich). If c : X × Y → R ∪ {∞} is lower semi-continuous, and there
are upper semi-continuous functions a, b : X,Y → R ∪ {−∞}, then for any µ ∈ P(X) and for any
ν ∈ P(Y ) there exists an optimal coupling. More precisely, there exists π ∈ P(X × Y ) such that

Cost(π) =

∫
X×Y

c(x, y)dπ(x, y) = Cost(µ, ν).

The proof of the theorem is based on the following criterion for relative compactness in P(X×
Y ) with respect to weak convergence. A subset K ⊂ P(X) is relatively compact if any sequence
in K has a subsequence that converges in P(X) with respect to weak convergence.

Theorem 0.12 (Prohorov). Let X be a Polish space, and K ⊂ P(X). K is relatively compact
with respect to weak convergence if and only if K is tight. Tight means that for all ε > 0 there
exists a compact subset Kε ⊂ X such that µ(X\Kε) < ε for all µ ∈ K.

Proof. Billingsley �

Lemma 0.13. Let P1 ⊂ P(X) and P2 ⊂ P(Y ) be relatively compact subsets. Then

P = {π ∈ P(X × Y ) : (p1)∗π ∈ P1 and (p2)∗π ∈ P2}

is relatively compact in P(Z).

Proof. By Prohorov’s criterion P1 and P2 are tight. Therefore, we can find compact subsets
K1
ε ⊂ X and K2

ε ⊂ Y with respect to ε/2 > 0 like in Prohorov’s theorem. Then, we consider
Kε = K1

ε ×K2
ε . If π ∈ P, we have the following estimate.

π(Z\Kε) ≤ π ((X\Kε)× Y ) + π(X × (Y \K2
ε )) < ε/2 + ε/2.

Hence, P is tight, and by Prohorov’s theorem it is relatively compact. �

Corollary 0.14. For any µ ∈ P(X) and for any ν ∈ P(Y ) the set of couplings Cpl(µ, ν) ⊂
P(Z) is compact with respect to weak convergence.

Proof. It is trivial that the sets {µ} = P1 and {ν} = P2 are relatively compact, and by the
previous lemma Cpl(µ, ν) is relatively compact as well. Therefore for any sequence (πi) ⊂ Cpl(µ, ν)
there is a subsequence (π̃i) that converges weakly in P(Z) to some probability measure π. If we
consider an arbitrary function f ∈ Cb(X), then f ◦ p1 ∈ Cb(Z), and we see that

const =

∫
X

fdµ =

∫
Z

f ◦ p1dπ̃i →
∫
Z

f ◦ p1dπ =

∫
Z

fd(p1)∗π

We conclude that (p1)∗π = µ, and similar (p2)∗π = ν. Hence, π is a coupling of µ and ν and
Cpl(µ, ν) is compact. �
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Lemma 0.15. Consider Polish spaces X and Y and c : X × Y → R ∪ {∞} like in Theorem
0.11. Then

π ∈ P(Z)→ Cost(π)

is lower semi-continuous with respect to weak convergence.

Proof. We can assume that the cost function is non-negative by replacing c with c − a − b.
If the cost function c is continuous and bounded, then the assertion follows directly from the
definition of weak convergence. For the general case we assume that the topologies of X and Y
are induced by finite metrics dX and dY respectively. Otherwise, we can replace dX for instance

by d̃X = dX
1+dX

that is finite and induces the same topology as dX . Consider

ck(x, y) = inf
(x̃,ỹ)∈Z

{min {c(x, y), k}+ k [dX(x, x̃) + dY (y, ỹ)]} .

(Exercise.) The sequence (ck) satisfies

(i) For each k ∈ N ck : Z → R is bounded and continuous with respect to dX + dY .
(ii) ck ≤ c and ck → c pointwise everywhere.

Consider a weakly converging sequence πi → π. Then the theorem of monotone convergence
implies ∫

Z

c(x, y)dπ(x, y) = lim
k→∞

lim
i→∞

∫
Z

ck(x, y)︸ ︷︷ ︸
≤c(x,y)

dπi(x, y) ≤ lim inf
i→∞

∫
Z

c(x, y)dπi(x, y)

�

Proof of Theorem 0.11. Choose a sequence πi sucht Cost(πi) converges to Cost(µ, ν). By
Corollary 0.14 Cpl(µ, ν) is compact. Hence, a subsequence of πi converges weakly to π ∈ Cpl(µ, ν).
The sub-sequence is also denoted with πi. Since the total cost Cost is lower semi-continuous, it
follows

Cost(π) ≤ lim inf
i→∞

∫
Z

c(x, y)dπi(x, y) = Cost(µ, ν).

Hence, π is an optimal coupling for µ and ν. �

Theorem 0.16. Let X, Y , µ, ν and c be as in Theorem 0.11 such that Cost(µ, ν) < ∞.
Consider π ∈ OptCpl(µ, ν). If π̃ ≤ π (i.e. π̃(C) ≤ π(C) for any Borel set C ⊂ X × Y ) and if
π̃(Z) > 0, then π′ = π̃(Z)−1π̃ is an optimal plan between (p1)∗π

′ =: µ′ and (p2)∗π
′ =: ν′.

Proof. Let us assume that π′ is not optimal. Then there exists π′′ ∈ Cpl(µ′, ν′) such that
Cost(π′′) < Cost(π′). Consider

π̂ := (π − π̃)︸ ︷︷ ︸
≥0

+ π̃(Z)︸ ︷︷ ︸
>0

·π′′.

It is immediate that π̂(Z) = 1, and therefore π̂ ∈ P(Z). π̂ is also a coupling for µ and ν since

π̂(A× Y ) = (π(A×X)︸ ︷︷ ︸
µ(A)

−π̃(A×X)) + π̃(Z)π′′(A×X) = µ(A).

Similar π̂(X ×B) = ν(B). We can compute the following.∫
Z

cdπ̂ −
∫
Z

cdπ = −
∫
Z

cdπ̃ + π̃(Z)

∫
Z

cdπ′′︸ ︷︷ ︸
<
∫
Z
cdπ′

−
∫
Z

cdπ̃ +

∫
Z

cdπ̃ = 0.

Hence Cost(π̂) < Cost(π). This contradicts the optimality of π. �

Question: How can we improve a plan such that it becomes optimal?
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Definition 0.17. Let X and Y be sets, and let c be a measurable cost function. We say that
a subset Γ ⊂ X × Y is c-monotone if

N∑
i=1

c(xi, yσ(i)) ≥
N∑
i=1

c(xi, yi)

whenever {(x1, y1), . . . , (xN , yN )} ⊂ Γ and σ ∈ SN . We say that a coupling is c-montone if
suppπ ⊂ X × Y is c-montone. The support of a Borel measure µ is the intersection of all closed
sets C such that µ(Cc) = 0.

Example 0.18. Let X ⊂ R and Y = Rn. Let V : X → Y be a C1-vector field, and consider

Γ = {(x, y) ∈ X × Y : y = V (x) for some x ∈ X} ⊂ X × Y.

We consider the cost function c(x, y) = −x · y. Then Γ is c-monotone if and only if∫
γ

V ≥ 0

for any closed curve γ in X. Hence, there exists u ∈ C2(Rn) such that ∇u = V .

Remark 0.19. If π ∈ OptCpl(µ, ν) with respect to some continuous cost function c, then
suppπ is c-monotone.

Definition 0.20. Let X and Y be Polisch spaces, and let c : X×Y → R∪{±∞} be measurable
cost function. Consider µ ∈ P(X) and ν ∈ P(Y ).

(1) We say a pair of functions (ϕ,ψ) : X × Y → (R ∪ {±∞})2 is competitive if ϕ ∈ L1(µ)
and ψ ∈ L1(ν) such that ϕ(x) + ψ(y) ≤ c(x, y) for any (x, y) ∈ Z.

(2) The dual Kantorovich problem is to find a competitive pair (ϕ,ψ) that maximizes

D(ϕ̃, ψ̃) :=

∫
ϕ̃dµ+

∫
ψ̃dν

where (ϕ̃, ψ̃) is a competitive pair.

Remark 0.21. If π ∈ Cpl(µ, ν) and (ϕ,ψ) is a competitive pair and ϕ ∈ L1(µ) and ψ ∈ L1(ν)
then ∫

ϕdµ+

∫
ψdν ≤

∫
cdπ.

Definition 0.22 (Rüschendorf). Let X and Y be sets, and let c : X × Y → R ∪ {∞} be a
function.

(1) A function ϕ : X → R ∪ {−∞} is c-concave relative to X and Y if it is not identically
−∞ and there exists ξ : Y → R ∪ {−∞} such that

ϕ(x) = inf
y

[c(x, y)− ξ(y)]

(2) For a c-concave function ϕ : X → R∪{−∞} its c-transform ϕc : Y → R∪{−∞} relative
to X and Y is given by

ϕc(y) = inf
x∈X

[c(x, y)− ϕ(x)] .

Similar, we define the c-transform ψc : X → R ∪ {−∞} of ψ : Y → R ∪ {−∞}.
(3) The c-subdifferential ∂cϕ of a c-concave function ϕ : X → R ∪ {−∞} relative to X and

Y is the set

∂cϕ = {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)} .
In the following we often omit the phrase relative to if the meaning is clear from the
context.

Remark 0.23. (i) The pair (ϕ,ϕc) satisfies ϕ(x) + ϕc(y) ≤ c(x, y).
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(ii) The c-subdifferential ∂cu ⊂ X × Y of a function u is c-monotone.
(iii) If ϕ is c-concave, then (ϕc)c = ϕ, or

ϕ(x) = inf
y∈Y

[c(x, y)− ϕc(y)] .

Example 0.24. (i) Consider X = Y = Rn and let c(x, y) = |x − y|. Then a function
ϕ : X → R is c-concave if and only if it is 1-Lipschitz, and ϕc = −ϕ.

(ii) Consider X = Y = Rn and let c(x, y) = −x · y. Then a function ϕ : X → R is c-concave
if and only if it is concave.

Exercise: Proof the statements in the previous remark and the previous example.

Theorem 0.25 (Varadarajan). Let Y be a Polish space, and let Xi : (Ω,A,P) → Y be i.i.d.
random variables such that (Xi)∗P = µ. Then P-almost surely

1

n

n∑
i=1

δXi(ω) =: µω → µ weakly in P(X).

Proof. From the law of large number we get that for fixed f ∈ Cb(X)∫
X

fdµn =
1

n

n∑
i=1

f(Xi)→ E[f(Xi)] =

∫
f ◦XidP =

∫
fdµ almost surely.

Since X is separable, this implies weak convergence of µn almost surely. �

Theorem 0.26 (Kantorovich). Assume the cost function c is real-valued and continuous, and
there exist cX ∈ L1(µ) and cY ∈ L1(ν) such that c(x, y) ≤ cX(x) + cY (y). Then

(1) There exists a c-concave function ϕ such that ϕ ∈ L1(µ) and ϕc ∈ L1(ν) and∫
X

ϕdµ+

∫
Y

ϕcdν = sup
(ϕ,ψ)∈I(c)

D(ϕ,ψ) = Cost(µ, ν).

(2) For some coupling π ∈ Cpl(µ, ν) the following statements are equivalent.

(i) π ∈ OptCpl(µ, ν),

(ii) π is c-monotone,

(iii) sptπ ⊂ ∂cϕ for any c-concave ϕ such that (ϕ,ϕc) is an optimal pair.

Proof. 1. First, we assume that µ = 1
n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi .

Then π ∈ Cpl(µ, ν) if π =
∑n
i,j=1 ai,jδ(xi,yj) such that

∑n
i=1 ai,j =

∑n
j=1 ai,j = 1

n . We have

sptπ = {(xi, yi) : ai,j > 0}

and Cost(π) =
∑n
i,j=1 c(xi, yj)ai,j . Assume, that π is optimal but not c-monotone. Then there

exist points (xi1 , yj1), . . . , (xiN , yjN ) ∈ sptπ such that

N∑
k=1

c(xik , yiσ(k)) <

N∑
k=1

c(xik , yik)

for some permutation σ. Then we can modify π in the following way.

π̃ = π + a

N∑
k=1

[
δ(xik ,yiσ(k) ) − δ(xik ,yik )

]
where a := mink {aik,jk}. One can check that π̃ is a coupling of µ and ν such that Cost(π̃) <
Cost(π) (Exercise).

2. Let µ ∈ P(X) and ν ∈ P(Y ). By the previous theorem we can find probability measures of
the form µn = 1

n

∑n
i=1 δxi which converge weakly to µ, and in the same way it holds for ν. A

straightforward application of Prohorov’s theorem implies that there exists a converging sequence
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πi ∈ Cpl(µki , νki), and the limit π is a coupling of µ and ν. From the first part of the proof we
know that πi is c-monotone for all i. Therefore, and since the cost function is continuous, the set

C(N) :=

{
(xi, yi)i=1,...,N :

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yσ(i)) for any σ ∈ SN

}
⊂ (X × Y )N

is closed and satisfies π⊗Ni (C(N)) = 1. Hence, the weak convergence πi → π implies

lim sup
i→∞

π⊗Ni (C(N)) ≤ π⊗N (C(N)).

It follows that sptπ⊗N ⊂ C(N) for any N ∈ N, and therefore π is c-monotone.

3. Consider π ∈ Cpl(µ, ν) that is c-monotone. We will construct a c-concave function ϕ : X →
R ∪ {−∞} such that spt[π] =: Γ ⊂ ∂cϕ. Pick a point (x0, y0) ∈ Γ and define

ϕ(x) := inf
m∈N

{
inf
{

[c(x1, y0)− c(x0, y0)] + [c(x2, y1)− c(x1, y1)] + . . .

+ [c(x, ym)− c(xm, ym)] : {(xi, yi)}mi=1 ⊂ Γ
}}
∈ R ∪ {−∞}

If we choosem = 1 and (x1, y1) = (x0, y0), we get ϕ(x0) ≤ 0. On the other hand, the c-monotonicity
implies ϕ(x0) ≥ 0. In particular, ϕ is not just identically −∞. This is the only point where we use
the c-monotonicity. By renaming ym = y the definition of ϕ immediately gives

ϕ(x) = inf
y∈Y
{c(x, y)− ξ(y)}

where ξ : X → R ∪ {−∞} is defined via

ξ(y) := inf
m∈N

{
inf
{

[c(x1, y0)− c(x0, y0)] + [c(x2, y1)− c(x1, y1)] + . . .

+ [c(xm, ym−1)− c(xm−1, ym−1)]− c(xm, y) : (x1, y1), . . . , (xm−1, ym−1), (xm, y) ∈ Γ
}}

Hence, ϕ is c-concave. ϕ is also measurable since it is the supremum of a family of continuous
functions.
If (x̄, ȳ) ∈ Γ is arbitrary, and if we set (xm, ym) = (x̄, ȳ), then we see that

ϕ(x) ≤ ϕ(x̄) + c(x, ȳ)− c(x̄, ȳ)

by the definition of ϕ. Hence

c(x̄, ȳ)− ϕ(x̄) ≤ c(x, ȳ)− ϕ(x) =⇒ c(x̄, ȳ)− ϕ(x̄) ≤ ϕc(ȳ).

Since the converse inequality is always true we obtain (x̄, ȳ) ∈ ∂cϕ and sptπ ⊂ ∂cϕ.

4. We show ϕ ∈ L1(µ) and ϕc ∈ L1(ν). This follows from

ϕ(x) = inf [c(x, y)− ξ(y)] ≤ cX(x) + cY (y0)− ξ(y0)︸ ︷︷ ︸
<∞

for y0 ∈ Y as in 3. and since cX is µ-integrable. Similar we can prove ϕc ∈ L1(ν). Finally, we
can integrate ϕ + ϕc with respect to the c-monotone coupling π between µ and ν. But since the
support of π is contained in the c-subdifferential ∂cϕ of ϕ, we get∫

ϕdµ+

∫
ϕcdν =

∫
cdπ.

From this identity we can draw several consequences. First, the coupling π has to be optimal.
Therefore, c-monotonicity of π implies sptπ ⊂ ∂cϕ that implies optimality of π. Second, the pair
(ϕ,ϕc) is a maximizer of the dual Kantorovich problem. On the other hand, an optimal coupling
has to be c-monotone if the cost function is continuous. This can be seen as follows. Assume the
contrary. There are points (xi, yi)

N
i=1 ⊂ suppπ that violate c-monotonicity. This completes the

proof of the theorem. �



CHAPTER 3

Optimal transport on Riemannian manifolds

Let (M, g) be connected, complete Riemannian manifold without boundary. Let dM be the
induced intrinsic distance of (M, gM). Let X,Y ⊂M be compact subsets.

Lemma 0.27. Let (Z,dZ) be a metric space such that diamZ <∞, and let X,Y ⊂ Z be compact.
Consider the cost function c = 1

2 dZ : X × Y → R and a c-concave function ϕ : X → R ∪ {−∞}
(relative to X and Y ). Then, ϕ is real-valued and Lipschitz continuous.

Proof. We observe that c is bounded on X×Y . If ϕ(x) = −∞ for some x ∈ X, then ϕc must
be unbounded from above, and consequently we already have ϕ = −∞. Hence, we can assume
that |ϕ| <∞. Let z ∈ X. Then for any ε > 0 there is y ∈ Y such that ϕ(z) + ε ≥ c(z, y)− ϕc(y).
Since for any x ∈ X we have ϕ(x) ≤ c(x, y)− ϕc(y), we obtain

ϕ(x)− ϕ(z) = c(x, y)− c(z, y) + ε ≤ 1

2
diamZ dZ(x, z) + ε.

Since ε > 0 was arbitrary and since we can switch the role of x and z, we obtain the result. �

Definition 0.28. Let U ⊂ X be an open set.

(i) A function ϕ : U → R is super-differentiable at x ∈ U if there exist p ∈ TMx such that

ϕ(expx(v)) ≤ ϕ(x) + 〈p, v〉x + o(|v|)(3)

for all v ∈ TMx such that ϕ(expx(v)) ∈ U. In the same way, we can define sub-
differentiability.

(ii) If (3) holds for p ∈ TMx, p is a super-gradient of ϕ at x, and we denote with ∇+ϕ|x the
set of super-gradients of ϕ at x. In the same way, we define sub-differentiability and the
set of subgradients ∇−ϕ|x of ϕ at x.

It is obvious, that if ∇+ϕ|x ∩∇−ϕ|x 6= ∅, then ϕ is differentiable at x.

Lemma 0.29 (Chain rule). Let U be open, and let ϕ : U → R and h : R→ R have supergradients
p ∈ ∇+ϕ|x and τ ∈ ∇+h|ϕ(x) at x ∈ U and ϕ(x) respectively. If h is non-decreasing then h ◦ ϕ is

superdifferentiable at x and has super-gradient τ · p ∈ ∇+(h ◦ ϕ)|x.

Proof. Since h non-decreasing,

h(ϕ(expx(v)) ≤ h(ϕ(x) + 〈p, v〉x + o(|v|)︸ ︷︷ ︸
=:δ∼|v|

)) ≤ h ◦ ϕ(x) + 〈τp, v〉x + τo(|v|) + o(δ)︸ ︷︷ ︸
o(|v|)

which is the statement. �

Proposition 0.30. Consider ϕ : U → R with ϕ(x) = 1
2 dM(x, y) = c(x, y) for some y ∈ M

and U ⊂M open. Then ϕ is super-differentiable at any x ∈ U , and if σ : [0, 1]→M is a geodesic
between y and x, then σ̇(1) ∈ ∇+ϕ|x.

Proof. Let x ∈ U . There exists ε > 0 and a neighbourhood W of x such that for all z ∈ W
the map expz |Bε(0) is a diffeomorphismus onto a open set Uz where W ⊂ Uz. (see Milnor Morse
theory, 10.3).

1. Now choose y ∈W and a minimal geodesic σ between y and x. We show that ϕ is differentiable
at x and ∇ϕ|x = σ̇(1).

11
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Let expy |Bε(0) =: F : Bε(0)→ Uy and v ∈ TMx such that |v| < ε. Then

ϕ(expx(v) =
1

2
dM(F (v), y)2 =

1

2
dM(F ◦ F−1(expx v)︸ ︷︷ ︸

w∈TMy

, y)2 =
1

2
|F−1(expx(v))|2y

=
1

2
|F−1(expx(0))︸ ︷︷ ︸

σ̇(0)

+DF−1
x (DF )0v︸ ︷︷ ︸

=v

+o(|v|)|2y

=
1

2
|σ̇(0)|2y + 〈σ̇(0), DF−1

x v〉y + o(|v|y)

=
1

2
|σ̇(0)|2y + 〈DF−1

x (DF )0σ̇(0)︸ ︷︷ ︸
=σ̇(1)

, DF−1
x v〉y + o(|v|y)

=
1

2
|σ̇(0)|2y + 〈σ̇(1), v〉y + o(|v|y)

where we used the Gauss Lemma in the last equality, and the standard identification T (TMx)0 =

TMx in the second equality. Application of the chain rule with h(t) =
√

2t implies that dM(·, y) is
differentiable in x and ∇x dM(x, y) = |σ̇(1)|−1σ̇(1) is its gradient at x.

2. Now, we choose y ∈M arbitrarily. Consider again a minimal geodesic σ between y and x, and
choose z on σ such that z ∈W . Apply the previous step to dM(·, z). It follows

dM(y, expx v) ≤ dM(y, z) + dM(z, expx v)

≤ dM(y, z) + dM(z, x) + 〈σ̇(1)/|σ̇(1)|, v〉+ o(|v|).

Hence dM(y, ·) is super-differentiable. Again by application of the chain rule to h(t) = 1
2 t

2 and
ϕ = h ◦ dM(·, y), we obtain that ϕ is super-differentiable with super-gradient σ̇(1) ∈ ∇+ϕ|x. �

Lemma 0.31. Consider U ⊂M open such that U =: X is compact, and let Y ⊂M be compact.
Let ψ be c-concave relative to X and Y . Assume ψ is differentiable at x ∈ U . Then (x, y) ∈ ∂cψ
relative to X and Y if and only if y = expx(−∇ψ|x).

Proof. “=⇒”: Let y ∈ Y such that (x, y) ∈ ∂cϕ. It follows that

c(x, y)− ψ(x)− ψc(y) = 0 ≤ c(z, y)− ψ(z)− ψc(y)

for all z ∈ X by definition of c-concavity relative to X and Y . For z ∈ X we can choose v ∈ TMx

such that expx(v) = z. We define ϕ(z) = 1
2 dM(z, y)2 = c(z, y). Then

ϕ(expx v) = c(z, y) ≥ c(x, y) + ψ(z)− ψ(x)

= ϕ(x)− ψ(x) + ψ(x) + 〈∇ψx, v〉+ o(|v|)

Therefore, ϕ is sub-differentiable at x with sub-gradient ∇ψ|x ∈ ∇−ϕ|x. On the other hand, the
Hopf-Rinow theorem asserts that there is a minimal geodesic between y and x. Thus, the previous
lemma tells us that σ̇(1) ∈ ∇+ϕ|x. Hence, ϕ is actually differentiable at x with

∇x dM(·, y)2|x = ∇ψ|x = σ̇(1)

and y = σ(0) = expx(−∇ψ|x).

“⇐=”: Since ψc is Lipschitz by Lemma 0.27 and Y is compact, there exists a y ∈ Y such that
infy[c(x, y)− ψc(y)] = ψ(x), and following the previous step we obtain y = expx(−∇ψx). �

Theorem 0.32 (Brenier, McCann). Let X = U and Y be as in the previous proposition. Let
µ ∈ P2(X) be absolutely continuous with respect to volg such that sptµ ⊂ U , and let ψ be c-concave
relative to X and Y . Then ψ : X → R is differentiable volg-almost everywhere, x ∈ X 7→ ∇ψx is
Borel measurable, and T : X → Y with T (x) = expx(−∇ψx) is a solution of the Monge problem
relative to X and Y , for c = 1

2 d2
M , µ and ν := T∗µ. We have Cost(µ, T∗µ) <∞. If T ′ is another

solution, then T ′ = T µ-a.e. .
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Proof. 1. By Lemma 0.27 ψ and ψc are Lipschitz on X and Y respectively, and therefore
integrable with respect to probability measures on X and Y respectively. Rademacher’s theorem
yields ψ is differentiable volg-a.e. on U and T is well-defined and Borel measurable. Hence
T∗µ ∈ P2(Y ) is well-defined. (ψ,ψc) is a competitive pair

ψ(x) + ψc(y) ≤ c(x, y)(4)

Integration of (4) with respect to (idX , T )∗µ ∈ Cpl(µ, T∗µ) yields∫
X

ψdµ+

∫
Y

ψcdT∗µ ≤ Cost(µ, T∗µ) ≤
∫
X

c(x, T (x))dµ(x)

The previous proposition yields that for all x ∈ X there exist y(x) ∈ Y such that ψ(x)+ψ(y(x)) =
c(x, y(x)), and if ψ is differentiable at x, then y(x) = expx(−∇ψx) = T (x). Hence, for volg-a.e.
x ∈ X (and therefore for µ-a.e. x ∈ X) ψ(x) + ψ(T (x)) = c(x, T (x)). Integration with respect to
µ yields

∞ >

∫
X

ψdµ+

∫
X

ψcdT∗µ =

∫
X

c(x, T (x))dµ = Cpl(µ, T∗µ)

and T : X → Y is an optimal map between µ and T∗µ.

2. If S : X → Y is another optimal transportation map (S∗µ = T∗µ), then
∫
X
c(x, S(x))dµ(x) =∫

X
c(x, T (x))dµ(x). It follows

ψ(x) + ψc(S(x)) = c(x, S(x)).

But the previous proposition tells us that if ψ is differentiable at x, we get that S(x) = T (x).
Hence, S = T µ-a.e. . �

Theorem 0.33. Let µ ∈ P(M) be absolutely continuous such that sptµ ⊂ X, and let ν ∈ P(M)
with sptν ∈ Y . Then, there exists a c-concave function ψ : X → R such that T (x) = expx(∇ψx) is
an optimal transportation map between µ and ν, and Cost(µ, ν) < ∞. T is unique up to a set of
µ-measure zero.

Proof. 1. Clearly, the assumptions of Theorem 0.26 are satisfied. Therefore, it tells us
that there is a c-concave function ψ such that the pair (ψ,ψc) is optimal in the dual Kantorovich
problem. By Lemma 0.27 we know that ψ and ψc are real-valued and Lipschitz. It is also clear
that ψ and ψc are integrable with respect to µ and ν respectively. In particular

Cost(µ, ν) =

∫
X

ψdµ+

∫
X

ψcdν <∞.

The previous theorem yields that T (x) = expx(−∇ψx) is an optimal transportation map between
µ and T∗µ. We still have to show that T∗µ = ν.

2. Consider h ∈ Cb(Y ) and |ε| < 1. We define ϕε(y) = ψc(y) + εh(y) (ϕ0 = ψc), and

ψε(x) = inf
y

[c(x, y)− ϕ(y)− εh(y)](5)

(ψ0 = ψ). Let us fix x ∈ U where ψ is differentiable. Compactness of Y yields that (5) attains its
minimum in yε where y0 = T (x). The map ε 7→ yε is continuous. Therefore

c(x, y)− ϕ(y)− εh(y) ≥ ψε(x) = c(x, yε)− ϕ(yε)− εh(yε) ≥ c(x, T (x))− ϕ(T (x))− εh(yε).

If we choose y = T (x), then

ψε(x) = c(x, T (x))− ϕ(T (x))− εh(T (x)) + o(|ε|)
where o(|ε|) → 0 uniform in x. The pair (ψε, ϕε) is competitive by construction, and D(ψε, ϕε)
attains its maximum in D(ψ,ϕ). Hence

0 =
d

dε
D(ψε, ϕε)|ε=0 =

∫
X

d

dε
ψε|ε=0dµ+

∫
Y

h(y)dν = −
∫
X

h(T (x))dµ(x) +

∫
Y

h(y)dν(y)

Hence, T∗µ = ν. The uniqueness statement follows precisely as in the previous theorem. �
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Corollary 0.34 (Stability).



CHAPTER 4

Wasserstein distance

Let X be a Polish space.

Definition 0.35. (i) Lp-Wasserstein space:

P2(X) =

{
µ ∈ P(X) :

∫
X

dX(x0, x)pdµ(x) = Mp
x0

(µ) <∞ for some x0 ∈ X
}
.

(ii) Lp-Wasserstein distance between µ, ν ∈ Pp(X):

Wp(µ, ν) =

[
inf

π∈Cpl(µ,ν)

∫
X2

dX(x, y)pdπ(x, y)

] 1
p

.

Remarks 0.36. (i) If Mp
x0

(µ) <∞ for some x0, then Mp
y (µ) <∞ for all y ∈ X.

(ii) Wp(µ, ν) <∞ for all µ, ν ∈ Pp(X), since

Wp(µ, ν)p ≤Mp
x0

(µ) +Mp
x0

(ν).

(iii) Wp ≤Wq if p ≤ q ∈ (0,∞].
(iv) Wp(δx, δy) = dX(x, y) for all x, y ∈ X.
(v) Kantorovich duality:

W1(µ, ν) = sup
Lipϕ≤1

(∫
ϕdµ−

∫
ϕdν

)
.

Proposition 0.37. (Pp(X),Wp) is a metric space.

Proof. We already have that Wp(µ, ν) ∈ [0,∞) for all µ, ν ∈ Pp(X).
1. µ = ν ⇐⇒ Wp(µ, ν) = 0. Assume Wp(µ, ν) = 0. Consider h ∈ Cb(X). Then (h,−h) is
a competitive pair in the dual Kantorovich problem with cost function dpX : X2 → [0,∞). By
Theorem 0.26 it follows that

0 = Wp(µ, ν) ≥
∫
hdµ−

∫
hdν.

Hence,
∫
hdν ≥

∫
hdµ. Replacing h by −h yields equality, and therefore µ = ν.

On the other hand, if µ = ν, π = (idX , idX)∗µ is a coupling. Since dX(x, x) = 0, it yields
Wp(µ, µ) = 0.

2. 4-inequality. Claim: If π ∈ Cpl(µ, ν), then there exist Markov kernels Q,Q′ : X × BX → [0, 1]
such that

π(A×B) =

∫
A

∫
B

Q(x, dy)µ(dx) =

∫
B

∫
A

Q′(y, dx)ν(dy).

A Markov kernel is a map Q : X × BX → [0, 1] such that x 7→ Q(x,B) is measurable for any
B ∈ BX, and such that Q(x, dy) is a probability measure for any x ∈ X.

Now, consider µ1, µ2, µ3 ∈ P2(X), optimal couplings π1,2 ∈ OptCpl(µ1, µ2) and π2,3 ∈ OptCpl(µ2, µ3),
and Markov kernels Q1,2, Q

′
1,2 and Q2,3, Q

′
2,3 with respect to π1,2 and π2,3 as described above. We

define a probability measure π1,2,3 on X3 as follows:

π1,2,3(A×B × C) =

∫
A

∫
B

∫
C

Q2,3(y, dz)Q1,2(x, dy)µ1(dx).

15
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One can easily check that (p12)∗π123 = π12, (p23)∗π123 = π23 and (p13)∗π123 ∈ Cpl(µ1, µ3) where
pij : X3 → X2 are the projections to the product of the ith and jth marginal. For instance, we
have

π123(A×B ×X) =

∫
A

∫
B

∫
X

Q23(y, dz)︸ ︷︷ ︸
=1

Q12(x, dy)µ1(dx) =

∫
A

Q12(x,B)µ(dx) = π12(A×B).

Then

Wp(µ1, µ3) ≤
[∫

dX(x, z)pdπ13(x, z)

] 1
p

=

[∫
X3

dX(x, z)pdπ123(x, y, z)

] 1
p

≤
[∫

X3

(dX(x, y) + d(y, z))pdπ123(x, y, z)

] 1
p

≤
[∫

dX(x, y)pdπ123

] 1
p

+

[∫
dX(y, z)pdπ123

] 1
p

≤
[∫

dX(x, y)pdπ12

] 1
p

+

[∫
dX(y, z)pdπ23

] 1
p

= Wp(µ1, µ2) +Wp(µ2, µ3).

3. Wp(µ, ν) = Wp(ν, µ) comes from the symmetry of dX(x, y). �

Lemma 0.38. If (µk)k∈N ⊂ Pp(X) is a Cauchy sequence w.r.t. Wp, then {µk}k∈N is tight.

Proof. Since Wp ≥ W1 for p ≥ 1, we assume (µk) is Cauchy w.r.t. W1. It is clear that

for all ε > 0 there is N ∈ N such that {µk} ⊂
⋃N
j=1B

W1

ε2 (µj). {µj}j=1,...N is tight since finite.

Hence, there exists a compact set K ⊂ X such that µj(K
c) < ε for all j = 1, . . . N . We can

also find points x1, . . . , xm ∈ X s.t. K ⊂
⋃m
i=1Bε(xi) =: U .. Consider Uε = Bε(U) and ϕ(x) =

max(1− 1
ε dX(x, U), 0). ϕ is 1

ε -Lipschitz. It follows

µk(Uε) ≥
∫
ϕdµk

=

∫
ϕdµj︸ ︷︷ ︸

≥µj(K)

+

∫
ϕdµk −

∫
ϕdµj︸ ︷︷ ︸

≥− 1
εW1(µk,µj)

≥ 1− ε− ε

for any k ∈ N and j ∈ {1, . . . , N}.
If choose ε = 2−pε in the previous proof with p ∈ N0, we obtain Up open such that

µk(Up) ≥ 1− 2−p+1ε for all k ∈ N.

Now, we define S =
⋂∞
p=0 U

p that is closed and satisfies

µk(X\S) = µk(

∞⋃
p=0

Up
c
) ≤

∞∑
p=0

µk(Up
c
) ≤

∞∑
p=0

2−p+1ε = ε.

S is totally bounded (Exercise), closed subset of complete metric space and therefore compact.
This proves that {µk} is tight. �

Theorem 0.39. (µk)k∈N ⊂ P2(X)→ µ w.r.t. Wp if and only if (µk)k∈N → µ weakly and

lim sup
k→∞

∫
X

dX(x, x0)pdµk ≤
∫
X

dX(x, x0)pdµ

for some x0 ∈ X.
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Proof. ”⇒“ The Wp is lower semi-continuous w.r.t. weak convergence. To see that we
consider (µk), µ, ν ∈ P2(X) such that (µk) → µ weakly. Let πk, π be optimal couplings between
µk, µ and ν, respectively. Then (πk) → π weakly. The claim follows since the total cost Cost is
lower semi-continuous on P(X).

Let (µk) converge to µ w.r.t. Wp. (µk) is tight by the previous lemma. Hence, a subsequence (µki)
converges weakly to µ̃. Hence

Wp(µ̃, µ) ≤ lim inf
i→∞

Wp(µki , µ) = 0

and consequently µ̃ = µ. We remind on the following elementary estimate. For all ε > 0 we can
find Cε > 0 such that

(a+ b)p ≤ (1 + ε)ap + Cεb
p

Let πk ∈ OptCpl(µ, µk). Hence∫
dX(x0, x)pdπk︸ ︷︷ ︸
Mp
x0

(µk)

≤ (1 + ε)

∫
dX(x0, y)pdπk︸ ︷︷ ︸

Mp
x0

(µ)

+Cε

∫
dX(x, y)dπk︸ ︷︷ ︸
Wp(µ,µk)p

.

If k →∞, we obtain

lim sup
k→∞

Mp
x0

(µk) ≤ (1 + ε)Mp
x0

(µ).

for ε > 0 arbritrary.

”⇐“ (Sketch): Assume (µk) converges weakly to µ, and Mp
x0

(µ) ≥ lim supMp
x0

(µk). Let πk be an
optimal coupling between µk and µ. By Prohorov’s theorem {µk : k ∈ N} and µ are tight. Then
by a previous lemma {πk : k ∈ N} is also tight. Then, up to extraction of sub πk converges weakly
to an optimal coupling π between µ with itself. Hence, π concentrated on {(x, x)}. Then we can
show

Wp(µ, µk) =

∫
dX(x, y) ∧Rdπk +

∫
|dX(x, y)p −Rp|dπk.

... �

Theorem 0.40. (Pp(X),Wp) is complete and separable.

Proof. 1. Consider a Cauchy sequence (µk). By the previous lemma (µk) is tight. Hence,
there is a subsequence (µki) converging to µ ∈ P(X) weakly. As before, we check that

Mp
x0

(µ) ≤ lim inf Mp
x0

(µki) <∞.

Since Wp is lower semi-continuous w.r.t. weak convergergence and since (µk) is a Cauchy sequence,
we have

Wp(µ, µk) ≤ lim inf
i→∞

Wp(µki , µk)→ 0 if k →∞.

Henc µ ∈ P2(X) and µk → µ w.r.t. Wp.

2. Let D ⊂ X be dense and countable. We will show that{
ν ∈ Pp(X) : ν =

N∑
i=1

aiδxi where xi ∈ D, ai ∈ Q, N ∈ N

}
=M.

Since µ ∈ Pp(X), there is K ⊂ X compact such that∫
X\K

dX(x0, x)pdµ < εp.
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This follows since we can apply Prohorov’s theorem to the finite measure dX(x0, ·)pdµ. We

can find finitely many points {xi}i=1,...,N ⊂ D such that K ⊂
⋃N
i=1Bε(xi). Define Uk =

Bε(xk)\
⋃k−1
i=1 Bε(xi) and f : X → X via

f(x) =

{
xk if x ∈ Uk
x0 if x ∈ X\K.

f is measurable and a transport map between µ ∈ P2(X) and f∗µ =
∑N
k=1 µ(B̃k ∩K)δxk . Addi-

tionally

Wp(µ, f∗µ)p ≤
∫
K

d(x, f(x))p︸ ︷︷ ︸
<εp

dµ+

∫
X\K

dX(x, f(x))pdµ ≤ 2εp.

Finally, we can approximate the elements of
{
µ(B̃k ∩K)

}
by rational numbers arbitrarily close

to obtain a ν ∈M that is close to µ w.r.t. Wp. �

1. Geometric properties

First, let (Y,dY ) some arbitrary metric space.

Definition 1.1. (i) We call a continuous map γ : [a, b]→ Y a parametrized curve. The
length of a curve γ is

L(γ) = sup
a=t0≤···≤tN=b

N∑
k=1

dX(γ(tk), γ(tk+1)) ∈ [0,∞].

We say that a curve γ is rectifiable if L(γ) <∞.
(ii) A metric space (Y,dY ) is a length space if for all x, y ∈ Y

dX(x, y) = inf {L(γ) : γ : [a, b]→ Y such that γ(a) = x, γ(b) = y} .

(iii) A length space (Y,dY ) is a geodesic space if for all x, y ∈ Y there exist a curve γ : [a, b]→
Y such that L(γ) = dX(x, y) and each such minimizer is called geodesic between x and
y. The set of all geodesics is denoted by G(Y ).

Remark 1.2. Each rectifiable curve admits a ”constant speed reparametrization“. More pre-
cisely, there exist ϕ : [a, b] → [0,L(γ)] continuous and non-decreasing, and γ̃ : [0,L(γ)] → Y such
that γ = γ̃ ◦ ϕ and L(γ̃|[a,t]) = (t− a)c for some c > 0.

Proof (Sketch). Consider ϕ(t+ a) = L(γ|[a,t]). �

In the following we will always assume [a, b] = [0, 1], and curves are parametrized by constant
speed.

Proposition 1.3. Let (Y,dY ) be a complete metric space. Then, (Y, dY ) is a length (geodesic)
space if and only for all x, y ∈ Y and for all ε > 0 (for ε = 0) there is z(ε) ∈ Y such that

dY (x, z),dY (z, y) ≤ 1

2
dY (x, y) + ε.

We say z is an ε-midpoint between x and y.

Theorem 1.4. If (Y, dY ) is a length space that is complete and locally compact, then (Y,dY )
is geodesic.

Proof (Sketch). From the assumptions it follows that BR(x) = {y : dY (x, y) ≤ R} compact
for all x ∈ Y and all R > 0. Then the theorem of Arzela-Ascoli implies the result. �

Theorem 1.5. Let (X,dX ,mX) be a complete metric measure space. Then, X is a length space
if and only if Pp(X) with Wp is a length space.
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Proof. ”⇐“: We already know that X isometrically embed in Pp(X). Then, if x, y ∈ X, we
can find µ ∈ Pp(X) such that

1

2
dX(x, y) + ε ≥

[∫
X

dX(x, z)pdµ(z)

] 1
p

,

[∫
X

dX(z, y)pdµ(z)

] 1
p

.

Then, there has to be z0 ∈ sptµ that is ε-midpoint between x and y. This can be seen as follows.
Imagine there is no such point. Then there is ε > 0 such that

1

2
dX(x, y) + ε < dX(x, z) and

1

2
dX(x, y) + ε < dX(z, y)

for all z ∈ X. Integration with respect to µ yields a contradiction.

”⇒“: Let µ, ν ∈ Pp(X) and ε > 0. Choose µ̃ =
∑N
i=1 aiδxi , ν̃ =

∑K
j=1 bjδyj ∈ D that are ε-close to

µ and ν w.r.t. Wp. Let π =
∑
i,j=1 πi,jδ(xi,yj) be an optimal coupling between µ̃ and ν̃. Since X

is a length space, we can find for all i, j an ε̃-midpoint zi,j of xi and yj for ε > 0. Then, we define

µ̃ 1
2

=
∑
i,j

πi,jδzi,j ∈ Pp(X).

We can check that

π̃ 1
2

=
∑
i,j

πi,jδ(xi,zi,j) ∈ Cpl(µ̃, µ̃ 1
2
).

It follows that

Wp(µ̃, µ̃ 1
2
) ≤

[∑
i,j

dX(xi, zi,j)
pπi,j

] 1
2

≤
[∑
i,j

(
1

2
dX(xi, yj) + ε)p︸ ︷︷ ︸
1
2 dX(x,y)p+cεp

πi,j

] 1
2

≤ 1

2
Wp(µ̃, ν̃) + Cε

Similar for ν̃. �

Theorem 1.6. (i) X compact if and only if Pp(X) is compact.
(ii) X locally compact if and only if Pp(X) is compact.

Proof. (i) ”⇒“ This follows, since X embeds isometrically into Pp(X), and X is closed.
”⇐“ Apply Prohorov’s Theorem.

(ii) Ambrosio, Gigli, Savaré: Gradient flows, Remark 7.1.3. �

Corollary 1.7. If X is a compact length space, then Pp(X) is a geodesic space.

More generally:

Theorem 1.8. X is a geodesic space then Pp(X) is a geodesic space.

Proof. First, we remark that there is a measurable map ϕ : (x, y) 7→ γx,y ∈ G(X) such that
γ(0) = x and γ(1) = y. This follows from a measurable selection theorem (references will be
given). Then, (e 1

2
) ◦ ϕ is measurable as well, and we can consider (e 1

2
◦ ϕ)∗π = µ 1

2
∈ P(X) where

π is an optimal coupling between µ0, µ1 ∈ Pp(X). et : G(X) → X denotes the evaluation map
et(γ) = γ(t). Then, we can define ((ei, e 1

2
) ◦ ϕ)∗π = πi for i = 0, 1 that are coupling between µi

and µ 1
2
. We compute

Wp(µi, µ 1
2
)p ≤

∫
dX(x, y)pdπi(x, y)

=

∫
dX(x, y)pd((ei, e 1

2
) ◦ ϕ)∗π(x, y)

=

∫
dX(ei ◦ ϕ(x, y), e 1

2
◦ ϕ(x, y))pdπ(x, y)

=

∫
2−p dX(x, y)pdπ(x, y) = 2−pWp(µ0, µ1)p <∞.
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In particular, it follows that µ 1
2
∈ Pp(X), and µ 1

2
is a midpoint. �



CHAPTER 5

Ricci curvature bounds for metric measure spaces

Definition 0.9. Let (Y,dY ) be a general metric space. We consider f : Y → R ∪ {±∞} and
D(f) = {y ∈ Y : f(y) <∞}.

(i) We say f is k-convex if f > −∞ and for all γ ∈ G(D(f)) with constant speed parametriza-
tion

f ◦ γ(t) ≤ (1− t)f ◦ γ(0) + tf ◦ γ(1)− 1

2
(1− t)tk dX(γ(0), γ(1))2.(6)

(ii) We say f is weakly k-convex if for all x, y ∈ D(f) there exists γ ∈ G(D(f)) such that
f ◦ γ > −∞, γ(0) = x and γ(1) = y and (6) holds. In particular, D(f) is a geodesic
space.

Definition 0.10 (Metric measure space). (i) Let (X,dX) be complete, separable metric
space, and let mX be a locally finite Borel measure. Locally finite means that for all x ∈ X
there exists ε > 0 such that m(Bε(x)) < ∞. Then, we say the triple (X,dX ,mX) is a
metric measure space.

(ii) Pp(X,m) = {µ ∈ Pp(X) such that µ = ρm with ρ : X → [0,∞)}.

Remark 0.11. Let (M, gM) be a Riemannian manifold. Consider the Riemannian distance dM
and the Riemannian volume volg. Then (M,dg, volg) is a mm space.

Definition 0.12 (Relative entropy). The relative entropy functional of a metric measure space
(X,dX ,mX) is given by EntmX

: P2(X)→ R ∪ {±∞}, where

EntmX
(µ) =

{
limδ↓0

∫
{ρ>δ} log ρdµ if dµ = ρdmX

∞ otherwise .

If
∫
{ρ≥1} log ρdµ <∞, then

lim
δ↓0

∫
{ρ>δ}

log ρdµ =

∫
log ρdµ ∈ [−∞,∞)

or if not =∞.

Remark 0.13. 1. If mX ∈ P2(X) =⇒ EntmX
≥ 0. This follows since by Jensen’s

inequality

EntmX
(µ) =

∫
log(ρ)ρdmX ≥

∫
ρdmX log

∫
ρdmX = 0.

2. If mX satisfies the growth condition
∫
e−c dX(x0,x)2dmX < ∞ (GC) then EntmX

> −∞.

Consider m̃ = 1
Z e
−C dX(x0,x)2 mX ∈ P2(X). Then

0 ≤ Entm̃(µ) =

∫
X

ρ̃ log ρ̃dm̃ =

∫
log ρ̃dµ

=

∫
X

log ρdµ︸ ︷︷ ︸
EntmX (µ)

−
∫

logZdµ︸ ︷︷ ︸
const

+c

∫
X

dX(x0, x)2dµ︸ ︷︷ ︸
M2
x0

(µ)<∞

21
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Definition 0.14 (Lott, Sturm, Villani). A metric measure space (X,dX ,mX) satisfies the
curvature dimension CD(K,∞) if the relative Entropy EntmX

is weakly K-convex.

Remark 0.15. If µ, ν ∈ P2(X,mX) then the condition CD(K,∞) implies that there is geodesic
µt in P2(X,mX) between µ and ν.

Theorem 0.16. Let (M, gM) be a Riemannian manifold. Then

ricM ≥ K ⇐⇒ (M, dM , volg) satisfies CD(K,∞).

For simplicity we assume M is compact. It follows that we can always assume X = Y = M .

Remark 0.17. Consider µ0, µ1 ∈ P2(M,mX) (otherwise there is nothing to prove) and the
corresponding Brenier-McCann map Tt(x) = expx(−t∇ϕx) that induces the unique L2-Wasserstein
geodesic (Tt)∗µ0 = µt in P2(M). ϕ is c-concave function.

Theorem 0.18. Let ϕ : U → R be a semi-concave function on some open set U ⊂ M , then
it admits a Hessian volg-almost everywhere in the following sense. More precisely, ϕ admits a
Hessian at x ∈ U if it is differentiable at x and there is a self-adjoint operator A : TMx → TMx

such that

sup
v∈∇+ϕexpxu

‖Pγ1→0v −∇ϕx −Au‖ = o(|u|).(7)

In particular, one gets

ϕ(expx(u)) = ϕ(x) + 〈∇ϕx, v〉+ 〈Au, u〉+ o(|u|).(8)

Conversely, (8) also implies (7) again.

Proof. [CEMS01, Theorem 3.10]

Proposition 0.19. A c-concave function ϕ is semi-concave on M , and hence admits a Hessian
volg-almost everywhere in M .

Proof. [CEMS01, Proposition 3.14]

Proposition 0.20. Consider ϕ : M → R c-concave. Let x ∈M be a point such that ϕ admits
a Hessian at x. Then the optimal map T that is induced by ϕ is differentiable at x. More precisely,
there is a map dT : TMx → TMT (x) such that

sup
{
‖v − dT (u)‖ : (expy v, expxu) ∈ ∂ϕ, |v| = dM(y, expy v)

}
= o(|u|).

dT is non-singular for all t.

Proof. [CEMS01, Proposition 4.1]

Theorem 0.21. Consider µ0, µ1 ∈ P2(M, volg) and the induced optimal map T and a cor-

responding d2-concave function ϕ. Set µi = ρid volg. Then the following Monge-Ampére-type
equation holds µ0-a.e.:

ρ0(x) = ρ1(T (x)) det dT |x 6= 0.

Proof. [CEMS01, Theorem 4.2]

Theorem 0.22. Consider µ0 and µ1 as in the previous theorem, and the W2-geodesic µt that
is induced by the one parameter family of optimal maps Tt between µ0 and µ1. Then {µt}t∈[0,1] ⊂
P2(X, volg).

Let x ∈M be a point such that the ϕ admits a Hessian at x. Let (ei) ∈ TMx be an orthonormal
frame. The Hessian A =: ∇2ϕ of ϕ induces a bilinear form on TMx via

b(u, v) = 〈Au, v〉
and we set Ai,j = 〈Aei, ej〉.
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Remark 0.23. We add some general considerations.
Consider x where T is differentiable. Then Tt is differentiable at x for all t ∈ (0, 1]. Set γ(t) = Tt(x).
Let (ei)i=1,...,n be an orthonormal frame in TMx, and Ei(t) = Pγ0→tei where Pγ0→t is the parallel
transport along γ. If η such that η̇(0) = ei we can calculate DTtei explicitely. Let W : (−δ, δ)→
TM be a vector field along η such that W (0) = ∇ϕx and W ′(0) = Aei.

DTt|xei =
d

ds
Tt ◦ ηi|s=0 =

d

ds
expηi(s)(t∇ϕ|ηi(s))|s=0 =

d

ds
expηi(s)(tWηi(s))|s=0 =: Ji(t).

By construction

Ji(t) =

n∑
j=1

〈Ji, Ej〉(t)Ej(t) =

n∑
j=1

Ji,j(t)Ej(t)

is Jacobi field. The matrix J(t) = (Ji,j(t))i,j=1,...,n represents the differential of Tt w.r.t. the
orthonormal frame (Ei) along γ. Each Ji satisfies

J ′′i +R(Ji, γ̇)γ̇ = 0 with Ji(0) = ei and J ′i(0) = Aei =
∑
j

Ai,jEj .

Therefore, J = (Ji,j)i,j=1,...,n satisfies

J ′′ +R · J = 0 with J(0) = En and J ′(0) = (Ai,j)i,j=1,...,n.

where R = (Ri,j(t))i,j=1,...,n and Ri,j(t) = 〈R(Ei, γ̇)γ̇, Ej〉.

Proposition 0.24. Consider x ∈ M as in the previous remark. We set DTt|x = J(t) and
det J(t) = J (t) and logJ (t) =: y(t). Then

y′′(t) +
1

n
(y′(t))2 + ric(γ̇(t)) ≤ 0

where γ(t) = Tt(x) is the geodesic between x and T (x). A simple reformulation of that is[
J 1

N

]′′
(t) ≤ −K

N
|γ̇|2J 1

N

where ric(γ̇(t)) ≥ K and dimM ≤ N .

Proof. The differentiation rule for det yields

J ′(t) = J (t) tr(J̇(t) · J(t)−1︸ ︷︷ ︸
=:U(t)

)

and differentiation of U yields

U ′(t) = J ′′(t)J(t)−1 − (J ′(t)J(t)−1)2 = −R(t)− (U(t))2.

Taking the trace gives us

(trU)′(t) + tr(U(t)2) + ric(t) = 0.

Consider U(0) = J ′(0)J(0)−1 = A. Since A is symmetric, the identity d
dt

(
〈J ′i , Jj〉 − 〈Ji, J ′j〉

)
yield

that U(t) is symmetric for any t ∈ [0, 1]. Hence, we can consider the Hilber-Schmidt inner product
for symmetric matrices and the corresponding Cauchy-Schwarz inequality for U and En:

trU · En = trU = 〈U,En〉HS ≤
√
n ‖U‖HS =

√
trU2 trE2

n.

It yields

(trU)′(t) +
1

n
tr(U(t))2 + ric(γ̇(t)) ≤ 0.

Since (logJ )′ = J ′/J = trU , we obtain the first result. An easy computation yields the second
one. �
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Proof of Theorem 0.16. “=⇒”: As before we consider µ0, µ1 and the uniqueW2-Wasserstein
geodesic µt that is induced by d2-concave function ϕ. For all t µt is absolutely continuous w.r.t.
volg. Hence, we can write µt = ρtdµ for some measurable function ρt ≥ 0. We consider the entropy.

Ent(µt) =

∫
log ρtdµt =

∫
log ρtd(Tt)∗µ0

=

∫
log ρt(Tt(x))dµ0(x)

=

∫
log (ρ0(x)/ detJx(t)) dµ0(x)

=

∫
log ρ0(x)dµ0(x)−

∫
yx(t)dµ0

≤
∫

log ρ0(x)dµ0(x)− (1− t)
∫
yx(0)dµ0(x)︸ ︷︷ ︸
=0

+t

∫
yx(1)dµ0(x)− 1

2
K(1− t)t

∫
dX(x, T (x))dµ0︸ ︷︷ ︸
=W2(µ0,µ1)2

= (1− t)
∫

log ρ0(x)dµ0(x) + t

∫
log (ρ0yx(1)) dµ0(x)︸ ︷︷ ︸

=
∫

log ρtdµt

−1

2
K(1− t)tW2(µ0, µ1)2

= (1− t) Ent(µ0) + tEnt(µ1)− 1

2
K(1− t)tW2(µ0, µ1)2.

Therefore Ent = Entvolg is weakly K-convex. �

Remark 0.25. Consider the metric measure space (Rn, | · |2, e−|·|
2
2dLn). It satisfies CD(1,∞)

for all n ∈ N.

1. Curvature-dimension condition

Definition 1.1. We define the so-called distortion coefficients for K ∈ R, θ ≥ 0 and t ∈ [0, 1].

σ
(t)
K (θ) =

{
sinK(θt)
sinK(θ) if θ2K < π

∞ otherwise,

where the generalized sin-function sinK are given by

sinK(s) =


sin(
√
Ks) if K > 0

s if K = 0

sinh(
√
−Ks) if K < 0.

We also set cosK = sin′K .

Lemma 1.2. Let f : [a, b] → [0,∞) be continuous, and let K ∈ R. Then the following state-
ments are equivalent.

(1) f ′′ ≤ −Kf in the distributional sense. More precisely, for all ϕ ∈ C∞((a, b))∫ b

a

fϕ′′dx ≤ −K
∫ b

a

fϕdx.

(2) For all x, y ∈ [a, b]

f((1− t)x+ ty) ≥ σ(1−t)
K (|x− y|)f(x) + σ

(t)
K (|x− y|)f(y).

In particular, the case K = 0 implies convexity of f .
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Definition 1.3. We set σ
(t)
K/N(θ) = σ

(t)
K,N(θ). The modified distortion coefficients are defined

as follows.

τ
(t)
K,N(θ) = t1/N

[
σ

(t)
K,N−1(θ)

]1−1/N

.

We have the conventions r · ∞ for r > 0, and (∞)α = ∞ for α ≥ 0. In particular, if K > 0, we

have τ
(t)
K,1(θ) <∞ iff θ = 0, and τ

(t)
K,1(θ) = t if K ≤ 0.

Definition 1.4 (N -Renyi entropy). Given a metric measure space (X,dX ,mX) and N ∈
[1,∞), we define the N -Renyi entropy functional with respect to mX as

SN : P2(X)→ [−∞, 0], SN(µ) = −
∫
X

ρ−1/Ndµ

where ρ denotes the density of the absolutely continuous part of µ in the Lebesgue decomposition
of with respect mX .

Definition 1.5 (Curvature-dimension condition). A metric measure space (X,dX ,mX) satis-
fies the curvature-dimension condition CD(K,N) for K ∈ R and N ∈ [1,∞) if SN > −∞ and for
all µ0, µ1 ∈ P2(X,mX) there exists a W2-geodesic (µt)t∈[0,1] ⊂ P2(X,mX) and an optimal coupling
π ∈ Cpl(µ0, µ1) such that for all N ′ ≥ N

SN′(µt) ≤ −
∫
X×X

[
τ

(t)
K,N′(dX)ρ0(x)−

1
N′ + τ

(t)
K,N′(dX)ρ1(y)−

1
N′
]
dπ(x, y)

where µi = ρidmX for i = 0, 1 and dX := dX(x, y). We say (X,dX ,mX) satisfies the reduced

curvature-dimension condition CD∗(K,N) if we replace τ
(t)
K,N(dX) by σ

(t)
K,N(dX).

Remark 1.6. Since σ
(t)
K,N(dX) ≤ τ (t)

K,N(dX), we have CD(K,N) implies CD∗(K,N).

Remark 1.7. The definition implies that the support of µi for i = 0, 1 is contained in the
support of mX .

Remark 1.8. By definition of τ
(t)
K,1(θ) a connected metric measure space satisfies the condition

CD(K, 1) for K > 0 if and only if it consists of only one point.

Theorem 1.9 (Sturm). Let (M, g) be a complete Riemannian manifold. Then

(M,dM , volg) satisfies CD(K,N) ⇐⇒ ricg ≥ K and dimM ≤ N.

Proof. For simplicity assume (M, g) is compact. We remind on the following facts. For
µ0, µ1 ∈ P2(X, volg) there exist a c-concave function ϕ such that Tt(x) = expx(−t∇ϕx) is the
optimal map between µ0 and (Tt)∗µ0 = µt, and µt is the unique geodesic between µ0 and µ1 in
P2(M). Tt and ϕ have the following properties.

(i) ϕ admits a Hessiann µ0-almost everywhere.
(ii) DTt exists µ0-a.e. for all t, and DTt|x is regular for all t.
(iii) µt is absolutely continuous w.r.t. volg for all t.
(iv) f(x) = detDTt|xft(Tt(x)) m0-a.e.

We know that

U ′(t) + U2(t) +R(t) = 0

where U(t) = J ′(t)J(t)−1 and Ri,j(t) = 〈R(Ei, γ̇)γ̇, Ej〉. The matrix R has the following form

R(t) =

(
0 0
0 R̄(t)

)
where R̄ is a (n− 1)× (n− 1)-matrix. Hence

u′11 +

n∑
i=1

u2
1,i = 0 =⇒ u′11 + u2

11 ≤ 0.(9)
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Taking the trace yields

trU ′ + trU2 + ric = 0.

where ric(t) = ric(γ̇). The Jacobi determinant J satisfies J ′/J = trU = u11 +
∑n
i=2 uii. There-

fore, if we set λ(t) =
∫ t

0
u11(s)ds, we see

J (t) = eλ(t)e
∫ t
0 [

∑n
i=2 uii(s)]ds.

The factor e
∫ t
0
u11 = L(t) describes volume distortion in direction of the transport geodesics. From

(9) follows L′′(t) ≤ 0. We remove this part and consider

J̄ (t) = J (t)/L(t).

We study J̄ in more detail. A straightforward computation yields J̄ ′ = J̄ tr Ū where Ū =
(Uij)i,j=2,...n. Set ȳ = log J̄ . Then

ȳ′′(t) = y′′(t)− λ′′(t) = − trU(t)2 − ric(t)− u′11(t) = −
∑
i,j

u2
ij(t)− ric(t) +

n∑
i=1

u1i(t)
2

≤ −
n∑

i,j=2

uij(t)
2 − ric(t) = tr Ū(t)2 − ric(t) ≤ − 1

n
(trU(t))

2 − ric(t)

Corollary 1.10. [
J̄

1
N−1

]′′
≤ − K

N − 1
|γ̇|2J̄

1
N−1

where ric(γ̇(t)) ≥ K and dimM ≤ N . By Lemma 1.2 we obtain an integrated inequality for J̄ of
the form

J̄ (t)
1
N ≥ σ(1−t)

K,K (|γ̇|)J̄ (0)
1

N−1 + σ
(t)
K,K(|γ̇|)J̄ (1)

1
N−1

Corollary 1.11.

J (t)
1
N ≥ τ (1−t)

K,N (|γ̇|)J (0)
1
N + τ

(t)
K,N(|γ̇|)J (1)

1
N

where ric(γ̇(t)) ≥ K and dimM ≤ N .

Proof.

J (t)
1
N =

(
J̄ (t)L(t)

) 1
N =

(
J̄ (t)

1
N−1

)N−1
N

(L(t))
1
N

≥
(
σ

(1−t)
K,K (|γ̇|)J̄ (0)

1
N−1 + σ

(t)
K,K(|γ̇|)J̄ (1)

1
N−1

)N−1
N
(

(1− t)L(0) + tL(1)
) 1
N

≥
(
σ

(1−t)
K,K (|γ̇|)J̄ (0)

1
N−1

)N−1
N

((1− t)L(0))
1
N +

(
σ

(t)
K,K(|γ̇|)J̄ (1)

1
N−1

)N−1
N

((t)L(1))
1
N

= τ
(1−t)
K,N (|γ̇|)J (0)

1
N + τ

(t)
K,N(|γ̇|)J (1)

1
N .

In the second inequality we use Hölder’s ineqality for p = N
N−1 and q = N . �
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Now, we can complete the proof of the Theorem. Consider µ0, µ1, ϕ, Tt and µt = ρtd volg as
before. Then

SN(µt) = −
∫
ρt(x)−

1
N dµt(x) = −

∫
ρt(Tt(x))−

1
N dµ0(x)

= −
∫

(ρ0/Jx(t))
− 1
N dµ0 = −

∫
ρ(x)−

1
N Jx(t)

1
N dµ0

≤ −
∫ [

τ
(1−t)
K,N (|γ̇|)(ρ0/Jx(0))−

1
N + τ

(t)
K,N(|γ̇|)(ρ0(x)/Jx(1))−

1
N

]
dµ0(x)

= −
∫ [

τ
(1−t)
K,N (dX(x, T1(x)))(ρ0(x))−

1
N + τ

(t)
K,N(dX(x, T1(x)))(ρ1(T1(x)))−

1
N

]
dµ0(x)

= −
∫ [

τ
(1−t)
K,N (dX(x, y))(ρ0(x))−

1
N + τ

(t)
K,N(dX(x, y))(ρ1(y))−

1
N

]
d (id, T1)∗µ0︸ ︷︷ ︸

=:q

(x, y)

Since T1 is an optimal map between µ0 and µ1, q = (id, Tt)∗µ0 is an optimal coupling. Hence, we
verified the curvature-dimension condition CD(K,N). �

2. Geometric consequences of the curvature-dimension condition

Lemma 2.1. For all K,K ′ ∈ R, all N,N ′ ∈ (0,∞), all t ∈ [0, 1] and all θ ∈ (0,∞), it holds
that

σ
(t)
K,N (θ)N · σ(t)

K′,N′(θ)
N′ ≥ σ(t)

K+K′,N+N′(θ)
N+N′

and, if N ≥ 1,

τ
(t)
K,N (θ)N · τ (t)

K′,N′(θ)
N′ ≥ τ (t)

K+K′,N+N′(θ)
N+N′ .

Proposition 2.2 (Curved Brunn-Minkowski inequality). Assume the metric measure space
(X,dX ,mX) satifies the condition CD(K,N) for K ∈ R and N ≥ [1,∞). Then for all measurable
sets A0, A1 ⊂ X with positive mass, we have

m(At)
1
N′ ≥ τ (1−t)

K,N (Θ) m(A0)
1
N′ + τ

(t)
K,N(Θ) m(A1)

1
N′ ,

for all t ∈ [0, 1] and N ′ ≥ N , where At = {x ∈ X : γ(t) = x, γ ∈ G(X), t ∈ [0, 1], γ(i) ∈ Ai for i = 0, 1}
and

Θ :=

{
infx∈A0,y∈A1

dX(x, y) if K ≥ 0

supx∈A0,y∈A1
dX(x, y) if K < 0.

In particular, if K ≥ 0,

m(At)
1
N′ ≥ (1− t) m(A0)

1
N′ + tm(A1)

1
N′ .

Proof. First, assume m(A0),m(A1) < ∞ and set µi = m(Ai)
−1 m |Ai for i = 0, 1. The

curvature-dimension yields∫
At

ρ
1
N′
t dµt ≥ τ (1−t)

K,N (Θ) m(A0)
1
N′ + τ

(t)
K,N(Θ) m(A1)

1
N′

where (µt = ρtdmX)t denotes the absolutely continuous geodesic that connects µ0 and µ1. By

Jensen’s inequality the left hand side of the previous inequality is smaller than mX(At)
1
N′ . The

general case follows by approximation of Ai by sets of finite measure. �

Definition 2.3 (Minkowski content). Consider x0 ∈ X and Br(x0) ⊂ X. Set v(r) =
mX(B̄r(x0)). The Minkowski content of ∂Br(x0) (the r-sphere around x0) is defined as

s(r) := lim sup
δ→0

1

δ
mX(B̄r+δ(x0)\Br(x0)).
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Theorem 2.4 (Bishop-Gromov volume growth inequality). Assume (X,dX ,mX) satisfies CD(K,N)
for K ∈ R and N ∈ [1,∞). Then, each bounded set has finite measure and either mX is by one
point or all points and all sphere have mass 0.

More precisely, if N > 1 then for each x0 ∈ supp mX and for all 0 < r < R ≤ π
√

N−1
max{K,0} ,

we have

s(r)

s(R)
≥

sinN−1

K/(N−1) r

sinN−1

K/(N−1)R

and

v(r)

v(R)
≥
∫ r

0
sinN−1

K/(N−1) tdt∫ R
0

sinN−1

K/(N−1) tdt
.

If N = 1 and K ≤ 0, then

s(r)

s(R)
≥ 1,

v(r)

v(R)
≥ r

R
.

Proof. If K > 0 and N = 1, then the definition of CD(K,N) implies that the support of
mX consist of just one point, and nothing is to prove.

Let us prove the other cases. Fix a point x0 ∈ supp mX , assume mX(x0) and put t = r
R ∈ (0, 1).

Choose ε > 0 and δ > 0. We apply the curved Brunn-Minkowski inequality to A0 = Bε(x0) and
A1 = B̄R+δR(x0)\BR(x0). One verifies easily that

At ⊂ B̄r+δr+εr/R(x0)\Br−εr/R(x0) and R− ε ≤ Θ ≤ R+ δR+ ε.

Hence, the curved Brunn-Minkowski inequality implies that

mX(B̄r+δr+εr/R(x0)\Br−εr/R(x0))
1
N ≥τ (1−r/R)

K,N (Θ) mX(Bε(x0))
1
N +

τ
(r/R)
K,N (Θ) mX(B̄R+δR(x0)\BR(x0))

1
N .

If ε→ 0, it yields

mX(B̄r+δr(x0)\Br−(x0))
1
N ≥ τ (r/R)

K,N (R± δR) mX(B̄R+δR(x0)\BR(x0))
1
N .

or equivalently

v(r + δr)− v(r) ≥ τ (r/R)
K,N (R± δR)N (v(R+ δR)− v(R)) .(10)

Since we assume that mX is locally finite, the left hand side (and therefore also the right hand side)
of the previous inequality is finite for r sufficiently small. Then, v(R) is finite for all R > 0, and

v(R) = v(R∗) for R ≥ R∗ = π
√

(N − 1)/max {K, 0} since τ
(t)
K,N (θ) = ∞ if θ ≥ R∗ by definition.

Moreover, v is right continuous by construction. It is non-decreasing, and therefore it has only
countably many discontinuities. In particular, there will be arbitrarily small r > 0 and δ > 0 such
that v is continuous on the intervall [r, (1 + δ)r]). Hence, (10) implies that v is continuous on
(0,∞). Therefore, mX(∂Br(x0)) = 0 for all r > 0, and also mX({x}) = 0 for all x 6= x0. (10) can
be restated as

1

δr
(v(r + δr)− v(r)) ≥ 1

δR
(v(R+ δR)− v(R))

sinK/(N−1)((1± δ)r)N−1

sinK/(N−1)((1± δ)R)N−1
.

In the limit this yields the first claim.

We will show that v is locally Lipschitz contiuous in R. Let r, δ > 0 as before. If we consider a
diadic subdiffision of [r, r + δ), one can show that for any n ∈ N there is rn ∈ [r, r + δr) such that

0 <
2n

δr

(
v(rn + 2−nr)− v(rn)

)
≤ 1

δr
(v(r + δr)− v(r)) =: C.
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It follows with (10)

v(R+ 2−nδR)− V (R) ≤ R

rn

(
sinK/(N−1)((1± δ)R)

sinK/(N−1)((1± δ)rn)

)N−1

︸ ︷︷ ︸
≤τ(r/R)

K,N ((1±δ)R)−(N−1)

v(rn + 2−nδr)− v(rn) ≤ C2−nδR

This implies that v is locally Lipschitz. For instance, consider r < R < R′ such that R′ − R = ε
is small. Then we can choose n such that v(R + 2−nδR) − v(R′) < 1

k . Hence, v is differentiable
almost everywhere in R. Hence, for a.e. R the limit s(R) exists and s is the weak differential of v.
The fundamental theorem of calculus implies that∫ R

0

s(r)dr = v(R).

By Gromov’s lemma this implies the volume estimate.
sinK/(N−1)((1±δ)r)N−1

sinK/(N−1)((1±δ)R)N−1

Now, we treat case where mX({x0}) > 0. If supp mX \ {x0} 6= ∅, there has to be x1 ∈
supp mX \ {x0} with mX(x1) = 0. Otherwise, pick any x1 6= x0. The curvature dimension condition
implies the existence of a geodesic γt ⊂ supp mX between x0 and x1. Since mX is locally finite,
this yields a contradiction. Hence, we repeat the previous proof for x1 instead of x0. This implies
mX({x0}) = 0 what is a contradiction again. Hence, there was no x1 6= x0 and X = {x0}. �
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